Федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский университет науки и технологий»

На правах рукописи

4

Ахметшин Булат Салаватович

СИНТЕЗ И ЗАКОНОМЕРНОСТИ АГЛОМЕРАЦИИ НАНОРАЗМЕРНЫХ СОЛЕЙ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ (КАЛЬЦИЯ, БАРИЯ, СТРОНЦИЯ) И СЕРЫ, ПОЛУЧАЕМЫХ ИЗ ПОЛИСУЛЬФИДНЫХ РАСТВОРОВ

1.4.4. Физическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель:

доктор технических наук, профессор,

Массалимов И.А.

Оглавление

Введение				
Глава 1. Литературный обзор9				
1.1. Направления применения серы9				
1.2. Карбонаты щелочноземельных металлов				
1.2.1. Наночастицы карбоната кальция 20				
1.2.2. Наночастицы карбоната бария				
1.2.3. Наночастицы Карбоната стронция				
1.3. Наночастицы сульфаты кальция, бария и стронция 56				
1.3.1. Наночастицы сульфаты кальция				
1.3.2 Получение наночастиц сульфата бария				
1.3.3 Наночастицы сульфаты стронция				
1.4.Фосфаты кальция, бария и стронция				
Глава 2 Методы, использованные в работе91				
2.1. Измерения размеров частиц с помощью лазерного анализатора91				
2.2. Измерения на сканирующем зондовом микроскопе Solver PRO-М 93				
2.3 Метод рентгеновского анализа материалов				
2.4 Измерения ИК спектров 102				
2.5 Техника и методика приготовления образцов				
2.6 Описание эксперимента по проращиванию зерна110				
Глава 3. Получение и кинетика агломерации наноразмерных солей				
щелочноземельных металлов и серы111				
3.1. Кинетика совместной агломерации солей ЩЗМ и серы 111				
3.2 Влияние концентраций кислот на скорость агломерации солей ЩЗМ и				
серы116				
3.3 Влияние температуры на скорость агломерации смесей 119				
3.4. Влияние ПАВ на скорость агломерации солей ЩЗМ и серы 123				
Глава 4. Разделение смесей и кинетика агломерации отдельных компонентов				

4.1. Кинетика агломерации серы1	26
1.2. Кинетика агломерации солей щелочноземельных металлов 1	29
лава 5. Примеры практического применения исследуемых наноразмерны	ЫΧ
соединений1	37
Заключение1	39
Зыводы1	39
Список литературы14	41

ВВЕДЕНИЕ

Актуальность работы

B связи с развитием нанотехнологий актуальна задача синтеза наночастиц неорганических соединений разного химического состава. Привлекательны с точки зрения применения на практике наночастицы различных щелочноземельных металлов (ЩЗМ), в том числе карбонаты, сульфаты фосфаты. И Эти наносоединения являются основными строительными блоками многих современных материалов, применяемых в таких областях, как электроника, медицина, катализ и др. Например в электронике они могут использоваться для создания наноэлектронных устройств и квантовых точек, в медицине – для создания наномедицинских препаратов и систем доставки лекарств, а в катализе – для разработки эффективных катализаторов для промышленных процессов. Таким образом, изучение и развитие наночастиц карбонатов, сульфатов и фосфатов щелочноземельных металлов играет важную роль в создании инновационных материалов и технологий, что открывает новые перспективы для различных отраслей науки и промышленности.

В литературе предложен достаточно большой набор методов, позволяющих получать соединения наноразмерного диапазона. В то же время, эти методы не универсальны и достаточно дороги. В связи с изложенным, разработка простого и сравнительно дешевого способа получения наноразмерных солей ЩЗМ и серы с возможностью их последующего разделения и контроля за размерами получаемых частиц, представляется крайне важной и актуальной задачей.

Синтез наночастиц с контролем их размеров имеет решающее значение, так как дает возможность регулировать потребительские качества наноматериалов и определять направления их применения. Контроль процессов агломерации нанообъектов позволяет эффективнее использовать ресурсы при производстве наноматериалов, так как он способствует формированию более стабильных структур. Это может привести к

сокращению потребления ресурсов, уменьшению количества отходов и энергозатрат, что в свою очередь снизит негативное воздействие на окружающую среду. Кроме того, использование наночастиц с контролируемой агломерацией может способствовать созданию более эффективных и экологически чистых технологий и продуктов, что будет способствовать устойчивому развитию общества. Таким образом, учет агломерации наночастиц при разработке новых материалов и технологий играет важную роль в минимизации негативного воздействия человеческой деятельности на окружающую среду и способствует созданию более устойчивой и экологически чистой промышленности.

Работа выполнена на кафедре «Физической химии и химической экологии» УУНиТ.

Цель диссертационной работы. Разработка способа получения наноразмерных солей щелочноземельных металлов (Ca, Ba, Sr) и серы с установлением кинетических закономерностей агломерации, способов разделения получаемых суспензий и контроля за их размерами.

Для достижения поставленной цели требовалось решить следующие задачи:

 Разработка способа получения наноразмерных солей – карбонатов, сульфатов, фосфатов щелочноземельных металлов (кальция, бария, стронция) – и серы с возможностью их последующего разделения.

2. Исследование кинетических закономерностей агломерации наноразмерных соединений, получаемых в водной среде из полисульфидных растворов.

3. Идентификация полученных высокодисперсных соединений металлов и серы физико-химическими методами анализа.

4. Исследование возможностей практического применения наноразмерных солей щелочноземельных металлов и серы.

Научная новизна.

1. Предложен сравнительно простой и удобный способ одновременного осаждения нанодисперсных частиц карбонатов, сульфатов, фосфатов

щелочноземельных металлов и серы путем смешения растворов полисульфидов ЩЗМ и соответствующих неорганических кислот. Показана возможность разделения получаемых смесей на отдельные компоненты.

2. Выявлены кинетические закономерности агломерации наноразмерных смесей (солей ЩЗМ и серы) и отдельных компонентов этих смесей (солей ЩЗМ, серы), которые позволяют регулировать протекание данных процессов во времени.

3. Проведены исследования по влиянию температуры, концентрации использованных кислот, добавок неонола (поверхностно активного вещества) на скорости совместной агломерации смесей. Полученные результаты открывают возможности для контроля за размерами изучаемых смесей.

Практическая значимость.

1. Предложенный универсальный метод синтеза позволяет получать смеси наноразмерных соединений (солей ЩЗМ и серы) с возможностью разделения их на отдельные компоненты и контроля за размерами образующихся частиц. 2. Обнаружено, что обработка составом на основе полисульфида кальция и серы пористых неорганических материалов позволяет придать ИМ водоотталкивающие свойства, что может быть использовано ДЛЯ гидрофобизации строительных материалов.

3. Установлено, что обработка семян смесями наноразмерных соединений (CaCO₃ + S или CaSO₄ + S) приводит к стимуляции роста растений и значительному увеличению длины побегов и корешков растений, что позволяет рекомендовать данные смеси для повышения урожайности сельскохозяйственных культур.

Основные положения, выносимые на защиту:

1. Способ одновременного получения наноразмерных смесей (солей щелочноземельных металлов и серы) с возможностью их последующего разделения.

2. Кинетические закономерности совместной агломерации солей целочноземельных металлов и серы, получаемых из полисульфидных растворов.

3. Результаты исследований по влиянию различных факторов (температуры, концентрации использованных в работе кислот, добавок поверхностно активного вещества) на скорости совместной агломерации смесей.

4. Кинетические закономерности агломерации отдельных компонентов (солей ЩЗМ, серы), получаемых путем разделения осаждаемых смесей.

5. Результаты ИК- и УФ- спектроскопии, а также рентгенофазового анализа, позволяющие установить индивидуальность синтезированных соединений и присутствие характерных кристаллических решеток, соответствующих наночастицам индивидуальной серы и соединений ЩЗМ в твердой фазе.

И обоснованность Достоверность результатов исследований. Достоверность полученных результатов, теоретических И обеспечивается корректностью экспериментальных исследований используемых апробируемых методов и компьютерной обработки данных рентгенофазового анализа, электронного и зондового микроскопа. Общие выводы и конкретные результаты эквивалентны аналогичным результатам, полученным другими исследователями.

Апробация работы. Результаты диссертационной работы представлены на всероссийских и международных конференциях: Международная научно-«Современное практическая конференция состояние, традиции И технологии АПК» XXVIII инновационные В развитии В рамках Международной специализированной выставки «Агрокомплекс-2018» (Уфа, 2018); III Всероссийская конференция (с международным участием) «Горячие точки химии твердого тела: от новых идей к новым материалам», посвященная 75-летию Института химии твердого тела и механохимии СО РАН (Новосибирск, 2019); V-VIII Всероссийские научно-практические молодежные конференции с международным участием «Современные (Уфа, 2020-2023); VI технологии композиционных материалов»

Международная научно-практическая конференция молодежная (Уфа, 2020); «Актуальные вопросы современного материаловедения» Международная научно-практическая конференция «Концепции, теория и фундаментальных методика И прикладных научных VII исследований» (Стерлитамак, 2022); Всероссийская (заочная) молодежная конференция «Достижения молодых ученых: Химические науки» (Уфа, 2022); VI и VII Всероссийские молодежные конференции «Проблемы и достижения химии кислород- и азотсодержащих биологически активных соединений» (Уфа, 2022, 2023) и др.

Публикации. Соискателем опубликовано 29 научных работ, из них по теме диссертационной работы опубликованы 11 статей в рецензируемых научных изданиях, рекомендованных ВАК (из которых 5 статей – в журналах, индексируемых в Web of Science и Scopus), 5 статей – в изданиях, входящих в базу данных РИНЦ, и 12 тезисов докладов в сборниках Всероссийских и Международных конференций. Получен 1 патент РФ на изобретение.

Личный вклад автора. Автором диссертационной работы самостоятельно проведены все эксперименты и расчеты. Результаты экспериментов, под руководством научного руководителя, были обработаны, обсуждены и оформлены в виде научных публикаций. Диссертация написана автором самостоятельно.

Объем и структура работы. Диссертация изложена на 168 страницах и включает 20 таблиц, 26 рисунков. Диссертационная работа состоит из введения, литературного обзора, экспериментальной части и обсуждения результатов, заключения, выводов и списка использованных источников (245 наименований).

Глава 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Направления применения серы

Элементная сера занимает важное место среди материалов, широко применяемых в современной промышленности, и входит в пятерку наиболее распространенных химических продуктов. Сера является неметаллом и относится к тем немногим веществам, которые на поверхности Земли можно встретить не только в виде соединений, но также и в виде самородного вещества. Возможно, это обстоятельство послужило причиной раннего использования этого химического элемента для нужд человечества. Древние цивилизации удовлетворяли свои потребности в сере, используя легкодоступные природные источники. Одним из таких источников была природная сера, покрывавшая поверхность кратеров вулканов, включая как действующие, так и потухшие. Уже в древности было замечено, что дым, возникающий при сжигании серы, обладает очищающими свойствами. Это обстоятельство нашло применение в качестве инсектицида и для очищения помещений, используемых для лечения больных. С древнейших времен сера использовалась в медицине при кожных заболеваниях, заболеваниях суставов отравлениях. Врачи изготавливали серные бальзамы на основе И измельченной серы и применяли их для лечения кожных заболеваний.

Смеси серы с смолами и канифолью использовались римлянами для создания горючих смесей. В Китае, в эпоху Конфуция (557 - 479 до н.э.), на основе серы был изобретен порох, который стал основой для разработки огнестрельного оружия. Рецепт пороха был внесен в Европу крестоносцами, и для тех, кто обладал соответствующими химическими знаниями, потребность в сере становилась все более существенной. Однако настоящим катализатором для масштабного использования серы стала промышленная революция, привнесшая новые химические подходы. Серная кислота приобрела статус ключевой универсальной кислоты, и для ее производства потребность в сере резко возросла. В настоящее время наиболее важным направлением использования серы является производство серной кислоты – около 90 % всей получаемой в мире серы сегодня перерабатывается и затем потребляется в виде серной кислоты. В общем производстве производимой в мире серной кислоты 60% изготавливается из элементной серы, остальное количество производится из пирита и отходящих газов. Масштабы производства серной кислоты огромны, они составляют сотни миллионов тонн. Они до некоторой степени стали характеризовать общий уровень той промышленного развития ИЛИ иной страны. Помимо производства серной кислоты, сера находит широкое применение в различных отраслях промышленности. Ее используют в масштабах промышленного производства препарата для контроля фитопатогенных грибов в растениях. Сера также играет ключевую роль в процессе вулканизации резины, а ее применение в производстве спичек и бумаги широко распространено. Кроме того, сера используется в синтезе различных серосодержащих соединений И других химических продуктов.

Текущий статус научных исследований, посвящённых изучению серы, одного из важнейших химических элементов. Указывается, что за последние годы накопилось большое количество как отечественных, так и зарубежных работ, исследующих различные свойства и возможности применения серы. В тексте также отмечается, что подходы к изучению серы различаются в зависимости от типа публикации: научные статьи, как правило, уделяют внимание детальному рассмотрению узких и специализированных вопросов, связанных с серой, будь то её химические, физические или биологические свойства. В то же время, монографии, представляя собой более обширные труды, стремятся охватить широкий спектр информации, включая как экспериментальные данные, так и теоретические обоснования, с целью создания целостного и систематизированного представления о сере и её многообразных применениях.

В отечественной научной литературе особенно выделяется монография [1], которая представляет собой значительный вклад в область исследования серы. В этой монографии проводится всесторонний анализ химических

свойств серы, что включает детальное изучение её химического поведения, реакционной способности и взаимодействия с другими веществами.

Кроме того, в работе предлагаются разнообразные методологические подходы к решению задач, связанных с серой. Это включает методы идентификации, позволяющие точно определить присутствие серы в различных образцах; методы разделения, предназначенные для отделения серы от других компонентов; и методы количественного определения, позволяющие измерить концентрацию серы с высокой точностью. Внимание автора сосредоточено на тщательном анализе содержания серы в различных природных и промышленных матрицах, что делает работу актуальной для практического применения. Важным аспектом монографии является её обширная библиография, представляющая собой исчерпывающий ресурс для дальнейших исследований. Это издание представляет собой значимый ресурс, который имеет высокую ценность для различных категорий специалистов в области химии. Во-первых, для химиков, работающих в научных исследованиях, оно представляет собой источником глубоких и свойствах всесторонних данных 0 серы, a также различных методологических подходов к её анализу и применению. Эти данные могут разработки новых теорий, быть полезны ДЛЯ проведения сложных экспериментов и усовершенствования существующих методов исследования.

Англоязычная монография [2], охватывающая аналогичную тематику, также сосредоточена на аспектах аналитической химии серы. В этой работе подробно изучаются методы и техники, применяемые для анализа серы, что может дополнить и расширить представления о данной области.

Особое внимание стоит уделить монографиям [3-5], которые предоставляют исчерпывающую информацию о технологических процессах переработки серы, добываемой из нефтегазовых и природных источников. Эти работы подробно описывают различные технологии и методы, применяемые в переработке серы, включая как традиционные, так и современные подходы. В них рассматриваются технологические схемы,

инновационные решения и эффективные методы обработки, что может быть полезно для специалистов, работающих в области промышленной переработки серы и разработке новых технологических процессов.

В числе актуальных исследований выделяется монография Ю.А. Сангалова [6], которая представляет собой важный труд в области переработки серы и разработки её различных товарных и препаративных форм. В данной монографии освещаются ключевые аспекты, касающиеся как технологических процессов переработки серы, так и её использования в различных продуктах и препаратах.

Монография подробно анализирует проблему избыточного производства серы в нефтегазовом секторе, что представляет собой значительное вызов для многих стран. В условиях растущего объема добычи и переработки нефти и газа часто возникает избыточное количество серы, что требует разработки эффективных решений для её утилизации или переработки. Ю.А. Сангалов рассматривает текущее состояние этой проблемы, предлагая возможные пути её решения и подходы к оптимизации процессов управления серой.

В дополнение к этому, в работе рассматриваются современные направления использования серы, включая как традиционные, так и новые методы её применения. Это может включать разнообразные промышленные и технологические процессы, такие как производство серных соединений, использование серы в сельском хозяйстве, и её применение в экологических технологиях. Монография предоставляет обширный обзор инновационных решений и новых возможностей для эффективного использования серы, что может быть особенно полезно для специалистов, работающих в области переработки и применения серы в разных отраслях.

Таким образом, монография Ю.А. Сангалова представляет собой значительный вклад в изучение и решение проблем переработки серы и её применения, предлагая, как теоретические, так и практические рекомендации, которые могут быть полезны для ученых, инженеров и других

специалистов, работающих в данной области. Избыточные запасы и доступность серы делают её привлекательным объектом для научных и инженерных исследований. В последние годы вопросы разработки новых препаративных форм серы стали особенно актуальными и занимают центральное место в отечественных научных исследованиях [7-13]. Кроме того, существует значительное количество диссертационных исследований, которые фокусируются на изучении И расширении возможностей использования элементарной серы в различных областях. Эти научные работы направлены на поиск и разработку новых методов применения серы, исследование её потенциала в инновационных технологических процессах, а также на улучшение и оптимизацию существующих практик. В диссертациях рассматриваются как теоретические аспекты, так и практические подходы, что позволяет значительно расширить сферу использования серы и внести вклад в развитие соответствующих отраслей науки и промышленности [14-16].

В зарубежной научной литературе представлено множество исследований, посвящённых обобщению знаний о сере и её применении [17-24]. Одной из наиболее выдающихся и содержательных является работа [17]. Эта монография находит отклик у широкой аудитории, включая студентов, исследователей и инженеров. Автор использует чёткий и структурированный стиль, стремясь сделать сложные академические концепции доступными для различных читательских групп.

Книга состоит из семи глав, каждая из которых посвящена либо методам производства, либо способам применения серы. В работе отмечается, что сера является загрязнителем нефти и природного газа, и ее необходимо удалять из этих материалов перед использованием как источников энергии. Эта обстоятельность, требующая проведения процесса сероочистки, привела к появлению на рынке значительного объема дешевой серы, основным источником которой стали процессы сероочистки.

В [17] также рассматриваются вопросы, касающиеся будущих источников серы, получаемой восстановлением ее из битуминозных песков. Заинтересованная аудитория книги выходит далеко за рамки специалистов, работающих с серой и в нефтедобывающей промышленности. Она интересна химикам, биологам, физикам, экологам и должна быть в числе книг в технических, университетских, и общественных библиотеках.

Важность серы и ее соединений для различных областей деятельности обусловили непрерывный интерес исследователей и технологов на протяжении многих лет [24]. Многочисленные исследования, посвящённые физико-химическим характеристикам серы, нашли свое отражение в различных обзорных статьях и монографиях. Особое внимание заслуживают работы [26], которые представляют собой наиболее всесторонние обзоры, в которых тщательно рассматриваются физико-химические свойства серы, а также её многочисленные аллотропные модификации в твёрдом, жидком и газообразном состояниях. В [27] рассмотрен важный аспект применения гидрофобизирующих свойств серы для гидроизоляции бетона.

Наряду с вышеупомянутыми источниками, существует обширный массив англоязычной литературы, посвященной разнообразным аспектам анализа физических и химических свойств элементарной серы [28-32]. Эти работы охватывают широкий спектр тем, исследуя как фундаментальные характеристики серы, так и её поведение в различных условиях. Авторы данных исследований уделяют внимание как традиционным, так и современным методам анализа, что позволяет глубже понять свойства серы и её потенциальные применения в науке и промышленности.

Существует значительный объем исследований, посвящённых синтезу органических соединений, содержащих серу [33-37]. Эти работы охватывают широкий спектр методов и подходов к созданию серосодержащих молекул, изучают их структуру, реакционную способность и потенциальные области применения. Исследования в этой области важны для развития органической химии и открытия новых возможностей использования серосодержащих

соединений в фармацевтике, агрохимии, материалах и других отраслях промышленности.

В работе [38] группа экспертов представляет подробный отчет о последних достижениях в области химии и физики элементарной серы, охватывающий её твёрдую, жидкую, газообразную и коллоидную формы. В отчёте также рассматриваются продукты окисления элементарной серы, включая их свойства, реакции и потенциальные применения. Работа представляет собой всесторонний обзор текущего состояния знаний в этой области, предлагая глубокий анализ и обсуждение недавних открытий и разработок. Такой как многоатомные катионы серы и богатые серой оксиды, которые оба демонстрируют очень необычную структуру на классических продуктах восстановления, таких как полисульфидные дианионы и анионрадикалы. Кроме рассмотрен длинный гомологический того, ряд полисульфанов, их промышленное значение, а также представлены новые методы удаления ядовитых соединений серы из отработанных газов и сточных вод в биореакторах. Рассматривается использование ферментативной активности серных бактерий.

Особенно много работ посвященно фунгицидным свойствам серы. Первые работы выполнены в начале прошлого века [39-44] и продолжаются в настоящее время [45-49].

В области разработки перспективных материалов, а также в контексте изучения свойств серы, нанотехнологии предоставляют значительные возможности для инноваций. В научной среде активно исследуются возможности использования серы, особенно её уникальных характеристик, таких как бактерицидные и гидрофобные свойства, в процессе создания наночастиц. Эти исследования направлены на выявление и оптимизацию методов синтеза, которые позволят эффективно интегрировать серу в наноматериалы, тем самым улучшая их функциональные свойства. Например, благодаря своим бактерицидным свойствам, сера может быть использована в создании наночастиц с антимикробными свойствами, что

перспективы биотехнологиях. Eë открывает новые В медицине И гидрофобные свойства также делают серу потенциально полезной в разработке наноматериалов для защиты от влаги и коррозии. Таким образом, исследования в области нанотехнологий, связанные с использованием серы, способствуют расширению возможностей её применения и открывают новые направления в создании высокотехнологичных материалов. Основной задачей в этом контексте является разработка оптимизированных методик для получения наночастиц серы, которые могут быть эффективно внедрены в промышленные процессы. Существенное внимание уделяется комплексному анализу физико-химических механизмов, управляющих процессами формирования и изменения размеров наночастиц в течение времени. Также важным направлением является исследование стратегий стабилизации размеров наночастиц для обеспечения их долговременной структурной и функциональной стабильности в различных областях применения.

Существует целый класс соединений – полисульфиды, многосеристые соединения из щелочных и щелочноземельных металлов и серы, которые обладают фунгицидными свойствами, самым известным и распространенным среди полисульфидов является CaS₅ [50-56]. Необходимо учесть, что полисульфид кальция (пентасульфид кальция CaS₅) является источником наночастиц серы [56].

В работе [57] проведено исследование образования и кинетики наночастиц серы с помощью рамановского рассеяния света. Данные показывают, что кинетика укрупнения частиц значительно зависит от температуры. Частицы быстрее укрупняются при высокой температуре (75 ° С) по сравнению с комнатной. Наличие в растворе молекул типа ПАВ также снижает скорость кинетики укрупнения.

В работе [58] наночастицы серы были синтезированы электрохимическим и химическим способом путем восстановления тиосульфата натрия и кислотно-катализируемого осаждения тиосульфата натрия в присутствии цитрата бромид триметиламмония соответственно. Электропроводящий полимер полианилин нанокомпозит полианилин – наночастицы серы были также синтезированы электрохимическим и химическим методами.

Перспективным является направление, связанное разработкой С компактных батареек на основе наночастиц серы [59]. Синтез наночастиц S диаметром 10, 20 нм с помощью метода осаждения с последующим покрытием, проводящим поли 3, 4-этилендиокситиофеном. Мельчайший размер наночастиц серы (S-наночастиц) играет важную роль в улучшении их электрической проводимости, что, в свою очередь, способствует более эффективному использованию устройствах серы В различных И приложениях. Этот малый размер также помогает снизить саморазряд и поддерживать стабильную ёмкость на протяжении длительного времени. В исследовании [60] авторы предложили использовать пористые кристаллы тритиоциануровой кислоты в качестве основы для создания материалов, где происходит элементарной Эта полимеризация серы. полимеризация происходит с раскрытием кольца серы вдоль тиоловых поверхностей, что приводит К формированию трёхмерных взаимосвязанных структур, обогащённых серой. Такие структуры обладают улучшенными свойствами, что делает их перспективными для применения в современных технологиях.

Таблица 1. Сопоставления методов получения и размеров частиц синтеза серы.

Методы синтеза S	Размер	ссылка
	частиц,нм	
Из полисульфида кальция при	20	Метод,
взаимодействии с водой		использованный в
		диссертации
Из полисульфида кальция с соляной	20	Метод,
кислотой		использованный в
		диссертации

Наночастицы серы: п	утем	10	Nanoscale Res. – 2008.
пропускания сероводорода	через		- №3 p. 221-229.
эмульсию.			
Наночастицы серы могут	быть	80-100	Nanoscale Res. – 2008.
получены путем пропуск	ания		- №3 p. 221-229.
сероводорода через водную среду.			
Наночастицы серы могут	быть	20	Powder Technology -
синтезированы с использова	нием		2006. $-$ V.162. No2. $-$
микроэмульсионной методики п	утем		p.83-86.
реакции полисульфида натрия	я с		
кислотой.			
Наночастицы серы могут	быть	35	Powder Technology -
получены с использова	нием		$2006 V.162. N_{2}$
микроэмульсионной мето	дики		p.83-86.
посредством реакции полисуль	фида		
аммония с кислотой.			
Наночастицы серы могут	быть	50-100	Cystine Modified
сформированы добавлением вод	цного		Nanosulfur and Its
раствора цистина спиртовой рас	створ		Spectral Properties. J.
серы при постоянной ультразвук	совой		Mat. Lett. – 2009
обработке.			V63 p. 1374-1376.
Наночастицы серы получены в во	дной	30	Journal of Colloid and
среде путем реакции тиосуль	фата		Interface Science –
натрия с щавелевой кислото	й в		2010. – V.343 p.
присутствии ПАВ.			439-446.
Наночастицы серы могут	быть	35-65	Microchim Acta, -
электрохимически синтезировани	ы из		2011 V.173 p. 445-
тиосульфата натрия.			451.
Наночастицы серы получены в во	дной	35	RSC Advances 2013.

среде путем реакции тиосульфата		- V.3 p. 10471-10478.
натрия с щавелевой кислотой в		
присутствии ПАВ.		
Наночастицы серы образованы в	150	Journal of Biomedical
водной среде путем реакции Na ₂ SO ₃ и		Nanotechnology
$Na_2S \cdot 9H_2O.$		2011 V.7 p. 1–11.
Наночастицы серы могут быть	21	Colloid Journal 2013.
образованы путем конденсации из		- V.75. №1 p. 14-25.
аэрозоля.		
Наночастицы серы могут быть	50	J. Nanopart. Res
синтезированы с использованием		2013 V.15 p.
микроэмульсионной методики путем		1491-1501.
реакции полисульфида натрия с		
кислотой.		
Для синтеза наночастиц серы	50	J. Nanopart. Res
использована микроэмульсионная		2013 V.15 p.
методика.		1491-1501.
Наночастицы серы могут быть	30 - 100	J. Powder Sources
получены из раствора		2012 V.202 p. 389-
диметилсульфоксида с		393.
использованием ультразвука.		
Наночастицы серы могут быть	200-400	Журнал прикладной
сформированы в водной среде путем		химии 2009 Т.82,
разбавления раствора полисульфида		№12, - C.1946-1951.
натрия и кальция водой.		

1.2. Карбонаты щелочноземельных металлов

1.2.1. Наночастицы карбоната кальция

В течение продолжительного времени дисперсный микронный карбонат кальция нашел широкое применение в различных отраслях промышленности. В бумажной и пищевой промышленности он используется в качестве наполнителя при производстве пластмасс, красок, резины, продукции бытовой химии и в строительстве. При производстве бумаги карбонат кальция применяется отбеливатель, наполнитель как И раскислитель одновременно. Он также используется в производстве силикатного стекла, материала для оконного стекла, стеклянных бутылок и стекловолокна.

Производители пластмасс являются одними из основных потребителей чистого карбоната кальция, используемого в качестве наполнителя и красителя при производстве поливинилхлорида (PVC), полиэфирных волокон (кримплен, лавсан и др.), а также полиолефинов. Эти виды пластмасс находят широкое применение в различных изделиях, таких как трубы, сантехника, кафельная плитка, черепица, линолеум, ковровые покрытия и др.

Карбонат кальция, составляющий примерно 20% красящего пигмента в производстве красок, применяется также в строительстве в качестве наполнителя, используемого в шпаклевках и герметиках.

Существует разнообразие методов для получения функциональных наночастиц неорганических веществ, включая карбонат кальция. В природе эти частицы формируются под воздействием микроорганизмов, порождая сложные структуры, такие как кости, зубы и оболочки, что находит применение в биомедицинских и экологических областях.

Карбонат кальция обладает четырьмя полиморфными модификациями: кальцит (являющийся наиболее стабильным с характерной ромбоэдрической морфологией), ватерит (с сферической структурой), арагонит (имеющий стержневидную форму) и аморфная фаза (неустойчивая, действующая как зародыш при росте других полиморфных форм). Для синтеза из растворов широко применяются два основных метода: биомиметический и осаждение углекислым газом (CO₂).

Биомиметический метод имитирует способность природы формировать разнообразные формы и размеры карбонатных частиц с использованием растворимых в воде добавок и поверхностно-активных веществ (ПАВ). Этот метод позволяет создавать структуры, эмулирующие естественные процессы.

Второй метод включает осаждение карбоната кальция углекислым газом (CO₂). Этот процесс, известный как барботаж, в настоящее время является основным методом промышленного синтеза CaCO₃. Он включает в себя пропускание углекислого газа через гашеную известь, что приводит к образованию карбоната кальция.

В связи с развитием нанотехнологий появились и новые области применения нанокарбоната кальция в первую очередь связанные с отсутствием токсичности соединения, ЭТОГО что лает возможность использовать его в медицине в качестве средства доставки лекарств нужным органам. Применение наночастиц как систем адресной доставки привлекло большое внимание. СаСО₃ становится центром внимания благодаря своим преимуществам, включая доступность, низкую токсичность, биосовместимость, цитосовместимость, рН чувствительность, а также является экологически чистым материалом. Использование наночастиц СаСО3 в биомиметических материалах предоставляет новые перспективы, связанные с возможностью создания

структур, аналогичных фрагментам тканей и органов, или биологически активных продуктов метаболизма живых структур. Биомиметические материалы включают в себя структуры макро-, микро- и наноразмеров. Внедрение синтетических биомиметических материалов, основанных на наночастицах CaCO₃, в медицину представляет собой перспективное направление, поскольку может способствовать созданию новых лекарственных средств и имплантатов, а также улучшению экологии

окружающей среды, при этом интенсифицируя решение экономических вопросов.

Биомиметические материалы, содержащие наночастицы И ИХ композиты, играют важную роль в разработке имплантатов для костной ткани. Эти материалы должны быть высокобиосовместимыми, эластичными, прочными и малотоксичными, а также содержать остеоиндуктивные факторы роста. Процесс минерализации биокомпозитных материалов осуществляется благодаря способности имитировать химический состав натуральной костной ткани. Это открывает возможности для разработки более эффективных и способствующих костей современных имплантатов, заживлению И улучшению результатов в медицинской практике.

Наноструктурные материалы стали привлекательными благодаря своим уникальным характеристикам, которые трудно получить из обычных объемных материалов из-за их квантовых размеров и поверхностных эффектов. Таким образом, существует значительный интерес к производству низкоразмерных наноразмерных материалов, таких как нанопроволоки, наностержни и нанотрубки.

Под высоким давлением была впервые синтезирована арагонитовая полиморфная форма CaCO₃ из простых растворов Ca(HCO₃)₂ при использовании мощного ультразвукового облучения [61]. Исследования показали, что интенсивность ультразвукового воздействия существенно влияет на морфологию синтезированных кристаллов арагонита. Наблюдалось эволюция морфологии от стержневой формы к веретенообразной при увеличении акустической амплитуды с 50% до 70% от полной амплитуды. Важную роль в гомогенном зародышеобразовании и росте арагонита в условиях ультразвуковой обработки играл растворенный CO₂.

Также было выявлено, что ватерит с аналогичными структурами в виде цветков или дендритов можно получить, используя акустическую амплитуду в размере 75% или 80% от полной амплитуды соответственно. Важно отметить, что неравновесный кинетический процесс контролирует

образование нестабильных фаз витерита с необычными конструкциями в данном контексте.

Синтез неорганических наноструктур в форме стержней важен в хроматографии, стоматологии и медицинских приложениях, таких как костные имплантаты, а также системы доставки лекарств и генов. В работе [62] был проведен синтез наностержней карбоната кальция (CaCO3) с использованием экстракта растений в качестве биологического шаблона. Для детального изучения свойств и структуры полученных наночастиц были применены различные физико-химические методы анализа. Эти методы позволили охарактеризовать морфологию, фазовый состав и другие важные характеристики наностержней, что обеспечивает более глубокое понимание их потенциальных применений в различных научных и технологических областях. Затем свойства биогенных наностержней карбоната кальция были исследованы на токсичность, включая токсичность различных концентраций наночастиц и процент жизнеспособных и апоптотических клеток на основе анализа проточной цитометрии. На основании результатов, рассчитанная IC50 этих полиморфов составила 800 мкг/мл. Описан экологически чистый, биогенный недорогой И новый метод производства новой усовершенствованной неорганической наноструктуры, наностежней CaCO₃, без использования опасных химикатов. Показано, что наностежни карбоната кальция могут использоваться в качестве интеллектуального носителя лекарств.

В статье [63] представлен новый метод, который эффективно используется для массового производства наночастиц карбоната кальция. Эти наночастицы могут потенциально находить применение в различных отраслях, таких как промышленность, сельское хозяйство и медицина. Синтез наночастиц осуществляется путём термолиза молекулы-После предшественника оксалата кальшия. синтеза частины были подвергнуты анализу размеров с использованием соответствующих методов характеризации. Измерения дзета-потенциала, сканирующей электронной

микроскопии и рентгеноструктурного анализа (XRD). Были синтезированы наночастицы карбоната кальция квазисферической формы с средним диаметром 96,7 нм. Дзета-потенциал приготовленных наночастиц карбоната кальция составил -15,28 мВ.

В исследовании [64] представлен простой метод синтеза наночастиц, структурно аналогичных цепочке карбоната кальция. В эксперименте осуществлялся ввод CO₂ газа в водную суспензию гидроксида кальция (известкового молока), с добавлением небольшого количества известкового молока в процессе реакции. Изучена структура первичных частиц и агломерация.

Авторы исследования предполагают, что технология синтеза анизотропных наночастиц карбоната кальция существенно расширит Они подчеркивают, что благодаря данной диапазон их применения. технологии возможно создание наночастиц с направленными свойствами, что открывает новые перспективы для использования карбоната кальция в различных областях. Однако, с другой стороны, в процессе синтеза наблюдается, что цепочечные частицы склонны к переплетению, что приводит к образованию более крупных и рыхлых агломератов с наличием спорадических пор. Эти агломераты могут оказывать влияние на физикохимические свойства конечного продукта, что следует учитывать при разработке и оптимизации технологий их производства и применения. Было обнаружено, что суспензия из цепочечных частиц демонстрирует гораздо более высокую обезвоживаемость (эффективность разделения твердой и жидкой фаз). Некоторые свойства отфильтрованных и высушенных образцов были исследованы для расшифровки механизма обезвоживания. Новый метод повышения обезвоживаемости без использования каких-либо добавок, таких как поверхностно-активные вещества, может расширить возможности разработки процессов производства наночастиц.

В работе [65] была реализована методика синтеза наночастиц карбоната кальция внутри полости клеточного белка апоферритина. Процесс

синтеза был тщательно контролирован через управление электростатическим потенциалом молекулы апоферритина. Электростатический потенциал в данной системе регулировался изменениями pH в реакционном растворе, что, в свою очередь, достигалось путём изменения концентрации растворённого диоксида углерода (CO2). Эти изменения pH оказывали влияние на условия осаждения карбоната кальция, позволяя добиться контролируемого синтеза необходимыми характеристиками. Рекомбинантный наночастиц С 1апоферритин смешивали с суспензией карбоната кальция (CaCO₃), и смесь подвергали воздействию газообразного СО₂ под давлением 2 МПа, в результате pH раствора снизился с 9,3 до 4,4, СаСО₃ растворялся при повышении давления, а затем выпадал в осадок после снижения давления до окружающего. После трехкратного повторения процесса нагнетания / сброса давления было обнаружено, что около 70% молекул апоферритина содержат в своей полости наночастицы со средним диаметром 5,8 ± 1,2 нм. Энергодисперсионная рентгеновская спектроскопия и электронографический анализ показали, что наночастицы представляют собой кальцит, одну из Расчеты наиболее стабильных CaCO₃. кристаллических форм электростатического потенциала выявили переход потенциала в полости апоферритина от отрицательного к положительному при рН ниже 4,4. Изменение электростатического потенциала из-за изменения рН имеет решающее значение для накопления ионов. Поскольку синтезированные этим методом CaCO₃ были покрыты белковой оболочкой, частицы стабильно диспергировались в растворе и не образовывали агрегатов. Эти наночастицы CaCO₃ могут быть полезны для медицинских применений, таких как синтетические костные каркасы.

В данном исследовании предложен наноразмерного синтез сферического прекурсора CaCO₃ с использованием золь-гель метода. Процесс себя включает В измельчение раковин ракушек ЛО порошкообразного состояния и их смешивание с соляной кислотой для образования хлорида кальция (CaCl₂).

Карбонат калия (K_2CO_3) затем подавали в разбавленный CaCl₂ для получения CaCO₃. Рентгеноструктурный анализ наночастиц CaCO₃ показал образование фазы кальцита. Хорошо структурированная сферическая форма CaCO₃ была получена при оптимальных условиях добавления 50 мл воды в CaCl₂ в этанольном растворе со скоростью подачи K_2CO_3 в течение 1 часа. Меньшая агломерация CaCO₃ была получена при использовании технологии сублимационной сушки с площадью поверхности 26 м²/г и средним размером частиц 39 нм. Воспроизводимость, низкая стоимость и простота метода предполагают его потенциальные применения в крупномасштабном синтезе наночастиц сферической морфологии в промышленных условиях.

В [67] разработан метод синтеза частиц карбоната кальция с использованием мезопористых частиц кремнезема в качестве шаблона. Гидрозоли синтезированных частиц CaCO₃ нестабильны по отношению к агрегации при нейтральных значениях рН и коагулируют с образованием Методика агрегатов субмикронных размеров. электростатической стабилизации путем добавления водного раствора FeCl₃ была предложена агрегативно стабильных для получения гидрозолей. Доказано, что применяемая методика стабилизации способствует пептизации агрегатов и получать индивидуальные наночастицы карбоната кальция позволяет размером 50-80 нм. Эти наночастицы CaCO₃ обладают пористой структурой, что делает их подходящими для применения в стабильных гидрозолях в медицинских целях. В работе [68] произведён синтез карбоната кальция с размером частиц 650 нм.

Наночастицы карбоната кальция были синтезированы посредством осаждения из насыщенных водных растворов карбоната натрия и нитрата кальция [69]. В исследовании оценивалось влияние таких факторов, как скорость и продолжительность перемешивания, концентрация и температура ионов кальция и карбоната, на размер и морфологию полученных частиц. Частицы были охарактеризованы с помощью дифракции рентгеновских лучей, просвечивающей электронной микроскопии и

термогравиметрического анализа. Увеличение времени перемешивания с 30 до 180 мин привело к уменьшению размера частиц. При изменении скорости 300 14 000 перемешивания от до об/мин размер частиц способствовало уменьшался. Повышение температуры значительному И образованию увеличению размера частиц арагонита начиная С 80°С. Концентрации ионов кальция и карбоната являются ключевыми параметрами, контролирующими размер частиц карбоната кальция. Как рентгеноструктурный показал анализ кальцит является основным полученным полиморфом.

В исследовании [70] авторы представили инновационную стратегию биологического синтеза кристаллов карбоната кальция, основанную на принципах «зеленой химии». Для этого использовались водорастворимые экстрагированные из яблока и груши. Эта методика полисахариды, демонстрирует экологически чистый подход к синтезу карбоната кальция, минимизируя использование токсичных химических веществ и отходов, и применяет натуральные полимеры управления процессом ДЛЯ кристаллизации, что способствует получению кристаллов с заданными характеристиками и улучшенными свойствами. Результаты показали, что водорастворимые полисахариды мягкого шаблона В качестве легко индуцируют карбонат кальция с необычной морфологией (например, в виде пучков соломы). На основе зависимого от времени роста частиц СаСО₃ были образования предложены возможные механизмы микросфер CaCO₃, подобных пучку соломинок, со вторичной структурой в присутствии водорастворимых полисахаридов.

Цель данного исследования [71] заключается в выявлении воздействия спиртовой среды на деструкцию гранул карбоната кальция под воздействием ультразвуковых волн c целью получения карбоната кальция с B наноразмерными частицами. ланном исследовании в качестве растворителей были использованы спирты 2-бутанол, этиленгликоль и н-Исходным материалом для получения карбоната пропанол. кальция

послужили осадки карбоната кальция, добытые из региона Баят, Клатен-Регенси, расположенного на Центральной Яве в Индонезии. Эти осадки использовались для последующего синтеза и исследования свойств карбоната кальция в предложенной методике. Эти осадки подверглись обработке карбонизации. Лучшим первичной методом результатом карбоната экспериментов по разрушению осажденного кальция ультразвуковыми волнами было использование среды этиленгликоля с ультразвуковым временем 10 минут и 30% амплитудой. Результат анализа размера частиц (PSA) в наилучшем состоянии, полученный при среднем размере гранул осадка карбоната кальция, составил 72 нм.

В работе [72] изучено влияние лецитина из яичного желтка на биоминерализацию карбоната кальция (CaCO₃). Сферические частицы CaCO₃ были синтезированы методом соосаждения в присутствии яичного желтка. Мультиламеллярные липосомы яичного желтка были сначала настроены чтобы обеспечить ультразвуком, лучший контроль над зародышеобразованием CaCO₃. В дальнейшем монодисперсные микросферы размером ~ 2 мкм были созданы путем контроля агрегации и роста CaCO₃ при соответствующих концентрациях яичного желтка. По сравнению с нестабильным ватеритом микросферы, образующиеся в водном растворе частицы, оставались стабильными не менее 10 дней без превращения в кальцит из-за сильного взаимодействия между яичного желтка и ионы кальция. Микросферы как носители лекарственных средств доксорубицин (DOX) был оценен, и было обнаружено, что хорошая эффективность длительное высвобождение без быстрого инкапсуляции, лекарства высвобождения и заметная чувствительность к pH. Кроме того, in vivo исследование ингибирования опухоли показало, что DOX-нагруженный состав микросфер CaCO₃ имел более высокую эффективность значительно сдерживать рост опухоли. Эти новые гибриды яичного желтка/CaCO₃ могут возможности биомедицинских предоставить новые для различных приложений.

В исследовании [73] биосинтез наночастиц СаСО₃ получен из выщелачивающего раствора и водного экстракта растения Myrtus communis. Затем наночастицы СаСО₃ были биосинтезированы путем добавления экстракта листьев в качестве биологического агента, который приготовлен путем экстракции дистиллированной водой листьев того же растения Результаты выщелачивающим раствором. анализов показали, что биосинтезированные частицы были наноразмерными CaCO₃ и имели пористую структуру. Кроме того, биосинтезированные наночастицы CaCO₃ обладали свойством удалять цвета из различных растворов красителей, самый высокий выход цветного удаления был определен как 90% в течение 5 мин воздействия для базового красителя метиленовый синий.

В работе [74] наночастицы карбоната кальция используются для консолидации деградированного карбонатного камня, применяемого в древних памятниках, является важной темой для сохранения европейского Наиболее культурного наследия. часто используемые В качестве отвердителей продукты основаны на тетраалкокси- или алкилалкоксисиланах (в частности, тетраэтилортосиликате, TEOS), что приводит к образованию стабильного относительно аморфного диоксида кремния ИЛИ алкилированного (гидрофобного) диоксида кремния внутри пор камня. Однако кремнезем химически несовместим с карбонатными камнями; в этом отношении подходящей альтернативой может быть нанокальцит. Настоящая работа посвящена приготовлению водных суспензий наночастиц кальцита путем контролируемой карбонизации гашеной извести с использованием опытного реактора. Были успешно получены наночастицы кальцита с узким распределением по размерам, в среднем около 30 нм, причем концентрация межфазного агента и размер CaO были наиболее важными параметрами. Первичная агрегация наночастиц, вызывающая флокуляцию, может быть существенно предотвращена добавлением полимерных диспергаторов. Диспергаторы сополимеров situ на основе получали in путем контролируемой гетерофазной полимеризации, опосредованной

амфифильным агентом макро-RAFT (обратимый перенос присоединенияфрагментации). Затем стабилизированные водные дисперсии наночастиц карбоната кальция наносили на карбонатные и силикатные подложки; Сканирующая электронная микроскопия (SEM) анализ поперечных сечений позволила оценить проникновение в поры, межфазное связывание и свойства перекрытия (заполнения зазоров) этих новых консолидаторов.

В работе [75] было проведено систематическое исследование влияния различных экспериментальных параметров на формирование наночастиц карбоната кальция (CaCO₃) в виде наноядер. Затем полученные наноядра использовали для сборки нанокапсул и исследовали переменные, влияющие на диаметр капсул. Чувствительные к стимулу многослойные нанокапсулы, нагруженные модельным лекарственным средством, куркумином, оценивали по высвобождению лекарства в условиях pH, имитирующих желудочнокишечный тракт. Эти данные демонстрируют возможность создания нанокапсул для защиты лекарства в желудке и высвобождения его в нижних отделах желудочно-кишечного тракта.

Наночастицы могут преимущественно повышать терапевтическую эффективность, а также уменьшать побочные эффекты терапевтических агентов, концентрируя их на определенных участках-мишенях в организме [76]. Благодаря своей биосовместимости, чувствительности К pH, биоразлагаемости доступности, низкой токсичности, медленной наноматериалы CaCO₃ привлекли значительное внимание в терапии опухолей. Наноматериалы CaCO₃ медленно разлагаются при нормальном физиологическом pH (7,4), демонстрируя более быстрое разложение и высвобождение лекарства при кислом pН (<6,5)среды опухоли. Наноматериалы CaCO₃ с диаметром <600 нм обладают преимуществом усиленного эффекта проницаемости и удерживания в области опухолевых тканей. Возможности наночастиц CaCO₃ функционализировать с помощью нацеливающих агентов - это еще один важный аспект, в котором такая обеспечивать система может целевую доставку И контролируемое

высвобождение лекарства одновременно. Функционализированные наночастицы CaCO₃ не только могут повысить эффективность доставки этих носителей, но также могут привести к другим улучшенным характеристикам, таким как улучшенная термодинамическая стабильность, улучшенная способность загрузки лекарственного средства и эффективность нацеливания на опухоль. Совместное осаждение Ca²⁺ с ДНК является привлекательной возможностью для доставки генов с помощью наночастиц CaCO₃ из-за биосовместимости и биоразлагаемости.

Наночастицы СаСО₃ очень подходят в качестве интеллектуальных носителей из-за их идеальной биосовместимости и биоразлагаемости, особенно из-за их чувствительности к рН. В статье [77] используются мезопористые наночастицы CaCO₃ в качестве интеллектуального носителя, альгината натрия и хитозана в качестве альтернативных материалов для сборки, фолиевую кислоту в качестве целевых молекул, а также используется послойной технология сборки лля достижения чувствительного молекулярного таргетинга и высвобождения лекарств в ответ на рН. Мезопористые гибридные наночастицы CaCO₃ имеют высокую нагрузку на Влияние различных значений рН на доксорубицин. высвобождение изучали vitro лекарственного средства in путем регулирования моделированных жидкостей организма с различными значениями рН. Цитотоксичность, нацеливающий эффект и высвобождение лекарственного линии рака шейки матки изучали с помощью средства клеточной экспериментов по жизнеспособности клеток и визуализации. Все данные свидетельствуют о том, что интеллектуальные мезопористые наночастицы CaCO₃ могут быть потенциальной платформой для клинического применения в терапии рака.

Два новых композитных материала Ag – AgCl/CaCO₃ с различным молярным соотношением Ag: CaCO₃ были получены в экстракте зеленых морских водорослей (Ulva lactuca) путем двухэтапного синтеза [78]. Первый этап заключается в частичном восстановлении Ag (I) зеленого цвета с целью

получения кристаллов Ag – AgCl, которые на втором этапе осаждаются на CaCO₃. Морфология композиционных материалов состоит из агрегатов наночастиц кальцита, декорированных Ag – AgCl, причем форма агрегатов зависит от исходного мольного соотношения Ag (I): Ca (II). Агрегаты также покрыты фитохимическими веществами из зеленых водорослей, в основном полисахаридами. Композиты могут быть использованы в качестве модели для использования карбоната кальция в качестве носителя серебра в медицинских целях. Дерматологические свойства композитов были протестированы in vivo на предмет заживления ожогов. Было отмечено ускоренное заживление композита с более высоким содержанием серебра. Многообещающие результаты, полученные in vivo, позволяют рекомендовать композиты Ag – AgCl / CaCO₃ для местного применения.

Синтез наночастиц и их функционализация для эффективного использования в биологических приложениях, включая доставку лекарств, в настоящее время является сложной задачей. Карбонат кальция среди многих других неорганических наноразмерных частиц предлагает многообещающие результаты для таких приложений. В работе [79] синтезировали наночастицы карбоната кальция с использованием метода роста, опосредованного полимером, когда один из ионов связывается внутри полимерной матрицы, а другой диффундирует и реагирует с образованием желаемого соединения. Диаметр наночастиц карбоната кальция оценивается в 39.8 нм и что карбоната кальция синтезированные наноразмерные частицы с использованием метода роста, опосредованного полимером, являются биосовместимыми и могут безопасно использоваться для биомедицинских приложений.

В статье [80] анализируется потенциальная роль наночастиц CaCO₃ в трёх основных терапевтических приложениях: как противомикробное средство, для доставки лекарств и как носитель генов. В результате исследования делается вывод о возможной перспективе использования наночастиц CaCO₃ в будущих терапевтических приложениях благодаря их

биодоступности, биологической совместимости и экономической выгодности. Их роль в костном каркасе, тканевой инженерии и генной и доставка лекарств важна и может заменить многие старые техники и методы лечения таких заболеваний, как онкологические микробные инфекции. Необходимы дальнейшие исследования поделиться знаниями в этой области.

В статье [81] авторы предствляют новый метод синтеза карбоната кальция (CaCO₃), основанный на наноразмерных ионных материалах через Situ в способе формирования для формирования CaCO₃ наночастиц с солью четвертичного аммония полисилоксана (PQAC) коронного (PQAC-CaCO₃ наночастицы), с последующей реакцией ионного обмена с получением оболочки сульфонат-аниона с хвостами полиэтиленгликоля (NPEP). Эта работа предоставит более осуществимую и энергосберегающую методологию для подготовки материала на основе CaCO₃ для содействия их индустриализации и широкому применению.

Синтез наночастиц и их функционализация для эффективного использования в биологических приложениях, включая доставку лекарств, в настоящее время является сложной задачей. Карбонат кальция среди многих других неорганических наноразмерных частиц предлагает многообещающие результаты для таких приложений. В работе [82] был использован метод синтеза наночастиц карбоната кальция, основанный на их формировании в полимерной матрице, где один тип ионов взаимодействует с матрицей, а другой ион диффундирует и вступает в реакцию, образуя целевое соединение. В последние годы были разработаны передовые продукты, в которых аморфный карбонат кальция используется в качестве гибридного носителя для различных фармацевтических препаратов, белков и генов.

Очевидно, что наличие примесей может негативно повлиять на эффективность различных приложений в этой области. Однако синтез аморфного карбоната кальция без примесей представляет собой сложную задачу, обусловленную его нестабильностью и склонностью к быстрой конверсии в кристаллические фазы. В данном исследовании разработан новый протокол синтеза аморфных наночастиц карбоната кальция, свободных от примесей, который отличается простотой и возможностью масштабирования. Эти аморфные наночастицы карбоната кальция имеют важное значение для критических областей здравоохранения, так как расширяют потенциал применения аморфных форм карбоната кальция в фармацевтических и медицинских областях.

В источнике [83] предложенный протокол подробно описывает получение аморфного карбоната кальция (АСС) с высоким выходом. Этот результат достигается путем тщательного смешивания гидроксида кальция с насыщенной водой, диоксидом углерода. Альтернативный метод минерализации, представленный в данном протоколе, существенно снижает включение химических примесей, таких как ионы натрия и хлора. Которые часто присутствуют в аморфном карбонате кальция, поскольку они не являются объектами ионного наблюдения. Чистота полученного аморфного карбоната кальция в значительной степени зависит от качества используемых химических реагентов, включая гидроксид кальция, воду и органические растворители.

Регулирование содержания воды в процессе нагревания до 150 °C позволяет изменять свойства получаемого материала без существенных изменений в кристаллической структуре. В свете растущего числа научных публикаций, использующих аморфный карбонат кальция в гибридных материалах в различных областях, таких как промышленность, медицина и материаловедение, предложенный протокол, оптимизированный для обеспечения чистоты материала, может быть дополнительно расширен, способствуя разработке улучшенных синтетических материалов аморфного карбоната кальция.

Влияние первичных структур растений (Canavalia ensiformis) и бактерий (Bacillus pasteurii) уреазы при осаждении полиморфов карбоната кальция в растворах солей кальция и мочевины при комнатной температуре была исследована [84]. Несмотря на аналогичную каталитическую функцию

при разложении мочевины, эти уреазы по-разному влияли на формирование кристаллической фазы и на развитие необычных морфологии полиморфов карбоната кальция. Осаждены сферические и однородные частицы ватерита вместо кальцита в присутствии уреазы Bacillus, тогда как присутствие уреазы Canavalia приводило к только в осаждении кальцита. Было показано, что частицы ватерита состоят из наноразмерных кристаллитов, доказывая важность наноразмерных процессов агрегации для образования коллоидных карбонатов. Сокращение концентрации уреазы Bacillus в реагирующем растворе приводит к образованию кристаллов кальцита с более сложной морфологией поверхности, чем полученные с помощью уреазы Canavalia. объяснить Эти различия можно различием аминокислотных последовательностей двух исследованных уреаз и их различные роли в зародышеобразовании физико-химическом И взаимодействии с поверхностью растущих кристаллов, во время процессов выпадения осадков. Это исследование иллюстрирует разнообразие белков, продуцируемых разными организмов для одной и той же функции, и резкое влияние тонких различий в их первичных структурах на образование кристаллической фазы и морфологию роста осадков карбоната кальция, которые происходят как неорганические компоненты в большом количестве биогенных структур.

В экспериментах [85] четыре вида аминокислот, такие как l-цистин (l-Cys), l-тирозин (l-Tyr), dl-аспарагиновая кислота (dl-Asp), l-лизин (l-Lys) и смешанные системы l-Tyr (или l-Lys)/Mg²⁺ использовались в качестве эффективных модификаторов кристаллизации CaCO₃. Полученные кристаллы карбоната кальция были подвергнуты тщательному анализу с помощью современных методов характеризации. В частности, были использованы сканирующая электронная микроскопия (SEM), инфракрасная спектроскопия с преобразованием Фурье (FTIR) и рентгеновская дифракция (XRD) для детального изучения их структуры и морфологии. Анализ показал, что в системе с использованием l-Cys (L-цистеина) образуется кристаллическая фаза кальцита. В то же время, в присутствии других аминокислот, таких как l-Tyr (L-тирозин), dl-Asp (DL-аспарагиновая кислота) и l-Lys (L-лизин), наблюдается образование двух видов кристаллов: кальцита и сферического ватерита с различными морфологическими характеристиками. Эти аминокислоты усиливают образование ватерита, что указывает на их активное участие в процессе кристаллизации.

Эти результаты подчеркивают значимость аминокислот в контроле кристаллообразования карбоната кальция (CaCO₃). Аминокислоты влияют на формирование и морфологию кристаллов, что может быть использовано для достижения определённых свойств и структур материалов. Кроме того, добавление ионов магния (Mg^{2+}) в систему привело к образованию арагонита, другой фазы карбоната кальция. Это наблюдение указывает на то, что присутствие различных ионных добавок оказывает заметное влияние на фазовый состав и кристаллическую морфологию карбоната кальция, открывая возможности для целенаправленного управления свойствами и применением этих материалов.

Таким образом, проведенный анализ подчеркивает, что высокодисперсные наночастицы карбоната кальция привлекают все больше внимания в научных и промышленных кругах. Этот интерес объясняется не только их уникальными свойствами, но и простотой химического состава, низкой стоимостью производства, а также возможностью массового производства. Карбонат кальция, как нетоксичный минерал, нашел широкое применение в фармацевтической промышленности в роли разбавителя, наполнителя или покрывающего агента.

Особый интерес к наночастицам карбоната кальция наблюдается в их качестве неорганических компонентов в различных биогенных структурах. Это обусловлено их уникальными свойствами и возможностью интеграции в разнообразные биологически активные системы. Такие приложения наночастиц карбоната кальция открывают новые перспективы для развития
биомиметических материалов, а также для использования в различных областях биологии и медицины.

В нашем методе карбонат кальция достаточно малых размеров и относительно просто и дешево.

Таблица 2. Сопоставления методов получения и размеров частиц карбоната кальция

Карбонат кальция	Размер	Ссылки
	частиц,	
	НМ	
С применением	24	Метод, использованный в
полисульфидов		диссертации
Смешиванием CaCl ₂ и	33-40	Iran J. Chem. Chem. Chem. Eng. 2013,
Na ₂ CO ₃ методом		v.32, №3, p.27-35.
обратной микроэмульсии		
с использованием ПАВ		
Из ракушек CaCO ₃ →	39	Appl. Sci. 2020, 10, 7170, p.1-15.
$CaCl_2 + K_2CO_3 \rightarrow n-CaCO_3$		Doi:10.3390/app10207170
Synthesize CaCO ₃ in the	50-80	Коллоидный журнал объем 82,
pores of msio ₂		страницы115 - 121 (2020).
		Https://doi.org/10.1134/S1061933X200
		20040
В среде спирта с	72	IOP Conference Series: Materials
применением ультразвука		Science and Engineering, Volume 541,
		International Seminar on Metallurgy
		and Materials 25-26 September 2018,
		Tangerang Selatan, Indonesia

СаО гасили раствором	30	Nanomaterials (Basel). 2018 Apr; 8(4):	
лимонной кислоты, затем		254.	
продували СО2		Doi: 10.3390/nano8040254.	
Микроэмульсинным	<600	Expert Opinion on Drug Delivery,	
методом, в обратной		16:4, 331-345, DOI:	
эмульсии		10.1080/17425247.2019.1587408	
Введение СО ₂ раствор	10-80	Chemical Eng. Journ. 2011, v.168, N2,	
содержащий and NH_3 и		p.731-736.	
CaCl ₂		Doi 10.1016/j.cej.2011.01.068	
$(CaCl_2$, среда PEG+	39.8	Journal of Nanoscience and	
methanol) $+(K_2CO_3, H_2O)$		Nanotechnology, 01 Aug 2011,	
\rightarrow CaCO ₃ +2KCl		11(8):6868-6874,	
		DOI:10.1166/jnn.2011.4251.	

1.2.2. Наночастицы карбоната бария

Карбонат бария BaCO₃ привлекает внимание [86-91] из-за его тесной связи с арагонитом, распространенным и важным биоминералом, имеющим керамической множество важных применений В стекольной И промышленности, а также его использованием в качестве прекурсора для магнитных ферритов сегнетоэлектрических материалов И [92]. Биоминерализация основывается на сложных органико-неорганических взаимодействиях, которые способствуют И регулируют синтез неорганических материалов. Эти взаимодействия играют ключевую роль в формировании минералов в биологических системах и находят широкое применение в различных технологических и научных областях.

Карбонат бария (BaCO3) является важным компонентом, используемым как прекурсор в производстве различных материалов. Он применятся в изготовлении сверхпроводников и керамических материалов [93], где его уникальные свойства способствуют созданию высокоэффективных и

специализированных продуктов. Кроме того, карбонат бария находит применение в производстве оптического стекла и электрических конденсаторов [94], благодаря своим свойствам, таким как высокая оптическая прозрачность и высокая диэлектрическая проницаемость. Эти характеристики делают карбонат бария ценным материалом для разработки новых технологий и улучшения существующих промышленных процессов.

Полимерная минерализация неорганических материалов была предметом интенсивных исследований, поскольку было обнаружено, что полимеры сильно влияют на характеристики неорганического осадка. Способность влиять на морфологию и фазу неорганического осадка имеет важные технологические последствия [95], поскольку некоторые физические свойства кристаллических материалов, такие как яркость цветных пигментов или диэлектрическая функция электрокерамики, зависят от формы кристаллов, размера зерна, размера зерна. распределение, примеси или содержание полиморфных модификаций. Контроль зарождения, роста кристаллов и организации кристаллов в сверхструктуру («текстуру») делает эти физические свойства настраиваемыми и, таким образом, важны для технического применения [96].

Карбонат бария (BaCO3), также известный под названием витерит, представляет собой материал, который имеет значительное значение в различных промышленных областях. Его применяют в производстве солей бария, таких как барий сульфат и барий хлорид, которые используются в химической и медицинской промышленности. Кроме того, карбонат бария используется в создании пигментов для краски и покрытия, обеспечивая яркость и стойкость цвета. В оптической промышленности карбонат бария применяется для изготовления высококачественного оптического стекла, которое обладает отличными преломляющими свойствами. В керамической промышленности витерит используется как добавка в керамические массы, улучшая их свойства и долговечность. Также карбонат бария находит применение в производстве электрических конденсаторов, где его свойства

способствуют созданию эффективных и надежных компонентов для хранения и управления электрической энергией.

Также стоит отметить тесную связь витерита с арагонитом, биоминералом, а также его использование в качестве прекурсора для магнитных ферритов и/или сегнетоэлектрических материалов.

Кристаллическая структура витерита орторомбической системы характеризуется двойниковыми кристаллами, группирующимися по три, что приводит к формированию псевдогексагональных структур, напоминающих бипирамидальные кристаллы кварца. Поверхности кристаллов обычно имеют шероховатость и штриховку в горизонтальном направлении [97,98].

Витерит легко превращается в сульфат бария под действием воды, содержащей сульфат кальция в растворе, и поэтому кристаллы часто покрываются коркой баритов. Он также используется для регулирования соотношения хромата и сульфата в ваннах для гальваников хрома [99].

Производство коммерческого карбоната бария осуществляется двумя основными методами. Первый метод включает обработку растворенным карбонатом натрия сульфида бария при температуре 60-70 °C, известный как метод кальцинированной соды. Второй метод предполагает пропускание диоксида углерода через раствор сульфида бария при температуре 40-90 °C. В случае метода кальцинированной соды твердый или растворенный карбонат натрия добавляют к раствору сульфида бария. Затем осадок карбоната бария фильтруют, промывают и сушат [100].

Исследования также подчеркивают эффективность золь-гель методов синтеза, которые обеспечивают отличный контроль стехиометрии, простоту процесса синтеза, однородное распределение частиц и хорошую реакционную способность между компонентами. Кроме того, этот метод позволяет получение наноразмерных частиц при более низких температурах обработки.

В настоящее время существует несколько путей для гелеобразования при использовании золь-гель методов. Эти методы основаны на процессе

образования геля из раствора нитратов желаемых металлов с добавлением органического топлива. Сначала ИЗ нитратного раствора металлов формируется гель, который содержит все необходимые компоненты для последующей реакции. Затем этот гель подвергается сжиганию, которое происходит благодаря экзотермической окислительно-восстановительной реакции между нитрат-ионами и органическим топливом. Эта реакция способствует выделяет значительное количество тепла, ЧТО высокотемпературному спеканию и образованию конечного продукта, который может быть использован в различных приложениях, включая производство порошков для катализаторов, ферритов и других материалов. обладает Данный процесс преимуществом В быстром получении мелкодисперсного однородного порошка [101]. И

В проведенном исследовании [102] наночастицы карбоната бария с химическим составом ВаСО₃ (витерит) были синтезированы методом гельгорения, используя золь-гель метод. Золь-прекурсор был получен из нитрата бария, при этом молярное соотношение цитрат/нитрат было установлено на уровне 1:3 для производства высокодисперсных порошков карбоната бария. Гели, полученные из этих золей, подвергались самовозгоранию при температуре ≤400°С, преобразуясь в порошки. Полученные порошки в орторомбической ВаСО₃. Наночастицы основном состояли ИЗ фазы карбоната бария, полученные методом сжигания геля, подвергались процессу 450°C, температурах: 600°C прокаливания при трех различных И 750°С.Чистая орторомбическая фаза была обнаружена при 450°С ПО дифракции рентгеновских лучей. Размер кристаллитов XRD оценивали по уширению пиков XRD с использованием формулы Шеррера. Просвечивающий электронный микроскоп (ПЭМ) и дифракция рентгеновских лучей (XRD) образцов были использованы для характеристики полученных продуктов. Размер частиц, полученных этим методом, составляет от 1 нм до 10 нм.

В недавнем исследовании [103] было установлено, что наноматериал карбоната бария представляет собой универсального кандидата для применения в катализе и сенсорах. Для повышения каталитической эффективности и эффективности чувствительности предложено создание композита карбоната бария с подходящим переходным элементом, таким как никель. В этом контексте использован метод с участием гидроксида композита, который представляет собой эффективный, осуществимый и низкотемпературный способ синтеза. Полученный наноматериал был подвергнут структурному и оптическому анализу с использованием различных методов диагностики.

Результаты рентгеновской дифракции продемонстрировали наличие ромбической структуры карбоната бария как в чистом образце, так и в образцах с 5% содержанием никеля. В образцах с 15% никеля наблюдалась смешанная структура с фазами карбоната бария, Ba(NO₃)₂ и Ni(NO₃)₂. Средний размер кристаллитов оценивался в диапазоне 14–22 нм. Снимки, полученные сканирующим электронным микроскопом, показали интересные морфологические особенности, такие как стержни, иглы и цветки, на поверхности кремния (Si), покрытого материалом продукта. Предложенный метод представляет собой эффективный способ синтеза разнообразных наноматериалов для исследовательских целей.

Карбонат бария (нанопроволоки BaCO₃) были впервые синтезированы с использованием метода композитного гидроксида [104] и изготовлены датчики влажности на основе нанопроволок BaCO₃. Реакция на влажность при статических и динамических измерениях доказывает сверхчувствительность датчиков, результаты указывают на перспективные применения нанопроволок BaCO₃ в высокочувствительное электронное устройство для мониторинга окружающей среды и контроля влажности.

Наночастицы карбоната бария (ВаСО₃) были получены in situ из хлорида бария путем контролируемого высвобождения диоксида углерода с использованием метода щелочного гидролиза диэтилкарбоната. Процесс

проводился в присутствии стабилизатора, а именно бромида цетилтриметиламмония (СТАВ), на границе раздела воды и гексаметилена. Результаты исследования показали формирование сферических наночастиц ВаСО₃ с низкой степенью кристалличности и диаметром, варьирующимся от 30 до 300 нм.

Авторы [106] сообщают приготовлении ультратонких зеленых излучающих нанопроволок BaCO₃ высокой плотности со средним диаметром 18,5 нм и средним размером кристаллитов 13,4 нм методом электросборки с последующим двухэтапным методом прокаливания. Возможный механизм взаимодействия пар-твердое тело был предложен для роста тончайших нанопроволок, при котором реактивные пары углекислого газа генерировались во время прокаливания в статической атмосфере в окружающей среде и способствовали зародышеобразованию окисления при повышенных температурах. Эта работа позволяет по-новому взглянуть на уменьшение диаметра волокна методом электросборки посредством контролируемого обжига, и такую стратегию, можно в целом применить к другим семействам ультратонких нанокарбонатов металлов.

обнаружили, Авторы [107] что мицеллы термочувствительного сополимера на основе полипептида способны направлять рост карбоната бария (BaCO₃) в виде нанолент. Наноленты BaCO₃ имеют тенденцию расти сформированного кристалла И скручиваться вокруг В спиральную сверхструктуру. Синтез наночастиц с применением методов зеленой химии это растущая область исследований из-за их потенциального применения в наномедицина. Наночастицы карбоната бария (ВаСО₃) были синтезированы с использованием водного экстракта семян Mangifera indica в качестве восстановителя [108]. Результаты подтверждают, что синтезированные наночастицы BaCO₃ имеют сферическую, треугольную и неравномерную форму и что средний размер наночастиц ВаСО3 составляет ~ 18,3 нм и имеют кристаллическую природу. Наночастицы ВаСО₃ значительно ингибировали карциномы шейки клетки матки, ЧТО подтверждается анализом

цитотоксичности. Согласно результатам, метод синтеза с применением зеленой химии имеет большой потенциал для легкой, быстрой, недорогой, чистой эффективной разработки экологически И новых BaCO₃ многофункциональных наночастиц для лечения рака. был синтезирован в орторомбической фазе с высокой чистотой [109]. В качестве нового предшественника использован барий-ортофталатный комплекс для наночастиц BaCO₃ без растворителей путем получения теплового разложения. Наилучшие результаты были получены для образца, подготовленного при 500 градусах Цельсия. С помощью электронной микроскопии этого продукта установлено что наночастиц имеют форму «боба» со средним размером 35-70 нм. Нанокристаллический карбонат бария (BaCO3) был успешно синтезирован с помощью сонохимической реакции. Для бария этого использовались различные концентрации ацетата (Ba(CH3COO)2) и гидроксида натрия (NaOH), И процесс реакции варьировался по времени и мощности ультразвуковой обработки [110]. Сонохимическая методика позволила эффективно управлять размером и структурой нанокристаллов ВаСОЗ, что обеспечило получение материала с заданными характеристиками для дальнейших применений. Установлено, что условия реакции, такие как концентрация иона Ba²⁺, продолжительность реакции и мощность ультразвукового устройства, играли важную роль в размере, морфологии и процессе роста конечных продуктов. В аналогичных исследованиях CdCO₃ [111] наноструктуры были получены из Cd(CH3COO)₂ и CaCl₂•2H₂O реакциями с тетраэтиламмоний гидроксидом и NaHCO3 в ультразвуковых условиях. Реакции протекали в ультразвуковых условиях, приводя к сферическим и однородным нанокристаллитам BaCO₃, как показали наблюдения SEM. По сравнению с влажными химическими методами, такими как гидротермальные или сольвотермические методы [112], этот сонохимический метод не требует контроля давления и высокой температуры.

надстройки BaCO₃ могут быть Сложные легко созданы с (4-стиролсульфоната использованием поли натрия) (PSS) И поли (аллиламингидрохлорида) (РАН) в качестве управляющих структурой агентов в процессе минерализации [113]. Более сложные макропористые сверхструктуры могут быть созданы за счет совместных шаблонных эффектов молекулярного шаблона и постороннего статического шаблона, такого как пузырьки воздуха.

Систематически исследовались минерализация кристаллизация И мезокристаллов карбоната бария различной формы и сложной формы с использованием двойных гидрофильных блок-сополимеров (DHBC) в качестве модификаторов роста кристаллов в смешанном растворителе, состоящем из N, N-диметилформамида (DMF) и деионизированной воды (DIW) [114]. Исследовано влияние концентрации полимера, растворителя и объемного соотношения смешанного растворителя на контролируемую кристаллизацию мезокристаллов BaCO₃. Стержни из BaCO₃ в форме челнока с различными размерами и соотношением средней длины (L)К максимальному диаметру (D) могут быть получены простым изменением концентрации полимера в смешанном растворителе.

Для осаждения смешанных частиц карбоната кальция-магния (Ca-Mg) и бария-стронция модифицированный (Ba-Sr) использовался процесс гомогенного осаждения. Этот процесс включал каталитическое разложение мочевины с помощью фермента уреазы. Реакция проводилась при комнатной температуре в растворе, содержащем соли карбонатов. Такой подход позволил эффективно синтезировать смешанные карбонаты, обеспечивая точное управление их составом и характеристиками за счет контроля условий осаждения [115]. Структура и морфология полученных осадков были исследованы с помощью сканирующей электронной микроскопии (SEM) и рентгеновской дифракции (XRD). Существуют явные различия в образовании и природе этих твердых тел. Было обнаружено, что ионы магния лишь незначительно включаются в структуру кальцита, образуя кальцит с

низким содержанием магния, в то время как присутствие ионов бария и стронция в реакционном растворе приводит к образованию эквимолярных твердых растворов карбоната Ba-Sr. Однако присутствие ионов магния в реагирующем растворе на ранних стадиях процесса осаждения определяет И образование не агрегированных наноразмерных частиц кальцита, характеризующихся высокой удельной поверхностью (SSA). Наконец, это исследование доказало недавно обновленный механизм, при котором некоторые карбонатные коллоиды могут образовываться посредством агрегации предварительно сформированных наноразмерных кристаллических частиц.

Наноразмерные частицы карбоната кальция и карбоната бария обладают которые особое свойствами, привлекают внимание уникальными В приложениях. Основная промышленных цель нашего исследования заключается в получении наночастиц карбоната кальция и карбоната бария с применением химической реакции в условиях микроэмульсии воды в масле, как описано в работе [116]. Синтезированные наночастицы обладают были форма сферической формой, и их размер и определены С использованием электронной микроскопии. Размеры частиц варьируются в пределах 20-30 нм, что подтверждает высокую дисперсию и однородность полученных структур.

Представлены морфосинтеза $BaCO_3 c$ различные стратегии использованием природного полисахарида акации (GA) В качестве шаблонных видов. Было исследовано GA влияние с различными такими как --ОН, --СООН функциональными группами, И -NH 2 Ha кристаллизацию и формирование структуры [117]. Некоторые интересные морфологии, включая стержни, гантели, двойные гантели и кластеры, похожие на цветы, могут быть легко созданы с использованием GA в качестве кооперативного модификатора в процессе минерализации В условиях 0,5%, 1% видов-шаблонов и при температуре окружающей

среды. Модификатор GA и его концентрация являются ключевым фактором в этой системе.

Исходные наночастицы ВаСО₃ (витерит) были приготовлены методом химического соосаждения [118]. Синтезированные материалы спекали при двух различных температурах прокаливания при 650 ° C и 750 ° C и характеризовали с помощью XRD, VSM, TG-DTA, FT-IR, TEM. По данным рентгеновской дифракции (XRD), средний размер кристаллов карбоната бария находится в диапазоне от 34 до 35 нанометров, и была выявлена чистая орторомбическая фаза. В то же время, для карбоната бария в наномасштабе обычно наблюдается диапазон диаметров от 100 до 150 нанометров. Эти результаты указывают на то, что в данном исследовании удалось получить бария значительно меньшего нанокристаллы карбоната размера по сравнению с традиционно наблюдаемыми величинами, что может иметь важное значение применения данного материала в различных ДЛЯ высокотехнологичных областях.

Электроосаждение BaCO₃ из ванн Ba(HCO₃)₂, стабилизированного аминокарбоксилатом, приводит к ориентированная кристаллизация, когда условия ванны способствуют разложению комплекса Ba [119]. Рост кристалла преобладает вдоль с-кристаллографической оси и ориентируются перпендикулярна подложке.

В данной статье успешно продемонстрирован синтез кристаллов карбоната бария с более сложными сверхструктурами с использованием быстрого микроволнового метода. Процесс проводился в водной системе с добавлением додецилсульфата натрия (SDS) в качестве стабилизатора. В реагентов использовались бария качестве исходных хлорид с двухмолекулярной водой (BaCl₂·2H₂O) и бикарбонат натрия (NaHCO₃). Этот метод позволяет эффективно контролировать формирование кристаллов и достигать желаемых характеристик сверхструктур, что может значительно расширить возможности применения карбоната бария в различных областях, таких как катализаторы, оптические материалы и керамика [120]. Анализ

рентгеновской порошковой дифракции (XRD) подтвердил, что полученный продукт представляет собой ромбическую фазу BaCO₃. Сем микроскопия позволила наблюдать формирование сверхструктур высшего порядка, происходящее в результате самоорганизации наночешуек ВаСО₃.Некоторые факторы, включая мощность микроволнового нагрева, время, концентрацию додецилсульфат натрия, начальную концентрацию реагентов, значение рН системы поверхностно-активные И виды вещества, влияющие на морфологию кристаллов ВаСО₃. Исследования показали, что додецилсульфат натрия играет решающую роль в формировании сверхструктур BaCO₃.

Таблица 3. Сопоставление методов получения и размеров частиц карбоната бария

Методы синтеза ВаСО ₃	Размер	ссылка
	частиц,нм	
С применением	25-30	Метод, использованный в диссертации
полисульфидов		
Использвался Ва(NO ₃) ₂	1 - 10	International Journal of Chemical
+лим.кислотазатем,		Engineering and Applications 2(4):299-
отжиг при 400С (золь		303
гель)		DOI: 10.7763/IJCEA.2011.V2.121.
Ba(NO ₃) ₂ ·3H ₂ O→	14–22	Nanomaterials and Nanotechnology 2018,
NaOH \rightarrow Ba(OH) ₂ \rightarrow		Volume 8: 1–8
BaCO ₃		https://doi.org/10.1177/1847980418761775
(BaCl ₂ +NaOH+ cetyltri-	30 - 300	Cryst Res Technol 2007; 42(9): 886–889;
methylammonium-		https://doi.org/10.1002/crat.200710942.
bromide		
$Ba(Ac)_2 + PVA \rightarrow отжиг$	13,4 -18,5	Cryst Eng Comm 2014, v.16 p.964-968.
при 743К		https://doi.org/10.1039/C3CE41988F

$BaCl_2 \cdot 2H_2O + Na_2CO_3 + $	18,3	Journal of Photochemistry and
семена магниферы		Photobiology B: Biology, 2016, 156, 29.
		DOI:10.1016/j.jphotobiol.2016.01.008
Разложение барий-	35-70	Advanced Powder Technology Volume 24,
ортофталатного		Issue 1, January 2013, Pages 14-20.
комплекса		https://doi.org/10.1016/j.apt.2012.01.004
В обратных мицеллах	20 - 30	Chemical Engineering and Processing 44
		(2005) 115–119.
		doi:10.1016/j.cep.2004.05.004.
С применением	100-150	Int. J. Chem. Tech. Res. 07 (2014-15) 293-
методов зеленой		301
химии		

Наряду с работами, приведенными выше, есть еще работы, посвященные методам получения BaCO₃, которые включают распыляемый пиролиз [121], синтез с применением микроволнового излучения [122-124], метода аэрозолей [125], с применением аминокислот [126], сонохимический синтез [127], применение электроосаждения [128], контролируемого синтеза [129], электроосаждения [130], метод гомогенного осаждения [131].

1.2.3. Наночастицы Карбоната стронция

Карбонат стронция (SrCO₃), белый порошок без запаха и вкуса представляет собой карбонатную соль стронция, имеющую вид белого или серого порошка. Он встречается в природе как минерал стронцианит. Будучи карбонатом, он является слабым основанием и поэтому реагирует с кислотами. В остальном он стабилен и безопасен в работе. Практически Он нерастворим в воде. широко используется В керамической промышленности в качестве ингредиента для глазурей. Он действует как флюс, а также изменяет цвет некоторых оксидов металлов. Он имеет некоторые свойства, аналогичные карбонату бария. Он также используется

при производстве стронция ферритов для постоянных магнитов, которые используются в громкоговорителях и дверных магнитах. Карбонат стронция является сырьем для производства многих химических соединений стронция различного назначения. Получают обычно карбонат стронция реакцией смесь сульфида стронция с карбонатом натрия приводит к образованию осадка карбоната стронция: SrS + Na₂CO₃→ SrCO₃ + Na₂S

В исследовании [132] проведен синтез наночастиц SrCO₃ и BaCO₃ с использованием циклического ультразвукового облучения. Полученные продукты представляют собой орторомбическую фазу SrCO₃ и BaCO₃ с размерами наночастиц в диапазоне от 20 до 50 нм для SrCO₃ и от 40 до 100 нм для BaCO₃. Исследование включало анализ инфракрасных спектров, выявивший асимметричное и симметричное растяжение связи С-О, а также внеплоские деформационные колебания при 1463, 1071, 862 и 708 см⁻¹ для см⁻¹ SrCO₃ И 1439, 1059. 858 И 692 лля BaCO₃ соответственно.Контролируемый синтез наноструктур SrCO₃ с различной морфологией (стержнеобразная, нитевидная, эллипсоидная и сферическая) был успешно осуществлен с помощью сольвотермического метода, опосредованного катионным ПАВ-ЦТАБ-микроэмульсией [133]. Различные сравнительные эксперименты фундаментальные показали, что экспериментальные параметры, такие как молярное отношение H₂O к ПАВ и концентрация реагентов, играют важную роль в морфологическом контроле наноструктур SrCO₃. Более низкое молярное отношение H₂O к ПАВ благоприятствует стержнеобразным продуктам, тогда как более высокое молярное отношение обычно приводит к образованию сферических продуктов. Предложен рациональный механизм, основанный на слиянии, агрегировании и коалесценции капель микроэмульсии для селективного образования различных морфологий. Электроосаждение BaCO₃ из ванн стабилизированного аминокарбоксилатом, $Ba(HCO_3)_2$, приводит к ориентированной кристаллизации, когда условия ванны способствуют разложению комплекса Ва [134]. Рост кристаллов преобладает вдоль с-

кристаллографической оси. Кристаллиты ориентируются своей осью с перпендикулярно подложке. Кристаллиты демонстрируют трехкратное двойникование в результате эволюции плоскостей {110} как плоскостей отражения.

Наночастицами BaCO₃ были пропитаны электрод В ИЗ La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃ в качестве синергетического катализатора для улучшения характеристик протонопроводящих твердооксидных топливных элементов [135]. Метод использования наночастиц BaCO₃ продемонстрировал многообещающие улучшения характеристик электродов И требует дальнейшего развития.

В работе [136] на основе наночастиц карбоната стронция создана новая рН-чувствительное биоразлагаемая наносистема для высвобождение противоопухолевых препаратов были разработаны с помощью простого метода смешанных растворителей направлена на создание умной доставки лекарств в кислых условиях, особенно в опухолевой среде. Структурные характеристики наночастиц карбоната стронция показали, что сконструированные наноносители были однородными размером и имел морфологию гантелевидной формы с плотной массой чешуевидного шипа покрытие, которое могло бы служить структурой для хранения гидрофобных препаратов. Было обнаружено, что кумулятивное высвобождение этопозида из наночастиц карбоната стронция составляет кислотно-зависимый, и что скорость высвобождения низкая при рН 7,4; этот показатель значительно увеличивается при низком уровне рН (5,8, 3,0). Эти данные свидетельствуют о том, что наночастиц карбоната стронция имеют огромные перспективы в области контролируемой доставки лекарств и таргетной терапии рака.

Жидкую мембранную систему на биомиметической основе использовали для контроля морфологии карбоната стронция [137]. Некоторые интересные морфологии, включая стержни, челноки и сферы, могут быть легко получены с использованием лимонной, нитрилотриуксусной и этилендиаминтетрауксусной кислоты в качестве совместных модификаторов

в процессе минерализации в условиях pH 10, 0,01% модификатора кристаллов и температуры окружающей среды. Кроме того, этот метод был успешно применен для контроля морфологии карбонатов других щелочноземельных металлов, что указывает на его широкое применение при получении материалов.

В этом исследовании [138] превращение целестита (SrSO₄) в SrCO₃ проделали мокрым механохимическим синтезом в высокоэнергетической шаровой мельнице и обработкой Na₂CO₃. Для этого твердый карбонат стронция и растворимый Na₂SO₄ были получены после мокрого помола порошка целестита и карбоната натрия. Твердую фазу промывали вода комнатной температуры путем фильтрования. Рентгенограммы показали, что был синтезирован нанопорошок SrCO₃, и конверсия увеличивалась с увеличением время измельчения до 8 часов. Кроме того, анализ Ритвельда был использован для расчета доля SrCO₃, а также структурные свойства синтезированных образцов. Это было обнаружили, что исходный целестит может быть преобразован в карбонат стронция с чистотой более 98% при использовании высокоэнергетического измельчения без одновременного нагрева. Оптимальное время измельчения было определено как 4 часа, что привело к образованию нанопорошков средним размером частиц 90 нм. Сканирующий электрон с полевой эмиссией Микроскопия (FE-SEM) четко показала наноразмерную структуру синтезированных порошки.

В работе [139] была разработана методика газожидкостного осаждения для синтеза сферических частиц карбоната стронция (SrCO₃). В процессе использовались гидроксид стронция (Sr(OH)₂), диоксид углерода (CO₂) и стронциевая соль этанолдиаминтетрауксусной кислоты (EDTA-Sr) в качестве исходных реагентов. Эффекты концентрации EDTA-Sr и Sr (OH)₂, скорость воздушного потока CO₂ и температура реакции от морфологии SrCO₃ были исследованы. Результаты показали, что сферические частицы SrCO₃ могут образовываться, когда концентрация EDTA-Sr достигала 0,02 M, а концентрация Sr(OH)₂ была менее 0,1 M скорость газообразного CO₂ мало повлияла на сферическую морфологию, а микросфера SrCO₃ с хорошей дисперсию можно было получить, когда температура реакции достигала 50°С. При оптимальных условиях получается высокая чистота и сферические частицы SrCO₃ диаметром 200–800 нм. Наша работа предлагает эффективный метод крупномасштабного производства сферического SrCO₃ высокой чистоты

В настоящем исследовании [140] наноструктурированный карбонат стронция был синтезирован механохимическим методом механического измельчения с высокой энергией. Экспериментальные результаты показали, что при молярном соотношении Na₂CO₃ к SrSO₄ в размере 2:1 начало механохимической реакции наблюдается через 1 час измельчения. Несмотря на то что более продолжительное измельчение способствует большему превращению SrSO₄ в SrCO₃, полная конверсия не достигается даже после 16 часов обработки. Однако при увеличении молярного отношения Na₂CO₃ к SrSO₄ до 1,25:1 образование SrCO₃ завершается уже через 2 часа. Результаты также показали, что средний размер кристаллитов полученного нанопорошка составлял приблизительно 32 нм. Результат показал, что конечный продукт был получен с чистотой 95 мас.%. Исследования с помощью электронного микроскопа подтвердили образование SrCO₃ нанопорошка со средним размером частиц 80 нм.

В исследовании [141] был проведен синтез наноструктур высокодисперсного карбоната стронция (SrCO3), который привел к образованию частиц различной формы, включая гантели, эллипсоиды и стержни. Синтез осуществлялся в растворе метанола без использования каких-либо дополнительных добавок. Для характеристики полученных образцов карбоната стронция применялись рентгеновская дифракция (XRD) и автоэмиссионная сканирующая электронная микроскопия (SEM). Эти подробно изучить кристаллическую структуру методы позволили И морфологию наноструктур SrCO3, что способствует лучшему пониманию их физических свойств и потенциальных применений. Результаты исследования

показали, что температура реакции и соотношение метанол/вода оказывают существенное влияние на морфологию частиц SrCO₃. Гантелеподобные частицы SrCO₃ обладают удельной поверхностью 14,9 м2/г и средним размером пор около 32 нм с узким распределением по размерам. Представлен механизм образования кристалла SrCO₃.

Полный биологический кристаллов SrCO₃ игольчатой синтез морфологии, упорядоченных за счет воздействия ионов Sr^{2+} водной среде на микроорганизмы, такие как грибы, описан в [142]. Мы называем эту процедуру «полным биологическим синтезом», поскольку источник карбонат-ионов, которые вступают в реакцию с водными ионами Sr²⁺ - это сам гриб. Авторы считают, что секреция белков во время роста гриба Fusarium охуѕрогит отвечает за изменение морфологии кристаллов стронцианита и направление их иерархической сборки в надстройки более высокого порядка.

 $(SrCO_3)$ Наноструктуры карбоната стронция были успешно синтезированы с помощью простого микроволнового подхода С использованием Sr(NO₃)₂, порошка карбоната и гидроксид натрия (NaOH) в качестве реагентов [143]. Влияние микроволнового времени и мощность были исследованы морфологии по размеру И продукта. Вывод можно сформулировать следующим образом: параметры времени и мощности излучения микроволновых волн оказывают существенное влияние на размер и морфологию получаемого продукта. Выбор оптимальных значений времени и мощности для конкретной микроволновой печи позволяет достичь формирования очень мелких частиц. Важно отметить, что каждая микроволновая мощность имеет оптимальное время обработки, а обработки соответствует оптимальной микроволновой каждое время мощности, способной обеспечить достаточную и подходящую энергию для формирования желаемых наноструктур.

Однофазный карбонат стронция (SrCO₃) был успешно синтезирован с использованием сольвотермальной обработки гидратированного гидроксида

стронция в этаноле (EtOH). Процесс проводился при температуре 100°С в течение 2 часов, с использованием определенных мольных отношений Sr: EtOH 1:18 или 1:23 [144].

В другом варианте использовались время сольвотермической обработки (0,5, 1,0 и 3 часа), температуры (80 и 150 °C) и различные мольные отношения Sr: EtOH (1:13 и 1:27) к образованию смешанных фаз Sr-содержащих продуктов, SrCO₃ и Sr (OH)₂xH₂O. Полученные продукты (обозначенные как 1:18 SrCO₃ и 1:23 SrCO₃), содержащие однофазные SrCO₃, были дополнительно охарактеризованы по сравнению с коммерческим SrCO₃, и использовались как фотокатализаторы в видимом и УФ диапазонах.

Таблица 4. Сопоставление методов получения и размеров частиц карбоната стронция

Методы получения SrCO ₃	Размер	ссылка
	частиц, нм	
С применением	24	Метод, использованный в
полисульфидов		диссертации
синтез с применением	20–50	Materials Letters 87:153–156
микроволнового излучения		DOI: 10.1016/j.matlet.2012.08.002
методом измельчения	90	Int J Appl Ceram Technol. 2020;
		1–8 DOI: 10.1111/ijac.13612
газожидкостное осаждение	200-800	Mater. Res. Express 7
		(2020) 025009
механохимический метод	32	Ultrafine Grained and
		Nanostructured Materials Vol. 51,
		No.2, December 2018, pp. 147-
		152
синтез в водно-этанольном	32	Nanoscale Research Letters 2012,
растворе		v.7, p.305-310

1.3. Наночастицы сульфаты кальция, бария и стронция

1.3.1. Наночастицы сульфаты кальция

Сульфат кальция, представленный в форме бесцветных или светложелтых кристаллов с ромбической решеткой, является неорганическим соединением. На кристаллы не наносится выраженный запах, и они не растворяются в этаноле. Растворимость сульфата кальция в воде невелика и повышением температуры. уменьшается с Естественное содержание сульфата кальция в природе влияет на жесткость воды. В природе этот соединенный присутствует в форме дигидрата, такого как гипс и селенит. Промышленное получение сульфата кальция осуществляется путем добычи из естественных минералов, таких как гипс, селенит или алебастр. Синтетический способ включает реакцию между хлоридом кальция и сульфатом калия. Химическая формула соединения - CaSO₄, а в пищевой промышленности он зарегистрирован как пищевая добавка Е516. Сульфат кальция находит применение в пищевой промышленности в качестве эмульгатора, а также в медицине, строительстве, формовании, очистке сточных фармацевтике, благодаря своей технологической вод И универсальности, прочности, биосовместимости И способности К биоразложению [145-149].

На текущем этапе развития нанотехнологий ученые и инженеры в области химии и материаловедения активно исследуют новые явления и стремятся разработать технологии синтеза наночастиц CaSO₄. Множество методов получения сульфата кальция с различными морфологиями и размерами привлекает пристальное внимание в последние годы [150-158]. Например, исследование, проведенное Конгом и соавторами [159], представляет метод формирования нанопроволок полугидрата α-сульфата кальция в обратных микроэмульсиях. В то время как Хоу и Чжан [160,161]

описали метод определения α-полугидрата сульфата кальция, используя метод реактивного осаждения с высокой плотностью в сочетании с методом солевого раствора при атмосферном давлении. Важно отметить, что, за исключением методов, основанных на высоких температурах и давлении в растворах, получение наночастиц сульфата кальция при комнатной температуре по-прежнему представляет собой сложную задачу.

Синтез, основанный на микроэмульсии, представляет перспективный требующий дорогостоящего специализированного метод, не или оборудования, в отличие от нескольких физических методов, таких как плазменный синтез, шаровая мельница и химическое осаждение из паровой [162,163]. Этот метод является комнатным способом фазы синтеза наночастиц и обеспечивает контроль над их размерами и формой. В процессе микроэмульсии раствор выступает в качестве динамически стабильной фазы, поддерживаемой различными поверхностно-активными веществами И контролируемыми движущимися внешними полями, такими как механическое или термодинамическое поле [164,165].

Микроэмульсии могут быть обнаружены в большинстве систем поверхностно-активных веществ, где диффузия как масла, так и воды не ингибируется и обладает умеренным снижением по сравнению с отдельными жидкостями. Понимание факторов, воздействующих на микроэмульсии, позволяет выбирать поверхностно-активные вещества в соответствии с конкретными приложениями, особенно при синтезе наноматериалов с контролируемыми размерами и формой. В последних исследованиях было продемонстрировано, что для формирования микроэмульсий применялись различные типы поверхностно-активных веществ, включая анионные, катионные и неионогенные соединения [166,167].

Однако метод микроэмульсии при комнатной температуре для наноматериалов имеет свои ограничения, так как рост кристаллов в микроэмульсиях представляет сложный процесс, включающий в себя взаимодействие кинетики роста кристаллов и термодинамики в многофазной

системе.

В их исследовании [168] авторы предложили метод получения наноразмерного сульфата кальция с использованием микроэмульсии при В комнатной температуре. качестве исходных материалов были использованы карбонат кальция и серная кислота. Характеризуя полученные продукты, они указали, что морфология сульфата кальция может быть изменена и контролирована с использованием различных поверхностноактивных веществ, как TritonX-114, **SDBS** CTAB. таких И Данный метод открывает перспективные возможности ДЛЯ синтеза наноматериалов с уникальной структурой в перспективе.

Сульфат кальция - один из важнейших строительных материалов. Сегодня он используется как высокоэффективный состав в медицине и цементных смесях. В исследовании [169] представлена информация о синтезе наночастиц сульфата кальция, обладающих выдающимися диспергируемыми свойствами в органических растворителях. Этот процесс был осуществлён без необходимости дополнительной функционализации наночастиц. Синтезированные наночастицы демонстрируют высокую стабильность и однородность при диспергировании в органических средах, что может расширить их потенциальные применения в различных областях, таких как фармацевтика, косметика и высокотехнологичные материалы. Наночастицы образуют в ацетоне длительно стабильные дисперсии без каких-либо признаков осадков. Спектроскопия ядерного магнитного резонанса (ЯМР) 1Н методы и инфракрасная спектроскопия с преобразованием Фурье (FT-IR) показывают, что поглощенный 2-пропанол на поверхности частиц вызывает необычную диспергируемость. Добавление воды к системе приводит к немедленному выпадению осадков. Фазовое превращение в гипс через бассанит контролировали с помощью кинетической ИК-Фурье спектроскопии in situ и пропускания электронов микроскопия (ПЭМ). Способность к диспергированию в летучем органическом растворителе и наночастицы кристаллизация при контакте с водой делают CaSO4

многообещающими для различных приложений. Например, они могут использоваться в качестве наногипса для создания покрытий или производства гибридных композитов.

Последние десятилетия стали свидетелями значительного прогресса в области нанотехнологий с тех пор, как усилия были направлены на разработку, синтез и применение наночастиц. Однако для большинства минеральных материалов, таких как сульфат кальция, по-прежнему сложно готовят свои наночастицы, особенно с однородным размером и высокой монодисперсностью. В работе [170] сообщается о способе регулирования морфологии и структуры нано CaSO₄, его успешно синтезировали и стабилизировали его мезокристаллы. Эллипсоидальные мезокристаллы длиной 300-500 нм имеют вид состоит из наночастиц CaSO₄, Эксперименты показали, что CaSO₄ агрегаты эволюционируют от неправильной структуры к мезокристаллической структуре с последующий рост субъединиц, а затем частичное слияние в монокристаллы. Дезорганизация мезокристаллической структуры до появления приводит к образованию наностержней длиной 30 - 80 нм и шириной 10 - 20 нм.

Сульфат кальция [CaSO₄] был успешно синтезирован методом осаждения, при этом полученные наночастицы имели размеры от 60 до 100 нм, что было подтверждено просвечивающей электронной микроскопией. Эти наночастицы CaSO4 были использованы для создания композита [171]. Композиты, включающие наполнитель $CaSO_4$ (как микро-, так И наночастицы), были приготовлены с различными содержаниями наполнителя (0-5%) Macc.) путем смешивания расплава. Исследовано воздействие содержания полимера нано- и микро-CaSO₄ на структуру и свойства композитов. Результаты анализа свидетельствуют о том, что термическая прочность композитов с наночастицами CaSO₄ превышала аналогичные характеристики микрокомпозитов и чистого ПВХ.

Наночастицы сульфата кальция с тщательно разработанной структурой и морфологией обладают значительным потенциалом для применения в

области очистки пищевых продуктов и переработки масла, основанной на удалении воды. В ходе проведенного исследования, авторы [172] рассмотрели воздействие микросреды на процесс синтеза наночастиц сульфата кальция, используя методы микроэмульсии и ионообменной Оба вида наночастиц сульфата кальция были эффективно реакции. комнатной синтезированы при температуре. Дополнительно, модифицированные желатином наночастицы сульфата кальция проявили отличные водостойкие свойства и эффективность в сепарации водяных эмульсий в масле. Результаты исследования выявили влияние микросреды на процесс синтеза наноматериалов из минеральных солей, что предоставляет перспективы их применения в области очистки пищевых продуктов и улучшения технологии переработки отработанного масла в будущем.

В работе [173] был разработан метод пламенного синтеза для получения наночастиц сульфата кальция, что обеспечило непрерывное производство материала размером 20–50 нм. Механические свойства были изучены путем определения твердости по Виккерсу, и результаты показали, что твердость наногипса на треть выше, чем у обычного строительного материала микронного размера. Улучшение механических характеристик наногипса частично может быть связано с присутствием наноигл сульфата кальция, как показано на электронных микроскопических изображениях. Этот подход открывает перспективы для использования наночастиц сульфата кальция в улучшенных строительных материалах.

Роль аморфного сульфата кальция (АСК) в качестве предшественника кристаллического сульфата кальция остаётся значимой, но недостаточно изученной, особенно в отношении механизма, посредством которого АСК переходит в кристаллическую фазу [174]. Было установлено что АСК наночастицы как предшественника кристаллизации сульфата кальция в концентрированном растворе CaCl₂ при 90°C и наблюдали несколько этапов его эволюции. Наночастицы АСК выросли за счет одновременного формирования в растворе и внутренней структурной эволюции. Агрегация

наночастиц АСК породила объемная частица АСК, внутри которой прорастают нанокристаллические домены и развиваются в кристаллический гипс. Эта работа углубляет понимание эволюции наночастиц АСК. и его роль в многоступенчатой кристаллизации сульфата кальция.

Использование наночастиц сульфата кальшия В медицине применений, особенно областях предоставляет широкий спектр В стоматологии, имплантологии и ортопедии. Материал обладает уникальной способностью полного рассасывания в естественных условиях, что делает его эффективным в использовании для регенерации костей. Наночастицы (nCS) проявляют потенциальные сульфата кальция преимущества В медицинской сфере, где они могут использоваться в качестве керамической матрицы, каркаса или носителя для доставки факторов роста. Эти материалы способствуют регенерации костных тканей и могут быть эффективны в различных клинических сценариях.

Цели исследования авторов [175] состояли в том, чтобы синтезировать и охарактеризовать наночастицы полугидрата сульфата кальция (nCS). В данном процессе был применен криовакуумный метод для переработки дигидрата карбоната стронция (CS) в дигидрат нового карбоната стронция (nCS). После этого полученный дигидрат подвергался сушке в печи, что приводило к образованию полугидрата. Криовакуумный метод обеспечивает высокую чистоту и контроль над фазовыми переходами, а последующая термическая обработка позволяет стабилизировать полученные формы карбоната стронция, что важно для их дальнейшего использования в различных научных и промышленных приложениях. nCS стерилизовали обработкой тлеющим разрядом для использования в качестве синтетического материала трансплантата для лечения костных дефектов. Электронная микроскопия показала, что порошок nCS состоит из агрегатов близко расположенных игольчатых кристаллов примерно 30-80 нм в ширину, 400-600 нм в длину и примерно 80-100 нм в диаметре, обеспечивая площадь поверхности примерно в десять раз больше, чем у обычного CS. Тщательная

физико-химическая характеристика подтвердила состав и фазу материала. Анализы жизнеспособности клеток / метаболической активности и щелочного фосфата подтвердили безопасность и биосовместимость nCS. Кинетика высвобождения адсорбированного фактора роста тромбоцитов и костного морфогенетического белка-2 (BMP-2) предполагает, что nCS может служить подходящим носителем для доставки этих агентов с медленным высвобождением.

Представленные исследования подчеркивают преимущества nCS в качестве каркаса остеобластических клеток. Кроме того, существуют и другие работы, которые дополнительно подтверждают применение наночастиц сульфата кальция в данной области [176-178]. Наноангидрит был синтезирован также методом газопламенного синтеза с использованием прекурсора, содержащего соответствующие кальций и серосодержащие органические производные. Са(OH)₂ растворяли в 2-этилгексановой кислоте [179].

Таблица 5. Сопоставление методов получения и размеров частиц сульфата кальция

Методы получения	Размер частиц,	ссылка
CaSO ₄	НМ	
с применением	20-30	Метод, использованный в
полисульфидов		диссертации
H ₂ SO ₄ +CaCl ₂ B	5-50	Langmuir 2018 v.8, 34(24),
изопропаноле осадок		p.7096-7105
растворяли в ацетоне		
$CaCl_2+(NH_4)_2SO_4$ b	300-500	Langmuir 2017, 2017, 33, 9, 2362-
присутствие Na ₂ EDTA и		2369
этиленгликоля		
Ca(OH) ₂ +	20–50	Journal of Nanoparticle Research

диметилсульфоксид		2007 v.9, p.275–281.
Синтез CaSO ₄ ·0,5H ₂ O в	120-200	Chem. Comm. 2021, DOI:
фоновом электролите		10.1039/d1cc02014e
синтез в эмульсии вода-	10-50	Langmuir 1999, v.15, N6, p.1993-
масло		2002
Наноангидрит был	20-50	J. Crys. Growth. 244(3-4), 379-
синтезирован методом		383
газопламенного синтеза с		DOI: 10.1007/s11051-006-9149-7
использованием		
прекурсора, содержащего		
соответствующие		
кальций и		
серосодержащие		
органические		
производные		
Са(ОН) ₂ растворяли в 2-		
этилгексановой кислоте.		
синтез в эмульсии вода-	Нанопроволока	Inviron. Sci. Technol. 2017, 51,
масло	100-300 нм	10519–10525 DOI:
	20-30 мкм	10.1021/acs.est.7b02901
Синтез из CaSO ₄ ·0.5H ₂ O	100 nm	Materials Science and Engineering:
в растворе желатина		C, (), S0928493116319002–
		. doi:10.1016/j.msec.2016.10.063
Из реакции CaCl ₂ с	10-20 nm	Angewandte Chemie International
H_2SO_4		Edition, 54(13), 4083–4086.
		doi:10.1002/anie.201409651
Из реакции CaCl ₂ с	100 нм	Ultrasonics Sonochemistry, 31(),
(NH4)2- SO4 в		39–50.
присутствии ПАВ		doi:10.1016/j.ultsonch.2015.11.024

Синтез CaSO ₄ в	Проволока	Langmuir, 15(6), 1993–2002.
циклогексане с	D=10-12nm	doi:10.1021/la981026v есть
добавлением эмульсии	L=10-100 mkm	BaSO4
содержащей		
[Ca(NO ₃) ₂]aq		
из CaCl ₂ ·2H ₂ O and	стержни 0.2-	Chem. Commun., 48(4), –.
Na ₂ SO ₄ в концентрациях	1.0 мкм	doi:10.1039/c1cc14210k
CaSO ₄ близких к	20-30 нм	
выпадению кристаллов		
Из перенасыщенных	10-15 nm	Science 2012, 336, 69–72.
растворов CaSO ₄		DOI:10.1126/science.1215648
$CaCl_2+(NH_4)_2SO_4$ b	Шириной 300	Environ. Sci. Technol. 2016, 50,
присутствие Na ₂ EDTA и	нм длиной 600	7650–7657.
глицерина	нм (эллипсы)	DOI:10.1021/acs.est.6b01152.
$CaCl_2+(NH_4)_2SO_4$ b	Шириной 300	Environ. Sci. Technol. 2016, 50,
присутствие Na ₂ EDTA и	нм длиной 600	7650–7657.
глицерина	нм (эллипсы)	DOI:10.1021/acs.est.6b01152.
С использованием CaCl ₂	Наноэллипсы с	Phys. Chem. Chem. Phys., 17(17),
и Na2EDTA в глицерине	300 и 600	11509–11515.
		doi:10.1039/C5CP00804B
H ₂ SO ₄ + CaCO ₃ с ПАВ	5 - 100 nm	ACS Omega 2019, 4, 9552–9556
(SDSB(стержни), СТАВ		DOI: 10.1021/acsomega.9b00797
(круг), Triton-114)		ACS
(эллипс)		
$H_2SO_4 + CaCl_2 c \Pi AB n$ -	стержни в	Langmuir 2012, 28, 14137–14142.
гексанол	основании 200-	Doi: 10.1021/la302459z.
	300 нм в длину	
	1-3 мкм	
метод синтеза вискеров	Стержни	Langmuir 2014, 30, 9804–9810.

α-CaSO4•0,5H ₂ O	длиной 20-80	DOI:10.1021/la502451f
гидротермальный метод	мкм и	
	шириной 1,35	
	МКМ	
Синтез CaSO ₄ •0,5H ₂ O с	Стержни	Ind. Eng. Chem. Res. 2017, 56,
помощью CaCl ₂ и Na ₂ SO ₄	длиной 1- 6	14053–14059.
с использованием с	мкм и	DOI:10.1021/acs.iecr.7b03356.
добавками лимон. к-ты	шириной 1,2	
	МКМ	
Микроэмульсионным	Игольчатые	ACS Omega. 2019 May 31; 4(5):
методом из смеси серной	кристаллы	9552–9556. doi:
кислоты и карбоната	микронных	10.1021/acsomega.9b00797
кальция	размеров	
Наночастицы CaSO ₄	5-50 нм	Langmuir 2018 v.8, 34(24),
частично аморфные		p.7096-7105
ацетоне длительно		DOI:
стабильные дисперсии		10.1021/acs.langmuir.8b00927
$CaCl_2$ + $\Pi \Im \Gamma$ +	10–30 nm	International Journal of Modern
$+(\mathrm{NH}_4)_2\mathrm{SO}_4$		Physics B, 24(1n2), 64–75.
		doi:10.1142/S0217979210063995
$CaCl_2$ + $\Pi \Im \Gamma$ +	60 - 100 nm	International Journal of Modern
$+(\mathrm{NH}_4)_2\mathrm{SO}_4$		Physics B
		Vol. 24, Nos. 1 & 2 (2010) 64–75,
		DOI:
		10.1142/S0217979210063995
Пламенный синтез CaSO ₄	20-50 нм	Journal of Nanoparticle Research
		2007 v.9, p.275–281. DOI:
		10.1007/s11051-006-9149-7.

Смешиванием	20 – 50 nm	CrystEngComm. p.1-19 DOI:
CaCl ₂ ·2H ₂ O, и Na ₂ SO ₄		10.1039/D0CE01173H
Криовакуумным методом	игольчатые	Biomedical Materials, 6(5),
перерабатывали дигидрат	кристаллы	055007–. doi:10.1088/1748-
CaSO ₄ ·2H ₂ O в дигидрат	длиной 400-	6041/6/5/055007
nCS, который затем	600 нм и	
подвергали сушке в печи	диаметром	
с получением	примерно 80-	
гемигидратаСаSO ₄ ·0.5H ₂ 0	100 нм	
CaSO ₄ .2H ₂ O в жидком		International Journal of Dentistry
азоте в вакууме, отжиг		and Oral Health 2020 V.6, N4,
при 150С		DOI: <u>10.16966/2378-7090.325</u>
Синтез с помощью		Effects on osteoblastic cells
криовакуумной		Dental, Oral and Craniofacial
технологии		Researc 2017, V.3 (4): 2-5.
		DOI: <u>10.15761/DOCR.1000210</u>
Calcium sulfate dihydrate		International Journal of Dentistry
solution was freeze-dried		and Oral Health Int J Dent Oral
under cryogenic conditions		Health 2017, 3(2), DOI:
under vacuum conditions		10.16966/2378-7090.234
to produce a cotton-like		
calcium sulfate powder.		

1.3.2 Получение наночастиц сульфата бария

Для производства мелких твердых частиц, таких как катализаторы, пигменты и фармацевтические препараты, процесс образования частиц методом осаждения является ключевой технологической операцией. Этот этап играет решающую роль в определении свойств частиц, включая их размер, морфологию, кристалличность и чистоту, что в конечном итоге влияет на качество произведенного продукта. Синтез неорганических порошков с ультратонкими размерами и контролируемыми свойствами поверхности и морфологией привлекает все больше внимания благодаря своему широкому применению в различных областях.

Сульфат бария (BaSO4) представляет собой неорганическое соединение, которое привлекает внимание благодаря своим выдающимся оптическим характеристикам, высокой химической стабильности и значительной плотности. Эти свойства делают его важным материалом в различных отраслях. В частности, BaSO4 используется в производстве красок и покрытий, где его белизна и плотность способствуют улучшению качества этих продуктов. В производстве пластмасс это вещество применяется для повышения их физических и механических свойств. В области медицины сульфат бария служит контрастным веществом в рентгенографических исследованиях, что позволяет достичь более четкой визуализации внутренних органов и точности диагностики. Наночастицы сульфата бария привлекают значительное внимание в научных исследованиях за счет их нанометровых размеров. Процессы кристаллизации и осаждения, широко используемые в химической промышленности, имеют высокую важность. Один из наиболее известных процессов кристаллизации включает реакцию ионов бария (Ba²⁺) с ионами сульфата (SO₂₋₄), в результате которой образуется сульфат бария (BaSO₄), как описано в уравнении (1) [183,184].

 $\operatorname{Ba}^{2+}(\mathfrak{K}) + \operatorname{SO}^{2-}_{4}(\mathfrak{K}) \to \operatorname{BaSO}_{4}(\mathfrak{T}.) \downarrow (1)$

Процесс формирования наночастиц BaSO4 с использованием метода жидкость/жидкость представляет собой основной синтетический подход. Этот метод охватывает различные стратегии, такие как непосредственное осаждение в микроэмульсии [185], мембранный метод [186] и синтез в микроканальном реакторе [187]. В настоящее время активно проводятся исследования, посвященные синтезу частиц сульфата бария (BaSO4), с целью детального анализа воздействия различных параметров на их размер и распределение, а также на механизмы кристаллизации и формирование

морфологии. Эти исследования направлены на понимание того, как изменения в условиях синтеза влияют на структуру и свойства частиц, что позволяет оптимизировать процесс их получения и улучшить характеристики конечного продукта для различных применений. В частности, анализируются такие параметры, как интенсивность перемешивания, характер осаждения, скорость вращения мешалки и момент добавления реагентов [188, 189].

Было представлено множество разнообразных подходов к получению наночастиц BaSO4, включая добавление различных добавок [190-191] и использование методов индукции монослоем и микроэмульсии [192]. Добавление добавок и индукция монослоем LB могут значительно влиять на морфологию, хотя размер частиц обычно оставался в микронном диапазоне, а не в нанометровом. Полученный размер и морфология в микроэмульсиях W/O мицеллярных подходах, могут [193], a также быть успешно контролированы путем регулирования молярного отношения воды к поверхностно-активному веществу. Тем не менее, выход продукции оставался низким из-за ограниченной растворимости солей в обычных микроэмульсиях.

Попытки синтеза органически модифицированного сульфата бария (BaSO4) продемонстрировали, полученные что частицы остаются В микромасштабном диапазоне. Ранее был предложен метод для создания закрытых структур BaSO4 [194], однако его применение в промышленных масштабах оказалось неудовлетворительным, не обеспечивая необходимой эффективности практической применимости. В И исследованиях ПО бария получению наночастиц сульфата также использовались тетрадекановая, стеариновая гексадекановая И кислоты В качестве модификаторов [195].

Когда неорганические наполнители с функциональной поверхностью групп достигают полимерной матрицы, ожидается улучшение как жесткости, так и ударных свойств [196,197]. Однако поверхность неорганических частиц, таких как BaSO₄, обладает гидрофильными свойствами, что

затрудняет их диспергирование в липофильной матрице. Именно по этой причине крайне важна модификация поверхности BaSO₄. Существует несколько методик, направленных на достижение высокой дисперсии частиц, в том числе через функционализацию их поверхности путем введения специфических функциональных групп. Эти подходы позволяют улучшить распределение частиц в матрицах и растворах, а также контролировать их взаимодействие с другими компонентами, что важно для различных применений в материалах и нанотехнологиях.

В качестве связующих агентов, способных модифицировать гидрофильную поверхность частицы, используются титанаты [198], силаны [199] и органофосфоновые кислоты [200]. Кроме того, для изменения поверхности частиц применяются мицеллярные растворы октилфенилового эфира полиэтиленгликоля и н-гексилового спирта в циклогексане [201]. Были проведены соответствующие исследования осаждения наночастиц BaSO₄ в неионогенной микроэмульсии без содержания ионов, что привело к получению стабильных прозрачных микроэмульсий на протяжении всего процесса реакции [202].

В работе [203] был проведен синтез наночастиц $BaSO_4$ с водорастворимого органического стабилизатора использованием поликарбоксилата. Результаты рентгеновского анализа указывают на то, что сферические наночастицы $BaSO_4$ обладают орторомбической кристаллической структурой. Исследования методами ИК-Фурье И электронной микроскопии подтвердили, что наночастицы не содержат поверхностно-активных веществ (ПАВ) и находятся в размерном диапазоне от 30 до 55 нм. Эти результаты указывают на то, что органический поликарбоксилатный модификатор может эффективно использоваться для повышения выхода наночастиц BaSO₄ в процессе синтеза.

В исследовании [204] была проведена детальная оценка морфологии и внутренней структуры осажденного сульфата бария. Установлено, что морфология частиц в основном зависит от начальной степени пересыщения,

увеличением пересыщения форма кристаллов становится более И С неправильной. Используя просвечивающую электронную микроскопию, была выявлена пористая внутренняя структура частиц сульфата бария, причем размер пор увеличивается с ростом пересыщения. Анализ криотермических исследований позволил разрешить начальные стадии формирования частиц, показав, что в первые несколько миллисекунд после зародышеобразования размер частиц увеличивается примерно до 100 нм. Крио-исследования и анализ электронограмм подтвердили, что структура пор обусловлена механизмом агрегации, И впервые были получены доказательства процесса перекристаллизации в частицах сульфата бария.

Сегодня сценарий хорошо контролируемого крупномасштабного производства наночастиц является очень важным аспектом R нанотехнологиях. Работа [205] направлена на исследование различных производства наночастиц инженерных аспектов с использованием микроэмульсий. Для синтеза сульфата бария $(BaSO_4)$ используется микроэмульсия, которая состоит из воды, циклогексана и поверхностноактивного вещества. В эту микроэмульсию загружают два реагента: хлорид бария (BaCl₂) и сульфат калия (K_2SO_4), чтобы провести осаждение BaSO₄. В качестве поверхностно-активного вещества применяется неионогенное соединение Marlipal O13/40. Это выбор обусловлен тем, что Marlipal O13/40 является экономичным и эффективным для масштабного производства, что делает его предпочтительным для использования в промышленных процессах. Влияние подходящих параметров управления процессом, таких как скорость подачи, скорость перемешивания, последовательность подачи или начальные концентрации реагенты на размер частиц были изучены, чтобы получить более глубокое понимание важных механизмов управления в пласте наночастиц В неионогенной микроэмульсии вода/масло. Варьированием параметров показано что можно найти безопасные и удобные условия синтеза частиц размерами от 6 до 28 нм. Осаждение частиц действия. Электронная проводили В реакторе полупериодического

микроскопия использовалась для анализа размера, распределения ПО размерам и формы осажденных наночастиц. Измеримое влияние от размера начальных соотношений концентраций частиц для различных двух реагентов. Также было обнаружено, что с увеличением размера частиц форма изменяется со сферической на кубическую. Соответствующее моделирование методом Монте-Карло качественно подтверждает наблюдаемые изменения в размере частиц. Теоретические аргументы, основанные на числе заполнения, критическом числе нуклеации соответствующем количестве И для объяснения этого изменения можно дать зародышевые частицы.

Наночастицы BaSO₄ с добавками Eu с размером зерна в диапазоне 30–50 нм были получены химическим методом соосаждения и охарактеризован спектрометрией УФ-видимого диапазона и дифракцией рентгеновских лучей [206]. Форма и размер, полученных наноматериалов наблюдались с помощью сканирующего электронного микроскопа (SEM) показали, что частицы квазисферические и ширина запрещенной зоны зависит от размера частиц.

Сферические и кубические мезопористые частицы BaSO₄ с большой площадью поверхности были успешно получены с помощью одностадийного процесса путем реакции осаждения в водном растворе Ba(OH)₂ и H₂SO₄ с этиленгликолем (n-HOCH₂CH₂OH) в качестве модифицирующего агента [207]. Наноматериалы BaSO₄ показали, что имеют большую удельную поверхность И мезопористость, стабильны до 400°C. Агломератные наноматериалы мезопористого сульфата бария были получены реакцией Ba²⁺ и SO²⁻⁴ водным раствором этиленгликоля. Этиленгликоль использовали для контроля размера частиц BaSO₄ и для изменения свойств поверхности частиц, образовавшихся в результате осаждения. Синтез мезопористого наноматериала сульфата бария (BaSO4) представляет собой важный шаг для разработки эффективных катализаторов. Такие катализаторы могут значительно улучшить процессы разложения серной кислоты и окисления метана до метанола. Мезопористая структура BaSO4 обеспечивает большую активную поверхность и улучшенные каталитические свойства, что

способствует более эффективным химическим реакциям и повышению общей активности катализатора.

В исследовании [208] описан инновационный метод контролируемого синтеза наночастиц сульфата бария (BaSO4), который включает введение микропузырьков в реакционную систему. Этот подход позволяет точно регулировать процесс формирования наночастиц, обеспечивая возможность контроля над их размером и морфологией. Использование микропузырьков способствует улучшению однородности и размеров частиц, что может положительно сказаться на их функциональных свойствах и потенциальных областях. применениях различных Использовалась В высококонцентрированная система на основе баритовой промышленности с Na_2SO_4 насыщенными водными растворами И BaS В качестве реагентов. Микропузырьки создавались мембранным микрореактором для диспергирования. Характеристики перемешивания характеризовали с использованием параллельных конкурирующих реакций. Было определено влияние различных рабочих параметров на наночастицы и оптимизированы условия реакции. Результаты показали, что эффективность перемешивания можно улучшить за счет введения микропузырьков. Наночастицы BaSO₄ получали контролируемым образом с относительно узким распределением по размерам. Средний размер частиц удалось сократить до приблизительно 40 нанометров. В исследовании был установлен безразмерный параметр для процесса микропузырькового перемешивания и разработана модель для предсказания размеров частиц сульфата бария (BaSO4). Теоретические расчеты, основанные на данной модели, продемонстрировали хорошее совпадение с экспериментальными результатами, что подтверждает ее точность и эффективность в контроле размеров частиц.

В работе [209] успешно осуществлен синтез субмикронных частиц сульфата бария (BaSO₄) с применением метода химического осаждения. Основное внимание уделено исследованию влияния pH и добавок на размер и морфологию кристаллов BaSO₄. В качестве модификаторов роста
кристаллов использовались полиакриловая кислота, поливинилсульфоновая кислота и этилендиаминтетрауксусная кислота. Кристаллы BaSO₄ были подвергнуты характеризации с использованием сканирующей электронной микроскопии, рентгеновской дифракции и инфракрасного резонанса с преобразованием Фурье. Полученные результаты свидетельствуют о успешном синтезе субмикронных частиц BaSO₄, причем размер этих частиц был эффективно контролируем в ходе эксперимента. Экспериментальные исследования также выявили значительное влияние концентрации добавок и рН на морфологию и размер сульфата бария.

Процесс осаждения является перспективным производства ДЛЯ наночастиц сульфата бария ввиду его быстрой эффективности, высокой экономической эффективности и простоты. В данном исследовании [210] наночастицы сульфата бария были получены путем осаждения хлорида бария и сульфата натрия в реакционной среде, состоящей из воды и бензола. Тщательно изучено воздействие объемного процентного содержания бензола в водной среде на полученные наночастицы сульфата бария. Продукты были характеризованы с использованием методов дифракции рентгеновских лучей (XRD), полевой эмиссионной сканирующей электронной микроскопии (FESEM) с использованием энергодисперсионного рентгеновского спектра (EDX) и инфракрасной спектроскопии с преобразованием Фурье (FTIR). Синтезированные наночастицы обладают хорошей дисперсией, орторомбической структурой и сферической морфологией, при этом их средний размер составляет 35,9 нм. На основе проведенных исследований сделан вывод о том, что использование смешанного растворителя водабензол подавляет рост зародышей сульфата бария.

Неопределённость в агломерации частиц, особенно при высоких концентрациях суспензий субмикронных и наночастиц, может существенно изменять их физические свойства. Для эффективного контроля над этим побочным процессом важно глубокое понимание кинетики и механизмов агломерации. Знание этих аспектов позволяет оптимизировать условия

синтеза и предотвратить или уменьшить агломерацию, что критично для обеспечения стабильности и предсказуемости характеристик частиц в различных приложениях. Для получения этой кинетики предлагается новый метод измерения, позволяющий контролировать поведение агломерации субмикронных частиц сульфата бария при сдвиге при прохождении через узкую трубу [211]. Время пребывания, то есть время агломерации, варьировалось в зависимости от длины трубы при постоянной скорости потока суспензии. Перед измерением суспензию частиц стабилизировали быстрым смешиванием с диспергирующим агентом. Основываясь на измеренном распределении агломератов по размерам, агломерационное поведение обсуждается с точки зрения нетурбулентного потока в узкой трубе. Агломерацию сульфата бария в простом потоке сдвига можно субмикронном масштабе. контролировать В Эффект стерической стабилизации для уменьшения или предотвращения агломерации был показан и количественно оценен. Механизм управления агломерацией в трубе определяется на основании гидродинамических характеристик. Было обнаружено, что вероятность адгезии уменьшается с увеличением размера агломерата.

В работе [212] Наночастицы сульфата бария размером 85 нм получали смешиванием растворов $BaCl_2$ and NH_4SO_4 растворены в смеси вода-этанол разной концентрации, затем проводилось выпаривание жидкой среды. Метод микроэмульсии обеспечивает хорошее микроперемешивание в процессе осаждения. Процесс осаждения микроэмульсии, используемый в этой работе [213], собой лабораторный масштаб представляет И хорошо зарекомендовавший себя метод производства осаждения наночастиц. В последнее время синтез неорганических наночастиц вызвал большой интерес в связи с их потенциальным использованием в различных областях. BaSO₄ сферической Наночастицы формы co структурой барита синтезированы в микроэмульсии Твин-20/н-гексанол/керосин/вода-водамасло путем смешивания отдельно приготовленных BaCl₂ и Na₂SO₄

Для характеристики частиц использовались различные соответственно. аналитические методы, включая инфракрасную спектроскопию С преобразованием Фурье (FTIR), рентгеновскую дифракцию (XRD), сканирующую электронную микроскопию (SEM), энергодисперсионный спектральный анализ (EDS) и определение размера частиц (PSA). Эти методы позволили всесторонне изучить физико-химические свойства частиц, включая их структурные особенности, морфологию, химический состав и размерное распределение. Результаты XRD, SEM и PSA показывают, что размер частиц находился в диапазоне 50-70 нм.

Здесь мы впервые [214], представляем новый и эффективный метод стабильных приготовления прозрачных И нанодисперсий $BaSO_4$ С относительно небольшим размером частиц от 10 до 17 нм с использованием метода осаждения во вращающемся насадочном слое (ВНС) с последующей модификационной обработкой с использованием стеариновой кислоты. По сравнению с BaSO₄, полученным в традиционном резервуаре с мешалкой, продукт, приготовленный с использованием ВНС, имеет гораздо меньший размер частиц и более узкое распределение по размерам. Что еще более важно, с помощью RPB время реакции можно значительно сократить с 20 минут до 18 секунд. Кроме того, можно легко изготовить прозрачные BaSO₄-поливинилбутираль нанокомпозитные пленки с хорошими характеристиками экранирования рентгеновских лучей. Мы считаем, что стабильные нанодисперсии BaSO₄ могут иметь широкий спектр применений для создания прозрачных композиционных материалов и покрытий с защитой от рентгеновского излучения для будущих исследований. В этом исследовании [215] представлен новый метод контролируемого получения наночастиц BaSO₄ путем введения микропузырьков в реакционную систему. Для приготовления агрегированных частиц BaSO₄ с высокой однородностью наночастиц [216] был размеров первичных авторами разработан высокопроизводительный (105,5 г/ч) четырехступенчатый микрореактор с

асимметричной колебательной обратной связью, использующий механизм хаотического перемешивания.

BaSO₄ Для приготовления агрегированных частиц с высокой однородностью размеров первичных наночастиц был разработан высокопроизводительный четырехступенчатый микрореактор с асимметричной колебательной обратной связью, использующий механизм перемешивания [217]. Трехмерное хаотического нестационарное моделирование показало, что хаотическое перемешивание может быть вызвано тремя уникальными вторичными потоками (т.е. вихрем, рециркуляцией и колебанием), а механизм колебаний жидкости был подробно исследован. Моделирование И экспериментальные данные демонстрируют, что возможно добиться почти полного смешивания до молекулярного уровня, что позволяет получать наночастицы сульфата бария (BaSO4) с узким распределением по размерам. Установлено, что средний размер этих первичных частиц можно регулировать в диапазоне от 23 до 109 нанометров, что подтверждается методами микроскопии. В работе [218] для BaSO4 биологические синтеза частиц использовались молекулы, экстрагированные из четырех видов фруктов и овощей — киви, апельсинов, томатов и моркови. Эти экстракты служили матрицами для формирования частиц сульфата бария, что подчеркивает возможности применения натуральных биомолекул в процессах синтеза наноматериалов. Результаты показали, что с экстрактами киви были получены листовидные кристаллы барита BaSO₄ с зубчатыми краями; из экстрактов томата получали шиповидные сферические кристаллы сульфата бария диаметром 2-4 микрометра; с экстрактами апельсина получены стержнеобразные или квазисферические кристаллы BaSO₄ размером ОТ нескольких сотен нанометров до нескольких микрометров; а квазисферические нанокристаллы BaSO₄ были получены с экстрактами моркови. Также обсуждается механизм образования BaSO₄, показывающий, что белки, углеводы, витамины и органические кислоты в четырех видах фруктов и овощей ΜΟΓΥΤ

обеспечивать центры зародышеобразования, контролируя рост кристаллов BaSO₄ с различной морфологией.

Таблица 6. Сопоставления методов получения и размеров частиц сульфата бария

Методы получения BaSO ₄	Размер	ссылка
	частиц,	
	НМ	
с применением	20-35	Метод, использованный в
полисульфидов		диссертации
Осаждение из Ва(NO ₃) ₂ в	30-55	American Journal of Nanotechnology
присутствие		2 (1): 106-111, 2011; DOI: <u>10.3844 /</u>
водорастворимого		<u>ajnsp.2011.106.111</u>
органического		
поликарбоксильного полимера		
в качестве модифицирующего		
агента		
BaCl ₂ +Na ₂ SO ₄	100	Journal of Colloid and Interface
		Science 269 (2004) 341–353 DOI:
		10.1016/j.jcis.2003.07.047
Микроэмульсионный метод	6-28	Chemical Engineering Science v.60
		(2005) p.3373–33813 DOI:
		10.1016/j.ces.2004.12.050
Осаждение из Ва (NO ₃) ₂ в	30–50	American Journal of Nanotechnology
присутствие	НМ	2 (1): 106-111, 2011.
водорастворимого		DOI: 10.3844/ajnsp.2011.106.111
органического		
поликарбоксильного полимера		
в качестве модифицирующего		
агента		

Измельчением в мельнице	40 nm	Powder Technology 2003, v.132
		p.64-73.
		DOI: 10.1016/S0032-5910(03)00042-
		1
Смешиванием BaCl ₂ (aq) +	100-	Cryst. Res.Technol. 51, № 6, 393-
Na_2SO_4 (aq) $\rightarrow BaSO_4$ (s) +	300 нм	399 (2016) / DOI
2NaCl с добавками полимеров		10.1002/crat20160046
$BaCl_2$ (aq) + Na_2SO_4 (aq) \rightarrow	35,9 нм	Advanced Materials Letters 3(1):29-
BaSO ₄ (s) + 2NaCl в среде		33 DOI: <u>10.5185 / amlett.2011.4240</u>
вода-бензол		
BaCl ₂ and NH ₄ SO ₄ растворены	85-84	Journal of Ceramic Processing
в смеси вода-этанол разной	НМ	Research. Vol. 12, No. 2, pp.
концентрации затем		173~175 (2011)
проводилось выпаривание		https://www.researchgate.net/publicat
		ion/267244876
Микроэмульсионным методом	50-70	Adv. Appl. Res., 2010, 1 (3): 197-
смешением $BaCl_2$ и Na_2SO_4 с	HM	204
использованием ПАВ (Твин-		www.pelagiaresearchlibrary
20).		
Измельчением ВаSO ₄ в	10 - 17	Frontiers of chemical Science and
специальной мельнице	nm	Engineering 2021, 15 , 902-921.
		https://doi.org/10.1007/s11705-020-
		1985-у
получали наночастицы BaSO ₄	40 нм	Powder Technology 247:60–68 DOI:
путем введения		10.1016/j.powtec.2013.06.030
микропузырьков в		
реакционную систему.		
Получали реакцией: BaCl ₂ +	10 мкм	MATEC Web of Conferences 159,
$Na_2SO_4 \rightarrow BaSO_4 + 2NaCl$		01056 (2018) IJCAET & ISAMPE

		2017
		https://doi.org/10.1051/matecconf/20
		1815901056
с использованием	23-109	A High-Throughput Chaotic
четырехступенчатого	НМ	Advection Microreactor for
микрореактора с		Preparation of Uniform and
асимметричной колебательной		Aggregated BaSO4 Nanoparticles
обратной связью		AIChE Journal 202268(10)
		DOI: <u>10.1002/aic.17810</u>
с использованием «зеленой	2-4	MATEC Web of Conferences, 02017
технологии»	МКМ	(2016) DOI:
		10.1051/matecconf/20166 SMAE
		2016

1.3.3 Наночастицы сульфаты стронция

Сульфат стронция (SrSO₄) представляет собой соль, образованную кислотным остатком серной кислоты и стронция с валентностью равной двум. Его формула - SrSO₄. В естественной среде сульфат стронция часто встречается в виде минерала, известного как целестин, что в переводе означает "небесный". Минерал был впервые обнаружен в XVIII веке на Сицилии.

Кристаллы целестина имеют форму крупных пластин и призм, а также могут принимать форму различных столбиков. Следует отметить, что стронций, как элемент, не обладает активной реакционной способностью при взаимодействии с концентрированными кислотами, однако проявляет активность при взаимодействии с разбавленными кислотами, включая слабые.

Для получения сульфата стронция обычно используется разбавленная серная кислота. Это соединение является труднорастворимым, однако его растворимость может повышаться при добавлении ионов хлора, что известно, как "солевой эффект". Этот эффект объясняется тем, что растворимость малорастворимых веществ, таких как сульфат стронция, увеличивается при добавлении соли, не имеющей общих ионов с данным труднорастворимым соединением.

В работе [219] были получены ромбоэдрические частицы $SrSO_4$ размером 12-17 мкм путем высаживания из водного раствора $SrCl_2$ с постепенным добавлением разбавленной серной кислоты при 70°С. Исследовано осаждение и рост кристаллов $SrSO_4$ размером около 20 мкм из перенасыщенных водных растворов $SrSO_4$ [220]. В этом исследовании в диапазонах пересыщений в водных растворах выявлено, что рост кристаллов контролируется механизмом гетерогенной нуклеации.

работе [221] была приготовлена нанокристаллическая В форма (Ba₀,88Sr₀,12SO₄) 99,8%: Eu0,2% (B88) методом химического соосаждения [222], а микрокристаллический порошок образца В88 был приготовлен методом, описанным Мадхусудананом и Лакшмананом [223]. Реагенты BaCl₂, SrCl₂ и EuCl₃ (0,2 мол. %) смешивали в стехиометрических соотношениях и растворяли в деионизированной воде. Затем по каплям добавляли концентрированную серную кислоту $(H_2SO_4,$ 98%) при постоянном перемешивании до полного осаждения. Полученный осадок фильтровали и промывали дистиллированной водой. Нано- и микротвердые растворы были получены после сушки в печи при 363 К в течение 12 часов. Полученные нанокристаллические и микрокристаллические порошки были подвергнуты отжигу при 1123 К в течение 1 часа, за последующим закалом до комнатной температуры. Образцы нанокристаллического порошка В88 обладают свойствами повторного использования, что делает ИХ перспективными для применения в дозиметрических измерениях. В работе [224] были исследованы термодинамические и кинетические аспекты статического осаждения сульфата кальция как отдельной соли и В

присутствии сульфата стронция (SrSO₄) в качестве сокристаллизующего агента при температуре 30°С.

Результаты показывают, что гетерогенное зарождение кристаллов и рост смешанных солей может происходить при совместном осаждении. Метод синтеза включает осаждение, при котором хлориды бария и стронция добавляются в раствор сульфата натрия. В ходе эксперимента используются растворы додецилсульфата бария и додецилсульфата стронция, где хлориды металлов комбинируются с додецилсульфатом натрия. При последующем термическом разложении получаются наночастицы сульфата бария и стронция с различными размерами и морфологией. В частности, размер частиц сульфата бария варьируется от 100 до 150 нанометров, а размер частиц сульфата стронция — от 100 до 140 нанометров [225]. Простой способ получения водного раствора был использован для синтеза нанокристаллов твердого раствора $Ba_xSr_{1-x}SO_4$ ($0 \le x \le 1$) при комнатной температуре без использования каких-либо поверхностно-активных веществ или темплатов [226]. Нанокристаллы имеют орторомбическую структуру И эллипсоидальную форму со средним размером 80-100 нм. Параметры решетки кристаллов твердого раствора Ba_xSr_{1 – x}SO₄. увеличиваются с увеличением значения х. Однако они не полностью совпадают с законом Вегарда, который указывает, что полученные продукты не являются растворами. Нанокристаллы идеальными твердыми имеют отличную термическую стабильность от температуры окружающей среды до 1300 ° С со структурным переходом орторомбической фазы до кубической фазу при температуре около 1111°С.

Описаны наночастицы с кристаллической решёткой, структура которых в основном представляет собой Z-сульфат (где Z может быть магнием (Mg), кальцием (Ca), стронцием (Sr) или барием (Ba)). роцесс синтеза наночастиц с использованием неводных растворителей. Эти растворители, такие как (ДМСО), обладают многоатомные спирты И диметилсульфоксид координационными свойствами, что позволяет контролировать рост

кристаллов наночастиц. Полученные наночастицы имеют размер в пределах от 0,2 до 50 нанометров и проявляют способность хорошо диспергироваться в воде. Это свидетельствует о том, что наночастицы обладают хорошей стабильностью в водной среде [227]. В [228] использовали аналитически $SrCl_2•6H_2O$, Na_2SO_4 чистые И этанол, a также использовалась деионизированная вода. В качестве исходных растворов готовили растворы Na₂SO₄ (1,0 M) и SrCl₂ (1,0 M) соответственно. К раствору SrCl₂ (1,0 M) при перемешивании добавляли соответствующее количество этанола с образованием гомогенного водного раствора. Раствор Na₂SO₄ быстро добавляли в смешанный водный раствор SrCl₂ и этанола под интенсивным давлением. Наностержни SrSO₄, полученные при R = 1:2 и R = 1:1, имеют аналогичную игольчатую морфологию диаметром от 70 до 150 нм и средней длиной 0,9 мкм.

Таблица 7. Сопоставления методов получения и размеров частиц сульфатов стронция

Методы получения	Размер	ссылка
SrSO ₄	частиц,	
с применением	20-30	Метод, использованный в диссертации
полисульфидов	НМ	
из водного	12-17	J. Phys. Chem. 1969, 73, 6, 1735–1740
раствора SrCl ₂ путем	МКМ	httpi.org/10.1021s://do/j100726a017
добавления по каплям		
разбавленной серной		
кислоты при 70С		
Осаждение из	20 мкм	Crystal Research and Technology 1984, 19 (4),
перенасыщенных		477-490.
водных растворов SrSO ₄		https://doi.org/10.1002/crat.2170190407
Методом	10 мкм	Surfaces and Interfaces, 22, 100875. doi:
высаливания с		10.1016/j.surfin.2020.100875

помощью NaCl		
осаждение растворов		
SrSO ₄		
Реакцией между	100-	Inorganic and Nano-Metal
BaCl ₂ + Na ₂ SO ₄ в	140	Chemistry 2019, 49 (4), 93-99.
присутствии додецил		https://doi.org/10.1080/24701556.2019.1603162
сульфата		
SrCl ₂ ·6H ₂ O+	80–100	Bull. Mater. Sci., Vol. 32, No. 2, April 2009, pp.
Na ₂ SO ₄ в присутствии		149–153. https://doi.org/10.1007/s12034-009-
этанола		0022-z
наночастицы	0,2-50	MATEC Web of Conferences, 02017 (2016)
получают путем синтеза	HM	DOI: 10.1051/matecconf/20166 SMAE
в многоатомном спирте,		2016
выбранном из		
глицерина,		
этиленгликоля и		
полиэтиленгликолей		
В раствор Na ₂ SO ₄	70 до	Materials Letters Volume 62, Issue 29, 30
быстро добавляли в	150 нм	November 2008, Pages 4417-4420.
смешанный водный		https://doi.org/10.1016/j.matlet.2008.07.053
раствор SrCl ₂ и этанола		
под интенсивным		
давлением		

1.4.Фосфаты кальция,бария и стронция

Ортофосфат кальция, известный также как трикальцийфосфат (Ca₃(PO₄)₂), представляет собой неорганическое соединение, включающее кальций и ортофосфорную кислоту. Это соединение относится к группе фосфатов кальция, которые различаются по соотношению кальция (Ca) и

фосфора (Р), а также по степени гидратации и уровню рН. Существует несколько типов фосфатов кальция, их структуры и свойства могут варьироваться в зависимости от конкретного вида.

Все фосфаты кальция, включая Са₃(РО₄)₂, гидроксиапатит и многие другие кристаллические формы, а также аморфный фосфат кальция, относятся к группе фосфатсодержащих соединений кальция. Внешне они имеют однотонный цвет с легкими сероватыми оттенками. Эти соединения могут быть зернистыми, мелкими, кристаллическими и иметь размеры частиц около микрометров. Кристаллические формы фосфата кальция обычно обладают различной структурой и свойствами, что определяется конкретным типом фосфата и условиями синтеза или образования. Интерес к этим соединениям значителен потому что они являются биосовместимыми материалами костей. В структуре костной ткани наиболее близкими и перспективными для практических применений являются дикальцийфосфат $(CaHPO_4 \cdot 2H_2O),$ (CaO), дигидрат оксид кальшия гидроксиапатит (Ca₁₀(PO₄)₆(OH)₂) и аморфный фосфат кальция (Ca₃(PO₄)₂). Эти фосфаты играют ключевую роль в структуре и функции костной ткани, что делает их значимыми для медицинских и биоматериаловедческих исследований [229]. Фосфаты кальция биосовместимы, биоактивны И термодинамически стабильны в биологических жидкостях, что делает их привлекательным материалом для широкого спектра приложений в биомедицинской сфере. Значительные усилия были затрачено на синтезе частиц этого материала с целью точного контроля размера и морфологии, пористости и площади удельной поверхности. Их широко используют в качестве имплантата для регенерации костной ткани, как покрытие для металлических имплантатов и с контролируемым высвобождением. Кроме того, фосфаты кальция широко применяется в сельском хозяйстве как удобрение, а также для подкормки скота, в промышленности для производства абразивов, керамики и стекла.

Существует множество способов получения или образования фосфата кальция. Одним из распространенных методов является способ, когда на гидроокись кальция воздействуют ортофосфорной кислотой:

 $3Ca (OH)_2 + 2H_3PO_4 = Ca_3 (PO_4)_2 + 6H_2O.$

Второй метод заключается в смешивании двух солей: нитрата кальция Ca(NO₃)₂) и гидрофосфата аммония (NH₄)₂HPO₄, предварительно растворенный в абсолютном спирте и воде соответственно

 $3Ca(NO_3)_2 + 2(NH_4)_2HPO_4 = Ca_3(PO_4)_2 + 4NaNO_3 + 2HNO_3.$

В исследованиях [230, 231] для синтеза наночастиц фосфата кальция использовался следующий метод. В реакционный сосуд, содержащий водный раствор стабилизатора, такого как Tween 80 или цитрат натрия, вводился водный раствор CaCl2 с концентрацией 0,05 М. После этого смесь подвергалась нагреву до 40°C для завершения процесса синтеза наночастиц. При постоянном перемешивании со скоростью 350 об/мин и использовании перистальтического насоса (2 мл/мин) в раствор вводили водный раствор, содержащий 0,03 М Na₂HPO₄ и 0,08 М NaOH. Сначала суспензия оставляется при комнатной температуре на 24 часа, что позволяет завершить процесс старения частиц, улучшая их свойства. После этого суспензия фильтруется для удаления нерастворённых частиц и крупных примесей. Затем она многократно промывается дистиллированной водой с целью устранения остаточных примесей и нежелательных веществ, что обеспечивает чистоту и высокое качество полученных наночастиц.

Стабилизация наночастиц посредством использования цитрата натрия способствовала формированию частиц размером около 20-30 нм. В результате агрегации частицы формируют наностержни длиной от 80 до 150 нанометров. Эти наностержни затем самоорганизуются в более крупные структуры, называемые сфероидальными агломератами, размер которых достигает нескольких микрометров. При повышении концентрации цитрата натрия до 0,3 М удалось получить наночастицы аналогичного размера (20-30 нм), которые оставались диспергированными и не проявляли тенденции к агрегации. Такой эффект объясняется электростатической стабилизацией, обусловленной адсорбцией цитрат-ионов на поверхности наночастиц.

Метод синтеза наночастиц фосфата кальция, описанном в статье [232]. Основное внимание уделяется тому, что процесс является быстрым, экономичным и эффективным. Синтез проводился методом влажного химического осаждения, при этом использовались как механическое, так и магнитное перемешивание для достижения равномерного смешивания реагентов процесса осаждения. Микроскопические И улучшения исследования показывают, что механическое перемешивание обеспечивает около 27% частиц с диаметром 15-20 нм, в то время как магнитное перемешивание дает 31,1%. Размеры наночастиц, синтезированных обоими методами, варьировались в диапазоне от 10 45 нм, при этом до преобладающий размер составлял 15 20 HM. Использование OT до механического перемешивания процессе В синтеза нанокомпозита значительно улучшает его характеристики. В частности, механическое перемешивание помогает добиться более равномерного распределения размеров частиц, что предотвращает их объединение в агрегации. Это, в свою очередь, увеличивает стабильность коллоидных частиц в водной среде. Таким образом, использование механического перемешивания положительно влияет на стабильность и качество получаемого нанокомпозита, как показано в анализе данных. Авторы считают, что описанный здесь процесс может быть масштабирован для производства фосфата кальция, который имеет коммерческий потенциал в качестве наноудобрение для сельского хозяйства.

В работе [233] наночастицы CaP были получены методом влажного химического осаждения с использованием трех различные подходы и были охарактеризованы и количественно оценены с точки зрения их состава. Применялись различные температуры осаждения, старения и сушки, изучалось влияние условий на соотношение, качество и спекание крупных агломератов.

Много работ посвящено получению аморфного фосфата кальция, например, в исследовании [234] усилия авторов сосредоточены на получении аморфного фосфата кальция, выяснено что на образование продукта влияют рН, удельная поверхность и соотношение Са/Р. Авторы считают, что все способы синтеза имеют преимущества и недостатки, и выбор метода должен зависеть от результата, которого нужно достичь, установлено что синтез в растворах является предпочтительным. В статье [235] описан процесс синтеза аморфных фосфатов кальция (АСР), который проводился при низкой температуре с использованием полиэтиленгликоля в качестве стабилизатора. Исследовались различные факторы, влияющие на свойства осадков фосфата кальция, включая время старения, значение рН, тип реагента и начальное атомное соотношение Са/Р. Эти параметры анализировались для понимания их влияния на фазовый состав и химический состав осадков фосфата кальция. Было обнаружено что АСР может быть стабилизирован введением полиэтиленгликоля в маточный раствор более 18 ч при 5°С и Са/Р атомные отношения осадков АСР могут быть скорректированы от 1,33 до 1,50 путем регулирования значений pH и начальных значений Ca/P атомных отношений. Получены однородные сферические частицы АСР размером 60 ~ 70 нм в Аморфный фосфат кальция (АСФ) синтезировали в водном диаметре. растворе при комнатной температуре с использованием циклодекстринов [236]. наружено что можно стабилизировать наночастицы АСФ имеет начальный размер частиц менее 40 нм, молярное соотношение Ca/P 1,67.

В работе [237] магнитная наночастица Ва₃₀(PO₄)₂/ Fe₃O₄ (BPFN) была приготовлена, охарактеризована и разработана как недорогой адсорбент для малахитовой зелени (MG) из водного раствора. Были исследованы такие факторы, как температура адсорбции, рН раствора, дозировка адсорбента, кинетика и изотермы адсорбции. Максимальная пропускная способность адсорбции, полученная в работе, была 1639mgg ⁻¹при 45°C этой И рН=6. Процесс адсорбции соответствовал кинетической модели псевдопервого порядка и модели изотермы Ленгмюра. Показано, что процесс

адсорбции был вызван электростатическим притяжением, взаимодействием между основанием Льюиса N (CH₃)₂ в MG и Ба-сайты кислоты Льюиса в BPFN. Кроме того, BPFN можно легко регенерировать с помощью магнита, а адсорбционная способность сохраняется на уровне 70% после пяти циклов. Настоящее исследование предполагает, что BPFN обладает высоким потенциалом удаления MG из сточных вод.

В работе [238] магнитные наночастицы фосфата бария с внедренным оксидом железа наночастицы, Fe₃O₄ @ Ba₃ (PO₄)₂ (обозначенные FBP), были получены с помощью простого и недорогого двухэтапного процесса и использовались для очистки воды, сильно загрязненной Е. coli (начальная концентрация 5 × 108 KOE / мл). FBP показал высокую эффективность удаления (97%) в течение 30 минут при 25 оС и pH 6. FBP является перспективным материалом для эффективной очистки воды с высокой 38 микробное заражение.

Наноразмерные порошки гидроксиапатита с дефицитом кальция (CDHA) со средним размером частиц менее 100 нм были получены методом соосаждения при низкой температуре [239] Нагревательный эффект микроволнового излучения приводил к увеличению содержания ионов Са концентрации и снизил дефицит кальция, который повлиял на чистоту β-TCP, несмотря на его способность уменьшать размер частиц.

Применение нано-цеолита фосфора привело к самым высоким значениям составляющих выхода. в том числе 1,89, 3,48, 1,46 тонны с кормом-1 и 53,2% для стручков, соломы, семян культур и содержания масла, соответственно [240]. Это исследование пришло к выводу о том, что хорошо организованное использование удобрений может быть улучшено за счет использования наноисточников, поэтому опасность загрязнения может быть уменьшена.

В данной работе [241] наноразмерные стронций содержащие частицы трикальцийфосфата (SrTCP) с различными содержанием стронция получали методом соосаждения на бане с ледяной водой и затем прокаливанием при

800°С. Результаты показывают, что относительные отношения Sr / (Sr + Ca) согласуются с количеством стронция, добавленного в исходный раствор, но больше расчетного молярного процента. Микрофотографии ПЭМ демонстрируют размер Размер частиц SrTCP составляет около 150-400 нм, а у чистой частицы TCP составляет около 500 нм.

Новый метод, основанный на сорбции иммобилизованного нанобария титаната стронция на силикагеле G (GBST) к ионам тяжелых металлов, включая Mn (II), Cu²⁺, Ni²⁺, Co²⁺ и Ag⁺, в сточных водах [242]. Влияние параметров процесса, таких как pH, время контакта, условия регенерации и были исследованы эффекты общих сосуществующих ионов на захват ионов. Результаты исследования, касающиеся способности удерживания различных ионов при определённом диапазоне pH. Установлено, что ионы марганца, меди, никеля, кобальта и серебра могут эффективно адсорбироваться при pH от 7 до 9. Также приведены конкретные значения адсорбироваться при pH от 7 до 9. Также приведены конкретные в миллиграммах на грамм материала GBST, что демонстрирует степень эффективности его адсорбции для каждого иона. Адсорбированные на сорбенте ионы тяжелых металлов могут быть полностью элюированы разбавленной HNO3. решения. GBST можно использовать как эффективный адсорбент для очистки сточных вод. загрязнены ионами марганца, меди, никеля, кобальта и серебра.

В исследовании был изготовлен этом новый ВИД наноструктурированного фосфата бария, который использовался в качестве контрастного вещества для ex vivo микро-КТ-визуализации кровеносных сосудов в мозге мышей [243]. Наноструктурированный фосфат бария был синтезирован простым методом влажного осаждения с использованием Ва $(NO_3)_2$ $(NH_4)_2HPO_4$ И В качестве исходных материалов. Физико-химические свойства фосфата бария были подвергнуты характеризации с использованием сканирующей электронной микроскопии, просвечивающей электронной микроскопии, рентгеновской дифракции, инфракрасной спектроскопии с преобразованием Фурье и термического

анализа. Изображения испытаний на животных продемонстрировали, что использование наноструктурированного фосфата бария В качестве контрастного вещества при визуализации Місго-СТ дает резкие изображения контрастом. На изображении отличным мозга мышей отчетливо с наблюдались как основные сосуды, так и микрососуды. В целом, результаты фосфат показывают, что наноструктурированный бария является потенциальным и полезным сосудосодержащим контрастным агентом для микрокомпьютерной томографии.

В статье [244] описан процесс синтеза наночастиц β-трикальцийфосфата (β-ТСР), который проводился с использованием смеси этанола и воды в качестве растворителей. В результате этого процесса были получены наночастицы с характерной стержнеобразной формой, с диаметром около 55 нм и длиной 120 нм. Средний размер частиц β-ТСР, как установлено в исследовании, составил 72,7 нм. Эти данные указывают на то, что с помощью предложенного метода можно успешно синтезировать наноразмерные частицы β-TCP c заданными физико-химическими характеристиками. Установлено, β-трикальцийфосфат что нановызывает снижение жизнеспособности клеток гепатоцеллюлярной карциномы человека В зависимости от времени и дозы. Представленные здесь результаты могут предоставить ценные справочные данные для руководства разработка в будущем носителей противоопухолевых лекарств на основе нано-β-ТСР и терапевтических систем.

Гибридный нанопорошок фосфата стронция (сокращенно ФС) был приготовлен гидротермальным методом и систематически исследовано удаление Pb²⁺ и малахитового зеленого красителя ФС из водного раствора [245]. Эксперименты проводились в пакетной системе для оптимизации рабочие переменные, такие как pH раствора, температура, дозировка адсорбента и время контакта. Адсорбционная емкость ФС составила 829 мг г-1 и 763 мг г-1 для Pb2 + и малахитового зеленого красителя (C0 = 1000 мг л-1, при pH 3,5, 45 °C, время реакции 2 ч) соответственно. Более того, ФС

может быть повторно используется в течение пяти циклов с минимальной потерей работоспособности (20-30%). Это исследование показало, что нанопорошок ФС может быть легко производится по низкой цене и потенциально может использоваться как эффективный материал для удаления обоих Pb²⁺ и малахитового зеленого красителя в водном растворе.

Таблица 8. Сопоставления методов получения и размеров частиц фосфата кальция

Методы получения Са ₃ (PO ₄)	Размер частиц, нм	ссылка
с применением полисульфидов	25	Метод, использованный в диссертации
CaCl ₂ + Na ₂ HPO ₄ + цитрат натрия	20-30	Успехи в химии и химической технологии. ТОМ XXVIII. 2015. № 6 с.128-129
механическое измельчение	15 - 20	Revista Mexicana de Ingeniería Química Vol. 19, No. 1 (2020) 285-298. DOI: <u>https://doi.org/10.24275/rmiq/Mat523</u>
H ₃ PO ₄ + (Ca(OH) ₂ в присутствие полиэтиленгликоля	60 ~ 70	J Mater Sci: Mater Med (2007) 18:2303– 2308 DOI 10.1007/s10856-007-3132-4
Синтез с использованием циклодекстрина	40	Materials Research Bulletin 42 (2007) 820–827

Глава 2 Методы, использованные в работе

2.1. Измерения размеров частиц с помощью лазерного анализатора

Для определения размеров частиц использовался лазерный анализатор размеров частиц Shimadzu SALD-7101 от компании Shimadzu. Этот прибор применяет метод дифракции и рассеивания лазерного излучения для

измерения размеров частиц в диапазоне от 10 нм до 300 мкм. Минимальное время, необходимое для анализа, составляет 1 секунда (рис. 1).

Лазерный анализатор позволяет проводить измерения в реальном времени, и каждые 4 секунды на экране монитора отображаются интегральные и дифференциальные распределения размеров частиц. Это позволяет отслеживать процессы изменения размеров частиц, такие как агрегация или разрушение агломератов в дисперсиях.

В процессе измерений кювета анализатора объемом 10 мл наполнялась жидкой средой и подвергалась воздействию лазерного излучения. При наличии частиц в кювете наблюдалось рассеяние света (дифракция). По результатам измерений интенсивности рассеянного света в различных направлениях проводился расчет интегральных и дифференциальных распределений частиц по размерам.

Рис. 1 Лазерный анализатор размеров частиц фирмы Шимадзу (SALD-7101 Shimadzu)

Измерения основаны на явлении рассеивания света частицами. Математически это описывается уравнением Рэлея. Процесс непосредственного измерения осуществляется с помощью программы Wing-1. В этой программе можно в режиме реального времени наблюдать распределение частиц по размерам и интенсивности рассеянного света. Для обработки данных применяется программа Wing-2. В ней результаты измерений выдаются в виде интегральных и дифференциальных кривых. Пример результата обработки экспериментальных данных приведен на рис. 2.

Рис. 2. Интегральная и дифференциальная кривые распределения частиц по размерам (о - интегральное распределение, о - дифференциальное распределение)

В данном исследовании измерения размеров частиц выполнялись в наполненной водой кювете анализатора. Для проведения измерений требовалось добавить определенное количество порошка В кювету. измерении размеров карбонатов Например, при частиц серы или 0.03 использовали каждого вещества, после чего проводилось Г перемешивание дисперсии. При измерении размеров гидрофобных частиц в водной среде их предварительно обрабатывали в спирте (этиловом или изопропиловом), а затем вводили в кювету перед измерениями.

2.2. Измерения на сканирующем зондовом микроскопе Solver PRO-М

Сканирующие зондовые микроскопы (СЗМ) являются стационарными автоматизированными системами, которые предназначены для проведения широкого спектра измерений с высокой точностью. Эти приборы могут функционировать в различных режимах, включая сканирующий туннельный микроскоп (СТМ) и атомно-силовой микроскоп (АСМ). Сканирующий туннельный микроскоп (СТМ) позволяет исследовать поверхности на атомном уровне, используя туннельный эффект для получения информации о топографии поверхности. Атомно-силовой микроскоп (ACM), в свою очередь, измеряет силы взаимодействия между зондом и образцом, что позволяет изучать не только поверхность, но и механические свойства материалов. Благодаря своей универсальности и возможности получения данных с высокой разрешающей способностью, СЗМ используются в различных областях науки и техники для анализа и исследования материалов на наноуровне. Используя разнообразные методики зондовой микроскопии, СЗМ обеспечивают высокое разрешение при исследовании морфологии и физических свойств поверхности на наноразмерном уровне, что позволяет проводить детальный анализ и визуализацию структурных особенностей образцов.

Компоненты СЗМ включают в себя измерительные головки для проведения различных измерений, электронный блок и управляющий компьютер.

В режиме ACM в качестве зонда используется чувствительный элемент, известный как кантилевер. Кантилевер представляет собой кремниевый монокристалл с балочной структурой, на котором находится остроконечное острие в виде микроиглы. Этот элемент применяется для измерений сил взаимодействия на атомном уровне.

В режиме сканирующего туннельного микроскопа (СТМ) в качестве зонда применяется металлическая игла, изготовленная из платиновых сплавов. Эта игла обеспечивает высокую точность измерений благодаря своей способности создавать туннельный ток, который зависит от расстояния между зондом и образцом. Платиновые сплавы выбираются из-за их свойств. электрических И механических отличных ЧТО позволяет поддерживать стабильность и долговечность зонда при проведении измерений на атомном уровне. Этот тип зонда позволяет измерять туннельный ток между зондом и поверхностью образца, что используется для получения высокоразрешенных изображений атомарных структур.

Такие микроскопы обладают высокой точностью и позволяют исследовать микро- и наноструктуры на поверхности образцов.

Сканирующие зондовые микроскопы (СЗМ) обладают возможностью выполнения сканирования как зондом, так и образцом в разнообразных атмосферные, газовые И жидкостные средах, включая условия. процесс контролируется с помощью Измерительный контроллера И персонального компьютера, оснащённого специализированным программным обеспечением, что позволяет проводить высокоточные и адаптивные исследования. Такая система обеспечивает детальный анализ поверхностных структур и характеристик образцов на наноуровне.

Управляющие сигналы от контроллера СЗМ передаются непосредственно в измерительную головку. Контроль работы контроллера осуществляется через специализированное программное обеспечение, установленное на персональном компьютере, с использованием специальной PC1-платы. Это программное обеспечение позволяет настраивать прибор, оптимизировать его параметры, управлять режимами сканирования, а также обрабатывать и архивировать полученные данные.

Такая система обеспечивает удобное и эффективное управление C3M, а также обеспечивает широкий функционал для анализа и визуализации данных, полученных в процессе измерений.

Сканирующие зондовые микроскопы Solver PRO представляют собой настольные научные приборы, сопряженные с отдельно установленным компьютером. Их конструкция поддерживает возможность индивидуального расширения с помощью различных дополнительных устройств и аксессуаров по запросу заказчика, что способствует более гибкому научному исследованию и адаптации к конкретным требованиям.

Принцип работы сканирующего туннельного микроскопа (СТМ) основан на эффекте квантового туннелирования электронов через узкий потенциальный барьер, находящийся между проводящей поверхностью образца и острием зонда микроскопа. Когда зонд, представляющий собой

остро заточенную металлическую иглу, приближается к образцу, возникает электрическое поле, которое позволяет электронам пересекать потенциальный барьер, несмотря на их недостаток энергии для преодоления этого барьера по классическим законам физики.

Этот туннельный ток, который измеряется между зондом и образцом, зависит от расстояния между ними и от топографии поверхности образца. Изменения в туннельном токе при сканировании поверхности позволяют создавать высокоразрешающие изображения топографии образца на атомном уровне. Таким образом, СТМ предоставляет возможность детального исследования структуры поверхности и её свойств с исключительной точностью. Этот эффект возникает благодаря квантовой механике, позволяя измерять топографию поверхности с нанометровым разрешением. Этот позволяет достичь разрешения метод высокого при измерении поверхностных характеристик материалов.

Рис. 3. Сканирующий зондовый микроскоп Solver Pro M

Сканирующий туннельный микроскоп (СТМ) позволяет получать изображения поверхности материалов с атомарным разрешением, измеряя туннельный ток, возникающий между микрозондом и образцом благодаря квантовому эффекту туннелирования. Когда зонд, представляющий собой острие с высокой остротой, приближается к проводящей поверхности образца, между ними образуется узкий потенциальный барьер. Электроны могут пересекать этот барьер, создавая туннельный ток, который измеряется микроскопом. Изменения в этом токе отражают топографию поверхности и позволяют строить детализированные изображения с высоким разрешением. Метод СТМ предоставляет ценную информацию о структуре и свойствах проводящих материалов на атомном уровне.

Атомно-силовой микроскоп (ACM) функционирует на основе измерения сил взаимодействия между микрозондом и поверхностью исследуемого образца. Основная идея работы ACM заключается в том, чтобы использовать зонд, который сканирует поверхность образца, и при этом измерять силы, возникающие между зондом и поверхностью.

При сканировании поверхности образца, микрозонд приближается к нему, и на этом этапе возникает взаимодействие между зондом и образцом, которое может быть обусловлено различными силами, такими как силы притяжения или отталкивания. АСМ использует высокочувствительные детекторы, чтобы измерять эти силы. Для обеспечения точности измерений и сохранения постоянной силы взаимодействия между зондом и образцом применяется система обратной связи. Эта система корректирует положение зонда, чтобы поддерживать заданное значение силы взаимодействия.

Когда система обратной связи регулирует высоту зонда, это позволяет эффективно отслеживать изменения в топографии поверхности образца. В результате ЭТИХ измерений И корректировок создается трёхмерное изображение поверхности, которое отражает её микроскопические детали и Эта неровности. методика позволяет получать высокоразрешающие изображения структуры образцов и изучать их физико-химические свойства на атомарном уровне. Этот метод применим как к проводящим, так и к диэлектрическим материалам.

Рис. 4. Дифференциальная кривая распределения размеров частиц и изображение частиц, полученное с помощью сканирующего зондового микроскопа.

Эксперименты с использованием сканирующего зондового микроскопа Solver PRO - М (NT–MDT, Россия) проводились для получения изображений атомно-силовой микроскопии (ACM). Для подготовки образцов слюды типа мусковит была использована сапфировая подложка, к которой прикреплялась слюда с помощью двустороннего скотча.

Материалы для исследования, представленные в виде порошков, суспендировали в высококачественной деионизированной воде (сопротивление >18 МОм) в соотношении 10 мг порошка на 200 мкл воды. После этого проводили центрифугирование при 2000 оборотах в минуту в течение 30 секунд. Затем отбирали 10 мкл супернатанта, наносили его на свежий скол слюды и выдерживали в течение 2 минуты на воздухе. После этого образец сушили, пропуская медленный поток азота в течение 1 минуты, чтобы удалить остаточную жидкость с поверхности.

Сканирование образцов проводилось в контактном режиме атомносиловой микроскопии по методу постоянной высоты. В качестве зондов использовали кантилеверы CSG 01 (NT-MDT, Россия) с радиусом кривизны зонда 10 нм. Полученные изображения анализировались с использованием программного обеспечения Nova версии 1138, а обработка изображений выполнялась с использованием встроенного пакета программ Image Analysis.

2.3. Метод рентгеновского анализа материалов

Рентгеновская дифракция продолжает оставаться одним из ключевых и доступных методов для детального изучения структурных свойств [50]. B контексте исследования образцов, материалов подвергнутых интенсивной механической обработке, проводится комплексный анализ, включающий сопоставление структурных характеристик исходных и Изучение модифицированных материалов. зависимости структурных параметров, таких как параметры кристаллической решетки, ширина дифракционных линий, величина микродеформаций и размеры структурных доменов, от времени механической обработки, температуры отжига и других физических воздействий, предоставляет ценные сведения о структурнохимических трансформациях в материалах.

Данный метод позволяет интегрировать результаты термического и спектрального анализа с данными 0 реакционной способности И растворимости, что имеет значительную важность для решения прикладных задач, включая разработку новых материалов и переработку минерального сырья. Интеграция механической обработки в мельницах с рентгеновским анализом предоставляет уникальные возможности для детального изучения структуры микронных частиц, которые имеют практически идеальную кристаллическую решетку. Механическая обработка в мельницах позволяет и модифицировать частицы до измельчать заданного размера, что способствует улучшению их однородности и структурной целостности.

Рентгеновский анализ, в свою очередь, предоставляет информацию о кристаллической структуре частиц, включая их фазовый состав, размер кристаллитов и степень кристалличности. Совмещение этих методов позволяет не только получать более точные данные о внутреннем строении частиц, но и анализировать влияние механической обработки на их кристаллическую решетку. Это сочетание методов дает возможность выявить и изучить изменения в кристаллической структуре, которые могут возникать в результате обработки, и оптимизировать условия для получения частиц с заданными структурными характеристиками.

В данном исследовании для выполнения рентгеновского анализа использовались два дифрактометра: Bruker D2 PHASER и Rigaku Ultima IV. Эти устройства проводят измерения, используя рентгеновское излучение с длиной волны Си Кα. При этом точность определения углов дифракции достигала 0,005 градуса.

Для обеспечения высокой точности анализа использовались эталонные образцы, которые позволяли точно определить центр масс дифракционных пиков. Анализ проводился на основе измеренных значений углов дифракции и интегральных ширин дифракционных пиков, что позволяло получить детализированное представление о кристаллической структуре исследуемых образцов.

Для вычисления межплоскостных расстояний в кристаллической структуре использовались углы дифракции, которые были проанализированы с применением метода наименьших квадратов и формулы Нельсона-Рейли. Эти методы позволили точно определить параметры элементарной ячейки кристаллической структуры.

Ширина дифракционных линий служила для оценки решеточных искажений, которые выражаются в средних отклонениях от идеальных межплоскостных расстояний в кристалле. Кроме того, эта информация использовалась для оценки размеров блоков когерентного рассеяния, что является важным для понимания размеров и распределения кристаллических доменов в исследуемом материале [51].

Для анализа центров масс дифракционных пиков, межплоскостных расстояний и интегральной ширины дифракционных линий применялся специализированный программный комплекс под названием "Профиль", который был разработан в Московском институте стали и сплавов. Этот программный инструмент позволяет детализированно обрабатывать данные рентгеновской дифракции, обеспечивая высокую точность при определении параметров кристаллической структуры и решеточных искажений. В расчетах также применялся вычислительный модуль дифрактометра Rigaku. Определение интегральной ширины линий проводилось с использованием метода аппроксимации профиля. Для оценки размеров структурных блоков и микродеформаций также использовалась программа "Профиль".

Ширина дифракционных линий является критическим параметром в рентгеновской дифракции, поскольку она предоставляет важную информацию о структурных характеристиках материала. При изучении этого параметра выделяют два основных источника уширения: инструментальное и физическое.

Инструментальное уширение связано с техническими характеристиками самого дифрактометра и определяется его конструкцией, параметрами излучения И настройками эксперимента. Физическое уширение дифракционных пиков связано с особенностями рассеяния рентгеновских лучей на исследуемом образце. Оно может быть вызвано различными факторами, такими как микродеформации в кристаллической решетке, которые приводят к нарушениям идеальной упорядоченности атомных слоев. Эти могут искажения быть результатом внутренних напряжений, неоднородностей в материале, или мелких кристаллитов, что в свою очередь ведет к увеличению ширины дифракционных линий и влияет на точность определения межплоскостных расстояний в кристаллической структуре. Размеры блоков когерентного рассеяния, микронапряжения и другие структурные аспекты образца.

Общая ширина линии дает информацию о структурных характеристиках образца и может быть использована для анализа микроструктурных изменений, происходящих в материале под воздействием различных воздействий, таких как механическая обработка или термическая обработка.

Изучение гидрофобных свойств проводилось путем измерения краевого угла смачивания капли воды на уплотненных поверхностях соответствующих образцов. Для этого использовался оптический микроскоп с горизонтальной осью. Процесс уплотнения порошков выполнялся с целью формирования ровной поверхности образца, пригодной для измерения краевого угла смачивания. Применялся лабораторный пресс с достаточным усилием для выравнивания поверхности порошка и создания плотного консолидированного образца, пригодного для измерения гидрофобных свойств. Ошибка измерений при обработке полученных фотоснимков не превышала ±3 градуса. Этот уровень точности обеспечивает надежную свойств оценку водоотталкивающих поверхности материала. Метод позволяет определить, насколько эффективно поверхность отталкивает воду, что важно для различных приложений, связанных с защитой материалов от влаги и коррозии.

2.4. Измерения ИК спектров

Инфракрасная Фурье-спектроскопия, или ИК-Фурье-спектроскопия, собой представляет технику, которая используется для получения В инфракрасных спектров материалов. ЭТОМ методе применяются интерферометры, которые являются оптическими приборами для создания интерференционного паттерна излучения. Основное преимущество этого метода заключается в его способности обеспечивать высокую разрешающую способность и чувствительность в спектральном анализе.

Процесс работы в ИК-Фурье-спектроскопии включает два ключевых этапа. На первом этапе регистрируется интерферограмма, представляющая собой интерференционное изображение излучения, проходящего через образец. Эта интерферограмма содержит информацию о том, как различные длины волн инфракрасного света взаимодействуют с материалом. собой график, Интерферограмма представляет который показывает изменение интенсивности света в зависимости от разности хода между двумя частями интерферометра.

На втором этапе выполняется обратное преобразование Фурье интерферограммы, что позволяет преобразовать данные в спектр. Обратное преобразование Фурье позволяет получить спектральное распределение, показывающее интенсивность поглощения или отражения света на разных длинах волн. Это спектральное распределение предоставляет информацию о молекулярной структуре и химическом составе образца, так как различные молекулы поглощают инфракрасное излучение на различных длинах волн в зависимости от их химических связей и функциональных групп.

Метод ИК-Фурье-спектроскопии обладает высокой чувствительностью точностью, ЧТО делает важным инструментом И его В химии, материаловедении и биологии для анализа и идентификации различных ИК-Фурье-спектроскопии веществ. Преимущества перед другими спектральными методами включают следующие аспекты:

Способность одновременной записи полного спектра.

Использование широкого входного отверстия интерферометра позволяет Фурье-спектрометрам превосходить приборы с дисперсионными элементами по разрешающей способности. Это способствует увеличению интенсивности света, сокращению времени регистрации спектров, улучшению соотношения сигнал/шум, повышению разрешающей способности и уменьшению габаритов прибора.

Высокая точность определения длины волны в Фурье-спектрометрах достигается за счет прямого измерения длины волны, в отличие от дифракционных приборов, где длина волны определяется косвенно.

Техническую сторону ИК-Фурье спектроскопии можно рассмотреть на примере прибора IRPrestige-21 (FTIR-8000S) от фирмы Shimadzu, используемого для исследования ИК-спектров минералов в лаборатории.

Рисунок 5. Спектрофотометр ИК-Фурье IRPrestige-21

ИК-Фурье-спектроскопия с использованием прибора IRPrestige-21 обеспечивает точное и высокочувствительное измерение инфракрасных спектров материалов. Вот краткое описание основных компонентов этого прибора:

- 1. Источник излучения:
 - В приборе используется гелиево-неоновый лазер с мощностью выхода 0,5 мВт в качестве источника инфракрасного излучения.
- 2. Кюветное отделение:
 - Это пространство, в котором размещается образец для измерения. Кювета позволяет проводить измерения в газовой или жидкой среде.
- 3. Оптическая система:
 - Оптическая система включает в себя систему зеркал и делителей, направляющих инфракрасное излучение на интерферометр и, затем, на детектор.
- 4. Интерферометр Майкельсона:
 - Интерферометр Майкельсона является ключевым элементом Фурье-спектрометра. Он позволяет регистрировать интерферограмму излучения, которая затем используется для

расчета инфракрасного спектра образца. Скорость сканирования интерферометра составляет до 75 сканов в секунду.

- 5. Детектор ИК-излучения:
 - Детектор регистрирует интенсивность инфракрасного излучения, прошедшего через образец, и преобразует эту информацию в электрический сигнал.
- 6. Программное обеспечение IRsolution:
 - Это программное обеспечение предоставляет пользователю управление прибором, а также функции обработки и анализа полученных спектров. Важной функцией является коррекция на состояние среды, что позволяет уменьшить влияние атмосферных условий на измерения.

IRPrestige-21 интегрирован с персональным компьютером и работает под управлением программы IRsolution в среде Windows, что обеспечивает удобство использования и обработки данных.

Рисунок 6. Оптическая схема Фурье-спектрометра IR Prestige-21

Интерферометр в системе ИК-Фурье-спектроскопии, как описано в вашем сообщении, обычно представляет собой интерферометр Майкельсона. Вот более подробное описание принципа его работы:

- 1. Световая схема:
 - Световая схема включает источник света, коллиматор (прибор, который делает световые лучи параллельными), светоделительную пластину и два зеркала - неподвижное и подвижное.
- 2. Разделение пучков:
 - Свет из источника проходит через щель и коллиматор, после чего падает на светоделительную пластину. Пластина разделяет световой поток на два пучка, один из которых направляется к неподвижному зеркалу, а другой - к подвижному зеркалу.
- 3. Интерференция:
 - Оба пучка отражаются от соответствующих зеркал и проходят обратно через светоделитель. Затем они объединяются, и их интерференция создает интерференционную картину.
- 4. Модуляция:
 - Подвижное зеркало может двигаться, изменяя оптическую разность хода между двумя пучками. Это вызывает модуляцию интенсивности света в интерференционной картине.
- 5. Измерение:
 - Измерение производится путем регистрации интерферограммы, которая является функцией изменения оптической разности хода.
 Из этой интерферограммы затем вычисляется инфракрасный спектр образца с использованием преобразования Фурье.
- 6. Точка нулевой разности хода:

• В точке нулевой разности хода, также известной как точка белого света, интенсивность интерференционной картины максимальна для всех частот.

Этот метод обеспечивает высокую точность и чувствительность при проведении инфракрасного спектроскопического анализа образцов. Процесс начинается с взаимодействия образца с инфракрасным излучением, в результате чего наблюдается снижение интенсивности интерферограммы на определенных частотах. После этого применяется Фурье-преобразование, которое позволяет извлечь спектральную полосу поглощения образца. Весь процесс измерений и обработки данных осуществляется с помощью вычислительных систем.

Спектры инфракрасного поглощения регистрируются на спектрофотометре Specord M40 в диапазоне 400–4000 см⁻¹ с разрешением 0,01 см⁻¹. Дополнительно, спектрофотометр с Фурье-преобразователем IRPrestige-21 от компании Shimadzu (FTIR-8400S) позволяет проводить измерения в интервале 300-4000 см⁻¹ с разрешением 0,001 см⁻¹. Для обработки и анализа спектроскопических данных применяется программное обеспечение IRsolution.

2.5 Техника и методика приготовления образцов

Для анализа инфракрасных спектров поглощения твердых веществ, включая минералы и подобные материалы, применяются разнообразные методы подготовки образцов. Один из наиболее эффективных подходов включает использование методов суспензии, формирования осадочных пленок и прессования с галогенидами щелочных металлов. Все эти методы требуют предварительного интенсивного измельчения образца для обеспечения равномерного распределения материала и минимизации фонового шума при измерении спектров.

Одним из наиболее распространенных способов подготовки твердых образцов для инфракрасной спектроскопии является таблетирование. Этот

метод был впервые описан в исследованиях, проведенных в Германии (Schiedt et al., 1952) и в США (Stimpson et al., 1952), и с тех пор нашел широкое применение в практике ИК-спектроскопии. В качестве матрицы для твердых веществ часто используются галоидные соли щелочных металлов, что позволяет снизить рассеяние инфракрасного излучения благодаря сходству показателей преломления матрицы и исследуемого вещества. Качественно изготовленная таблетка характеризуется прозрачностью и отсутствием трещин или непрозрачных включений, что подтверждает правильность её изготовления.

Процесс прессования образцов включает несколько ключевых этапов. Сначала тщательно измельченное исследуемое вещество смешивается с галогенидом щелочного металла, например, с КВг. Затем полученная смесь подвергается прессованию в специализированной пресс-форме для создания таблеток или дисков. Прессование проводится при высоком давлении, порядка 10¹² т/см², в течение 1-3 минут. Для этого применяются специализированные гидравлические прессы с электрическим приводом из-за значительных усилий, необходимых для прессования.

Для получения таблетки диаметром 10 мм требуется около 400 мг бромида 1-5 калия И МΓ исследуемого вещества, предварительно измельченного до частиц размером менее 2 микрон. Точное дозирование массы исследуемого вещества критично для обеспечения концентрации в таблетке в пределах измеряемого диапазона. Недостаток вещества может привести к слабым пикам поглощения, что затруднит качественный и количественный анализ, в то время как избыток вещества может вызвать слишком высокие значения поглощения, выходящие за пределы диапазона измерения, что также усложнит интерпретацию результатов.

Современные микропресс-формы позволяют создавать таблетки диаметром 1,5 и 0,5 мм, используя менее 4 мг бромида калия и менее 0,01 мг исследуемого минерала. Этот метод особенно полезен для анализа мелких частиц твердых веществ, когда доступно ограниченное количество

¹⁰⁸
материала. Компактные настольные прессы упрощают процесс формирования таблеток вручную, минимизируя затраты усилий.

После прессования прозрачной таблетки из бромида калия с добавлением исследуемого минерала она помещается в специальный держатель и вводится в основной поток излучения спектрофотометра для регистрации инфракрасного спектра поглощения по стандартной методике.

Поглощение воды бромидом калия может происходить как ИЗ окружающей среды, так и в процессе измельчения KBr, что приводит к усилению водородных полос поглощения В ИК-спектре таблеток. Интенсивность этих полос поглощения линейно зависит от времени измельчения. Однако использование функции вычитания фона В обеспечении программном ИК-спектрометра IRPrestige-21 позволяет эффективно компенсировать это явление.

Несмотря на указанные недостатки, метод таблетирования обладает значительными преимуществами. Он обеспечивает получение высококачественных ИК-спектров твердых веществ, которые в некоторых случаях невозможно получить иными способами. Поэтому большинство ИКспектров минералов и аналогичных материалов, представленных в научной литературе, были получены с использованием метода таблетирования с добавлением бромида калия.

Одним из значительных преимуществ метода является отсутствие полос поглощения растворителя в ИК-спектре исследуемого вещества, так как бромид калия не проявляет полос поглощения в спектральном диапазоне от 2 до 25 микрометров. При формировании таблеток рассеяние света остается в пределах нормы. Таблетки обладают преимуществами по сравнению с взвесями, поскольку они позволяют более точно измерять как концентрацию образца, так и толщину слоя, что делает их предпочтительными для количественного анализа.

Метод таблетирования с использованием КВr особенно рекомендуется для образцов, которые:

109

Не растворяются в обычных инфракрасных растворителях.

Имеют аморфную структуру или стабильную кристаллическую форму.

Не содержат ионов, способных к обмену.

2.6. Описание эксперимента по проращиванию зерна

Для оценки биологической активности, проявляющейся в стимуляции роста растений (ускорении роста побегов и корней при проращивании семян), было проведено замачивание зерен пшеницы в течение трех суток в термотате при температуре 25°C. Эксперименты проводились в чашках Петри, где зерна замачивались в воде и в водных средах, содержащих наночастицы S и CaCO₃, а также нанокомпозит S+CaCO₃.

Процесс проращивания зерен пшеницы осуществлялся следующим образом: на первом этапе определенное количество зерен замачивалось в воде на противне, который размещался в термостате при 25°С. После суточной выдержки удалялись непроросшие зерна, а проросшие раскладывались в чашки Петри. Часть чашек контрольной группы заливалась водой, в то время как остальные заливались смесями, содержащими нанокомпозит S+CaCO₃, а также отдельно наносеру и нанокарбонат кальция. Чашки Петри вновь помещались в термостат при 25°С. По истечении трех суток измерялись длины побегов и корешков каждого зерна линейкой.

В описанном эксперименте основной задачей было определение оптимальной концентрации исследуемых порошков для стимуляции роста растений. Для этого различные количества исследуемых веществ замачивали в воде в чашках Петри, экспериментально определяя максимальный рост побегов и корешков при различных отношениях к воде. Учитывая предыдущие исследования, в каждую чашку Петри был добавлен глицерин, так как введение определенных органических веществ в водные дисперсии с наночастицами приводит к увеличению роста корней и побегов.

Результаты показали, что максимальный рост наблюдался при концентрации порошка наночастиц серы, равной 25 мг, и 8 мл глицерина на 1

литр воды. В каждую чашку Петри добавляли 6 мл воды и соответствующие концентрации порошков наночастиц серы и нанокомпозита S+CaCO₃, а также глицерина. Эксперименты с нанокомпозитом S+CaCO₃ включали его в том же количестве, что и наночастицы серы. Контрольные опыты с водой и добавками 8 мг/л глицерина не показали ускорения роста, в то время как композиции с наночастицами приводили к увеличению показателей роста на 8-10%. Важно отметить, что для повышения достоверности результатов измерения проводились на 10 чашках Петри для каждого состава, что соответствует усреднению по 150 зернам. Среднеквадратичная ошибка измерений длин побегов и корешков не превышала 3-4%.

Глава 3. Получение и кинетика агломерации наноразмерных солей щелочноземельных металлов и серы

В работе показано, что самым удачным способом для осуществления соосаждения наночастиц карбонатов ЩЗМ (MeCO₃) и серы (S) является барботаж углекислого газа через водные растворы полисульфидов состава MeS_x, где Me = Ca, Sr, Ba; $x \ge 3$. При пропускании CO₂ через раствор, например, CaS₅, происходит окислительно-восстановительная реакция согласно следующему уравнению:

 $CaS_5 + H_2O + CO_2 = CaCO_3 \downarrow + 4S \downarrow + H_2S \uparrow$

Для процесса соосаждения сульфатов (MeSO₄), фосфатов (Me₃(PO₄)₂) и серы использовался метод смешения полисульфидных водных растворов с растворами соответствующих кислот:

$$\begin{aligned} CaS_5 + H_2SO_4 &\longrightarrow H_2S\uparrow + 4S \downarrow + CaSO_4 \downarrow \\ 3CaS_5 + 2H_3PO_4 &\longrightarrow 3H_2S\uparrow + 12S \downarrow + Ca_3(PO_4)_2 \downarrow \end{aligned}$$

3.1. Кинетика совместной агломерации солей ЩЗМ и серы

Было обнаружено, что при взаимодействии полисульфидов с углекислым газом карбонаты ЩЗМ и серы осаждаются в виде наночастиц, затем они

укрупняются и превращаются в частицы микронного размера. На рис. 7 в качестве примера представлены кривые распределения частиц CaCO₃ и S по размерам после их химического осаждения ($^{\circ}$) (средний размер соответствует 20 нм) и через 2 часа (достигается размер частиц, равный 30 мкм) (•).

Аналогичные процессы агломерации наблюдаются для наноразмерных частиц сульфатов, фосфатов ЩЗМ и серы, получаемых путем смешения соответствующих полисульфидов с растворами серной и фосфорной кислот.

Рис. 7. Интегральные и дифференциальные кривые распределения частиц смеси (CaCO₃ + S) по размерам сразу после их химического осаждения ($^{\circ}$) и по истечении 2 часов ($^{\bullet}$).

Для исследования процессов агломерации синтезированных наночастиц в определенные промежутки времени после завершения реакции проводился контроль за размерами выпавших осадков смесей (солей ЩЗМ и серы) с помощью лазерного анализатора SALT 7101 фирмы «Shimadzu» таб 9.

Таблица 9. Размеры частиц смеси карбонатов, сульфатов, фосфатов ЩЗМ и серы

Время		Размер частиц, D, мкм												
Munt	CaCO ₃	CaSO ₄	$Ca_3(PO_4)_2$	BaCO ₃	BaSO ₄	$Ba_3(PO_4)_2$	SrCO ₃	SrSO ₄	Sr ₃ (PO ₄) ₂					
минут	+ S	+ S	+ S	+ S	+ S	+ S	+ S	+ S	+ S					
1	0,024	0,026	0,025	0,03	0,033	0,036	0,024	0,03	0,019					
5	0,025	0,028	0,026	0,035	0,04	0,04	0,029	0,044	0,025					
10	0,05	0,038	0,033	0,049	0,055	0,042	0,046	0,09	0,033					

15	0,056	0,056	0,045	0,058	0,062	0,056	0,087	0,185	0,045
20	0,058	0,086	0,078	0,086	0,087	0,078	0,144	0,3	0,094
25	0,13	0,135	0,102	0,1	0,094	0,091	0,231	0,49	0,143
30	0,19	0,27	0,25	0,12	0,126	0,123	0,41	0,66	0,256
40	0,35	0,36	0,305	0,2	0,157	0,21	0,8	1,02	0,33
50	0,67	0,56	0,457	0,403	0,23	0,3	1,221	1,414	0,48
60	1,5	0,86	0,509	0,64	0,375	0,561	2,45	2,866	0,64
70	6	1,5	0,77	0,73	0,612	0,724	3	3,902	0,921
80	15	1,8	1,302	0,997	0,9	1,1	6,52	4,813	1,751
90	23	3,9	2,4	1,722	1,78	2,7	9,396	6,662	3,512
100	34	7,3	5,85	3,586	3,1	4,51	15,891	10	6
110	44	11,5	12,32	5,23	5	10,6	32,3	13,1	15,1
120	49	20	38	8	8,5	20	44	16,7	30
125	50	20,2	39	8,1	8,52	20,21	44,7	17	30,026
Q*10 ² , мин ⁻¹	6.4	5,4	5,2	4,6	4,5	4,9	6,2	4.8	5,0
\mathbb{R}^2	0,9901	0,982	0,9711	0,9901	0,9922	0,9932	0,9733	0,9292	0,9723

При этом, на начальной стадии образуются наноразмерные частицы, которые со временем укрупняются и спустя несколько десятков минут достигают микронных размеров.

Рис. 8. Зависимости размеров частиц смесей сульфатов ЩЗМ и серы от времени: $\bullet - (CaSO_4 + S)$, $\blacktriangle - (SrSO_4 + S)$, $\blacksquare - (BaSO_4 + S)$.

Результаты измерения размера частиц и их изменения через определенные промежутки времени приведены на рис. 8, которые указывают на экспоненциальное увеличение размеров частиц (D) от времени. Анализ приведенных кривых показал, что они достаточно хорошо линеаризуются (рис. 9) в координатах следующего уравнения:

 $\ln (D) = \ln (D_0) + Q \cdot \tau,$

где D_0 – средний размер частиц смесей (солей ЩЗМ и серы) в момент времени $\tau = 0$, Q – кажущаяся константа скорости агломерации.

Рис. 9. Зависимости логарифмов размеров частиц смесей сульфатов ЩЗМ и серы от времени: \bullet – (CaSO₄ + S), \blacktriangle – (SrSO₄ + S), \blacksquare – (BaSO₄ + S); R – коэффициент корреляции.

Линейность функции ln (D) = f (τ) наблюдается до t = 120 мин (рис. 9), частицы достигают микронных размеров и агломерация прекращается. Размеры частиц в начале реакции, определяемые на анализаторе SALT 7101, для смесей (CaSO₄ + S), (SrSO₄ + S) и (BaSO₄ + S) равны 30 нм, 26 нм и 33 нм, соответственно. Начальные размеры частиц, найденные по данным таблицы 10, для двух смесей (CaSO₄ + S) и (BaSO₄ + S) получились равными 30 нм, т. е. совпали с экспериментально найденными значениями D₀ в пределах погрешности их определения.

Таблица 10. Логарифм размеров частиц карбонатов, сульфатов, фосфатов ЩЗМ и серы

Врем				Размер	частиц, L	n (D), мкм			
Я	CaCO	CaSO ₄	Ca ₃ (PO ₄) ₂	BaCO ₃	BaSO ₄	$Ba_3(PO_4)_2$	SrCO ₃	SrSO ₄	Sr ₃ (PO ₄) ₂
минут	3 + S	+ S	+ S	+ S	+ S	+ S	+ S	+ S	+ S
1	3,18	3,26	3,22	3,40	3,50	3,58	3,18	3,40	2,94
5	3,22	3,33	3,26	3,56	3,69	3,69	3,37	3,78	3,22
10	3,91	3,64	3,50	3,89	4,01	3,74	3,83	4,50	3,50
15	4,03	4,03	3,81	4,06	4,13	4,03	4,47	5,22	3,81
20	4,06	4,45	4,36	4,45	4,47	4,36	4,97	5,70	4,54
25	4,87	4,91	4,62	4,61	4,54	4,51	5,44	6,19	4,96
30	5,25	5,60	5,52	4,79	4,84	4,81	6,02	6,49	5,55
40	5,86	5,89	5,72	5,30	5,06	5,35	6,68	6,93	5,80
50	6,51	6,33	6,12	6,00	5,44	5,70	7,11	7,25	6,17
60	7,31	6,76	6,23	6,46	5,93	6,33	7,80	7,96	6,46
70	8,70	7,31	6,65	6,59	6,42	6,58	8,01	8,27	6,83
80	9,62	7,50	7,17	6,90	6,80	7,00	8,78	8,48	7,47
90	10,04	8,27	7,78	7,45	7,48	7,90	9,15	8,80	8,16
100	10,43	8,90	8,67	8,18	8,04	8,41	9,67	9,21	8,70
110	10,69	9,35	9,42	8,56	8,52	9,27	10,38	9,48	9,62
120	10,80	9,90	10,55	8,99	9,05	9,90	10,69	9,72	10,31
Q*10 ² , мин ⁻¹	6,4	5,4	5,2	4,6	4,5	4,9	6,2	4,8	5,0
\mathbb{R}^2	0,99	0,98	0,97	0,99	0,99	0,99	0,97	0,93	0,97

Для смеси (SrSO₄ + S) величина D_0 оказалась завышенной (80 нм), что очевидно связано с наблюдаемым (таблице 10, $R^2 = 0.93$) разбросом экспериментальных точек.

В табл. 11 приведены значения кажущихся констант скорости агломерации для всех изученных смесей (карбонатов, сульфатов, фосфатов ЩЗМ и серы).

Табл.	11. Кажущиеся	константы	скорости	агломерации	солей Ш	ЗМ и	серы
			1	1 1		1	1

Исследуемые	CaCO ₃	$CaSO_4 +$	$Ca_{3}(PO_{4})_{2} +$	BaCO ₃ +	BaSO ₄	Ba ₃ (PO ₄)	SrCO ₃ +	SrSO ₄	Sr ₃ (PO ₄) ₂ +
смеси	+ S	S	S	S	+ S	+ S	S	+ S	S
Q•10 ² , мин ⁻¹	6.4	5,4	5,2	4,6	4,5	4,9	6,2	4.8	5,0

Анализ табл. 11 свидетельствует о следующем:

1) Значения Q в ряду изученных смесей изменяются незначительно.

2) Для всех смесей (карбонатов, сульфатов, фосфатов ЩЗМ и серы) наблюдается один и тот же порядок изменения кажущихся констант скорости агломерации (соль кальция > соль стронция > соль бария), что скорее всего связано с изменением размера иона металла по таблице Менделеева.

РФА смесей подтверждает, что наночастицы солей ЩЗМ и серы кристаллизуется в фазы, характерные для макроскопических образцов соответствующих соединений. Однако, при анализе смеси (CaCO₃ + S) было найдено (см. рис. 10), что смесь состоит из орторомбической серы (64,73%), при этом наночастицы карбоната кальция кристаллизуются в фазы кальцита (12,51%) и ватерита (21,2%).

Рис. 10. Рентгенограмма смеси (CaCO₃ + S), полученная пропусканием углекислого газа через раствор полисульфида кальция.

3.2. Влияние концентраций кислот на скорость агломерации солей ЩЗМ и серы

На рис. 11 показаны зависимости ln (D) = f (τ) для различных концентраций H₂SO₄, использованных в эксперименте при осаждении смеси (CaSO₄ + S). Из рис. 11 следует, что при увеличении концентрации кислоты значительно растет угол наклона и, соответственно, скорость укрупнения частиц.

Рис. 11. Зависимость скорости агломерации частиц смеси (CaSO₄ + S) от концентрации серной кислоты: ● - 10,0%; ● - 12,5%; ● - 15%; ● - 17,5%; ● - 20%.

Аналогичные зависимости наблюдались для других исследуемых смесей – сульфатов, фосфатов щелочноземельных металлов и серы, размеры наночастиц приведены в табл. 12.

Таблица 12. Размеры частиц сульфатов, фосфатов ЩЗМ и серы в зависимости от времени при разных концентрациях кислот.

время,	концентрация		Р	азмер ча	стиц, D, мкм	1	
минут	кислот %	CaSO ₄	Ca ₃ (PO ₄) ₂	BaSO ₄	Ba ₃ (PO ₄) ₂	SrSO ₄	Sr ₃ (PO ₄) ₂
1		0,026	0,025	0,033	0,036	0,03	0,019
15		0,056	0,045	0,062	0,056	0,185	0,045
30	2.5-10%	0,27	0,25	0,126	0,123	0,66	0,256
60		0,86	0,64	0,375	0,561	2,866	0,64
120		20	38	8,5	20	16,7	30
1		0,029	0,028	0,037	0,04	0,033	0,024
7		0,123	0,119	0,079	0,084	0,254	0,109
15	12.5%	0,3	0,295	0,154	0,161	0,69	0,27
20		1,01	1,25	0,82	0,95	1,22	1,12
30		27,2	39,5	8,92	23	22,2	34
1		0,037	0,034	0,043	0,045	0,039	0,029
5		0,196	0,154	0,103	0,1	0,35	0,133
10	15%	0,37	0,352	0,192	0,194	0,727	0,352
17		2,41	2,22	1,1	1,58	1,779	1,94
25		35,1	46	9,6	26	30	42
1	17.5%	0,044	0,041	0,049	0,05	0,042	0,037

5		0,137	0,108	0,099	0,084	0,201	0,138
10		0,42	0,4	0,264	0,235	0,78	0,4
15		2,054	2,741	0,75	1,378	1,74	1,948
20		41	51,2	11	29,7	37,1	49
1		0,06	0,059	0,056	0,089	0,051	0,046
3		0,187	0,199	0,127	0,134	0,48	0,184
5	20%	0,54	0,521	0,3	0,342	0,84	0,419
7		3,441	4,1	2,7	3,574	3,215	2,158
10		56	58	13,7	35,2	44	38

В табл. 13 приведены данные по влиянию концентраций используемых кислот (H₂SO₄, H₃PO₄) на скорость агломерации солей щелочноземельных металлов и серы.

Табл. 13. Зависимости кажущихся констант скорости агломерации солей ЩЗМ и серы от концентраций соответствующих кислот

	Q·10 ² , мин ⁻¹								
Концентрация кислот, %	CaSO ₄	Ca ₃ (PO ₄) ₂ + S	BaSO ₄	Ba ₃ (PO ₄) ₂ + S	SrSO ₄ + S	Sr ₃ (PO ₄) ₂ + S			
	+ S		+ S						
2,5-10,0%	5,4	5,2	4,5	4,9	4,8	5,0			
12,5%	22,5	22,4	18,8	21,6	20,7	24,0			
15,0%	27,2	28,7	22,3	26,4	24,6	28,9			
17,5%	34,3	36,6	26,9	32,7	32,8	35,6			
20,0%	76,2	77,0	64,0	70,0	70,5	73,1			

Обращает на себя внимание следующий факт: использование концентраций кислот от 2,5% до 10,0% не влияет на значения Q, однако при дальнейшем увеличении концентраций кислот наблюдается существенный рост кажущихся констант скорости совместной агломерации солей ЩЗМ и

серы (табл. 13). Следует также отметить, что при использовании концентраций, превышающих 17,5% наблюдается интенсивный неконтролируемый рост значений Q (табл. 13), приводящих к образованию достаточно крупных частиц.

3.3. Влияние температуры на скорость агломерации смесей

На рис. 12 показаны зависимости $\ln (D) = f (\tau)$ для различных температур, использованных в эксперименте при осаждении смеси (CaSO₄ + S).

Рис. 12. Зависимость скорости агломерации частиц смеси (CaSO₄ + S) от температуры: • -25° C; • -35° C; • -45° C; • -55° C: • -65° C; • -75° C.

Из рис. 12 видно, что повышение температуры существенно влияет на скорость совместной агломерации CaSO₄ и серы. Это понятно, увеличение температуры ведет к увеличению интенсивности теплового движения, соответственно частицы чаще встречаются, и растет скорость их укрупнения.

Аналогичные зависимости наблюдались для других изученных в настоящей работе смесей – карбонатов, сульфатов, фосфатов ЩЗМ и серы, размеры частиц привдены в табл. 14.

Таблица 14. Размеры частиц карбонатов, сульфатов, фосфатов ЩЗМ и серы в зависимости от времени при разных температурах

Врем			Размер частиц, D, мкм									
я, мину т	температу ра С	CaCO ₃ + S	CaSO ₄ + S	Ca ₃ (PO ₄) 2+ S	BaCO ₃ + S	BaSO ₄ + S	Ba ₃ (PO ₄) ₂ + S	SrCO ₃ + S	SrSO ₄ + S	Sr ₃ (PO ₄) 2+ S		
1	25	0,024	0,026	0,025	0,03	0,033	0,036	0,024	0,03	0,019		

15		0,056	0,056	0,045	0,058	0,062	0,056	0,087	0,19	0,045
30	-	0,19	0,27	0,25	0,12	0,126	0,123	0,41	0,66	0,256
60	-	1,5	0,86	0,509	0,64	0,375	0,561	2,45	2,87	0,64
120	-	49	20	38	8	8,5	20	44	16,7	30
1		0,026	0,027	0,029	0,031	0,036	0,039	0,029	0,03	0,022
15	-	0,084	0,091	0,087	0,064	0,052	0,05	0,102	0,16	0,114
30	-	0,2	0,281	0,274	0,153	0,132	0,127	0,435	0,69	0,316
60	35	1,7	0,94	1,25	0,75	0,69	0,88	1,96	0,87	1,92
120		50	20	39,5	9,2	9	21,2	46	17,1	31,2
1		0,029	0,03	0,031	0,035	0,039	0,043	0,036	0,04	0,029
15	45	0,079	0,093	0,101	0,091	0,069	0,057	0,121	0,31	0,107
30	45	0,219	0,305	0,309	0,231	0,17	0,133	0,449	0,77	0,349
60	-	2,7	1,04	2,64	1,57	1,23	1,784	3,458	2,19	2,45
75		52	25	44	10	9,8	25	48	20	36
1		0,033	0,031	0,036	0,039	0,044	0,046	0,039	0,04	0,032
15	-	0,064	0,081	0,087	0,074	0,073	0,068	0,117	0,18	0,137
25	55	0,25	0,342	0,372	0,27	0,24	0,175	0,47	0,81	0,407
40	55	2,41	2,12	2,74	1,58	1,494	1,874	2,37	1,94	2,35
65		56	27	45,5	11,4	11	29	52	25	39
1		0,04	0,037	0,039	0,049	0,045	0,049	0,044	0,04	0,035
15		0,084	0,091	0,113	0,097	0,107	0,082	0,173	0,24	0,111
25	65	0,279	0,367	0,393	0,31	0,334	0,226	0,54	0,84	0,49
40	-	1,94	1,487	1,75	1,23	1,478	1,348	2,71	2,35	2,461
65		59	34	49,2	13,2	13	34	50	31,2	44
1		0,045	0,044	0,045	0,051	0,053	0,055	0,049	0,05	0,039
10		0,094	0,097	0,134	0,124	0,142	0,1	0,234	0,27	0,12
20	75	0,293	0,39	0,429	0,339	0,37	0,297	0,591	0,9	0,57
35		3,72	2,841	3,125	1,27	1,389	2,74	3,57	1,87	2,94
50		67	35	53,7	17,5	15,6	39,5	55,12	31,8	48,3
1		0,046	0,047	0,049	0,055	0,057	0,059	0,055	0,05	0,042
10		0,12	0,24	0,233	0,181	0,164	0,138	0,189	0,28	0,234
20	85	0,36	0,459	0,466	0,356	0,401	0,35	0,67	0,96	0,62
35		3,642	3,1	3,78	1,942	1,864	2,75	3,12	2,84	2,657
50		73	40	56	22	19	44	66	36,1	54

1		0,05	0,051	0,53	0,061	0,062	0,062	0,059	0,06	0,049
10		0,121	0,136	0,137	0,102	0,138	0,137	0,334	0,35	0,174
20	95	0,379	0,477	0,49	0,372	0,436	0,4	0,71	1,05	0,69
35		4,845	3,274	3,948	2,458	2,864	3,12	4,74	3,02	3,84
50		75	43	63	26	21	49	71,1	39	59

В табл. 15 суммированы данные по влиянию температуры на скорость агломерации солей щелочноземельных металлов и серы.

Табл. 15. Зависимости кажущихся констант скорости агломерации солей ЩЗМ и серы от температуры

Температура.				Q·1	0 ² , мин ⁻¹	l			
°C	CaCO ₃	CaSO ₄ +	$Ca_3(PO_4)_2 +$	BaCO ₃ +	BaSO ₄	Ba ₃ (PO ₄)	SrCO ₃ +	SrSO ₄	Sr ₃ (PO ₄) ₂ +
	+ S	S	S	S	+ S	+ S	S	+ S	S
25	6,4	5,4	5,2	4,6	4,5	4,9	6,2	4,8	5,0
35	6,5	5,6	6,1	4,8	5,0	5,5	6,2	4,9	6,0
45	9,6	8,1	9,2	7,3	7,2	8,5	9,1	7,4	8,9
55	11,8	10,9	11,3	9,0	9,1	10,6	11,0	9,9	11,2
65	12,1	11,0	11,6	9,4	9,2	10,8	11,4	10,0	11,4
75	15,1	13,1	13,8	11,5	11,2	13,6	13,7	12,0	13,6
85	15,2	13,7	14,2	11,8	11,5	13,6	13,8	12,3	14,1
95	15,3	13,7	14,4	12,6	12,0	13,9	13,9	12,5	14,2

Увеличение температуры осложняет процесс измерения размеров частиц и значений Q, так как погрешности, вносимые тепловым движением частиц, также возрастают. Так, величина согласования экспериментальных точек и линии тренда со значения $R^2 = 0,98$ при T = 25°C уменьшается до значения R^2 = 0,83 при T = 75°C. Значения коэффициентов корреляции (R^2) для температур, превышающих 75°C, оказались еще ниже из-за тепловых флуктуаций. Поэтому значения Q, приведенные в табл. 14 для температур 85 и 95°C, следует рассматривать как оценочные.

На рис. 13 приведены результаты обработки температурной зависимости Q для смеси (CaSO₄ + S) в координатах уравнения Аррениуса, что позволило оценить энергию активации исследуемого нами процесса агломерации. Аналогичная работа была проделана для всех других смесей. Значения энергий активации (E), полученные для карбонатов, сульфатов, фосфатов ЩЗМ и серы, представлены в табл. 15.

Рис. 13. Температурная зависимость Q для смеси (CaSO₄ + S) в координатах уравнения Аррениуса.

 Табл.
 16.
 Энергии
 активации
 процессов
 укрупнения
 частиц

 солей ЩЗМ и серы

Исследуемые	CaCO ₃	CaSO ₄ +	$Ca_{3}(PO_{4})_{2} +$	BaCO ₃ +	BaSO ₄	Ba ₃ (PO ₄)	SrCO ₃ +	SrSO ₄	Sr ₃ (PO ₄) ₂ +
смеси	+ S	S	S	S	+ S	+ S	S	+ S	S
Е, кДж/моль	12,9	13,5	13,0	14,0	13,6	13,8	12,3	14,1	13,0

Из табл. 16 видно, что при переходе от одной смеси к другой величина энергии активации меняется незначительно. В целом, диапазон изменения Е лежит в интервале от 12,3 до 14,1 кДж/моль, т. е. представляет собой практически одну и ту же величину в пределах погрешности ее определения $(13,2 \pm 1,3 \text{ кДж/моль})$. Независимость энергии активации от природы соли

металла указывает, скорее всего, на то, что агломерацию частиц смесей (солей ЩЗМ и серы) лимитирует один и тот же процесс – процесс диффузии.

3.4. Влияние ПАВ на скорость агломерации солей ЩЗМ и серы

Известно, что применение поверхностно активных веществ (ПАВ) может существенно замедлить укрупнение частиц, и в нашей работе было изучено влияние ПАВ на кинетику образования и дальнейшего поведения системы во времени. Исследования показали, что добавки ПАВ оказывают существенное влияние на процесс укрупнения частиц показано в таблице 17.

Таблица № 17. Размеры частиц карбонатов, сульфатов, фосфатов ЩЗМ и серы в зависимости от времени при добавлении ПАВ разных концентраций

вре		C				Размер	ер частиц, D, мкм					
мя,	ПАВ	С, %	CaCO	CaSO	Ca ₃ (PO ₄	BaCO	BaSO	Ba ₃ (PO ₄	SrCO	SrSO	Sr ₃ (PO ₄	
мин.		70	₃ + S	4+ S) ₂ + S	₃ + S	₄ + S) ₂ + S	₃ + S	4+ S) ₂ + S	
1	Неонол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019	
1	Сульфа нол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019	
30	Неонол		0,19	0,27	0,25	0,12	0,126	0,123	0,41	0,66	0,256	
30	Сульфа нол	0	0,19	0,27	0,25	0,12	0,126	0,123	0,41	0,66	0,256	
60	Неонол	Ū	1,5	0,86	0,509	0,64	0,375	0,561	2,45	2,87	0,64	
60	Сульфа нол		1,5	0,86	0,509	0,64	0,375	0,561	2,45	2,87	0,64	
120	Неонол		49	20	38	8	8,5	20	44	16,7	30	
120	Сульфа нол		49	20	38	8	8,5	20	44	16,7	30	
1	Неонол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019	
1	Сульфа нол	0, 1	0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019	
30	Неонол		0,062	0,065	0,06	0,076	0,068	0,072	0,06	0,07	0,062	

30	Сульфа нол		0,066	0,07	0,068	0,074	0,077	0,076	0,06	0,07	0,061
140	Неонол		1,5	1,3	1,4	0,986	1,03	1,25	1,46	1,37	1,29
140	Сульфа нол		1,7	1,37	1,46	1,07	1,09	1,25	1,49	1,34	1,29
300	Неонол		47,85	18	36,21	7,21	8,5	19,43	42,5	40,2	26
300	Сульфа нол		49	19	37,3	7,36	8,31	19,21	41,6	41	27,5
1	Неонол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019
1	Сульфа нол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019
30	Неонол		0,05	0,053	0,052	0,058	0,057	0,057	0,05	0,06	0,044
30	Сульфа нол	0.	0,051	0,053	0,05	0,055	0,058	0,059	0,05	0,06	0,053
240	Неонол	3	0,687	0,65	0,72	0,489	0,485	0,601	0,73	0,7	0,612
240	Сульфа нол		0,789	0,682	0,7	0,576	0,036	0,634	0,76	0,71	0,6
450	Неонол		39,5	16	30	6,5	7,14	17,2	30,2	29	20
450	Сульфа нол		40	16,2	32	6,5	7,02	17,3	30	29,4	21,3
1	Неонол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019
1	Сульфа нол		0,024	0,026	0,025	0,03	0,033	0,036	0,02	0,03	0,019
30	Неонол		0,033	0,036	0,03	0,041	0,046	0,049	0,03	0,04	0,029
30	Сульфа нол	0. 5-	0,034	0,038	0,035	0,043	0,048	0,05	0,04	0,04	0,031
300	Неонол	1,	0,189	0,252	0,259	0,174	0,194	0,164	0,37	0,4	0,332
300	Сульфа нол	1	0,195	0,286	0,267	0,209	0,28	0,201	0,41	0,46	0,35
1200	Неонол		30	14	26	4,8	5,4	15,2	24,6	23	14,6
1200	Сульфа нол		35	14,4	27,5	5,4	6	15	26	22,9	15

На рис. 14 приведена зависимость скорости агломерации частиц смеси сульфата кальция и серы от концентрации поверхностно активного вещества – неонола.

Рис. 14. Зависимость скорости агломерации частиц смеси (CaSO₄ + S) от концентрации неонола: • -0%, • -0.1%, • -0.3%, • -0.5%.

В случае отсутствия ПАВ смесь частиц сульфата кальция и серы достигает максимального значения за время равное 120 мин, а в случае присутствия ПАВ (0,5%) частицы укрупняются значительно медленнее и достигают максимального значения за время $\tau \approx 1200$ мин, после чего перестают укрупняться (рис. 14). Объясняется этот факт тем, что при отсутствии ПАВ укрупнение частиц смеси (CaSO₄ + S) происходит как обычно (см. рис. 8). При добавлении ПАВ частицы смеси адсорбируют это вещество на своей поверхности, что мешает их консолидации в единое целое. В результате скорость укрупнения частиц, как видно из рис. 8, падает.

В табл. 18 обобщены данные по влиянию поверхностно активного вещества (неонола) на скорость агломерации солей щелочноземельных металлов и серы.

Табл. 18. Зависимости кажущихся констант скорости агломерации солей ЩЗМ и серы от концентрации неонола

Концентрация		Q·10 ² , мин ⁻¹									
неонола, %	CaCO ₃	CaSO ₄	$Ca_3(PO_4)_2$	BaCO ₃ +	BaSO ₄	Ba ₃ (PO ₄)	SrCO ₃ +	SrSO	$Sr_3(PO_4)_2 +$		
	+ S	+ S	+ S	S	+ S	+ S	S	+ S	S		
0	6,4	5,4	5,2	4,6	4,5	4,9	6,2	4,8	5,0		

0,1	2,5	2,2	2,4	1,8	1,9	2,1	2,5	2,4	2,4
0,3	1,6	1,1	1,5	1,2	1,2	1,4	1,5	1,5	1,5
0,5-1,1	0,6	0,5	0,6	0,4	0,4	0,5	0,6	0,5	0,5

Из приведенной таблицы следует, что увеличение концентрации неонола от 0,1 до 0,5% приводит к уменьшению кажущихся констант скорости агломерации солей ЩЗМ и серы. Однако, дальнейшее увеличение концентрации неонола (от 0,5 до 1,1%) не влияниет на скорости агломерации частиц (табл. 18). Таким образом, оптимальное значение концентрации неонола равно 0,5% – меньшие значения концентрации ПАВ недостаточно замедляют процесс укрупнения, а значения большей концентрации не влияют на скорость агломерации.

Глава 4. Разделение смесей и кинетика агломерации отдельных компонентов

Для отделения наночастиц S от карбонатов и фосфатов ЩЗМ исходные смеси были обработаны соляной кислотой, а для отделения от сульфатов ЩЗМ – концентрированной серной кислотой. Для получения солей металлов серу удаляли из раствора добавлением смеси (95% гидразингидрата и 5% моноэтаноламина). Серу идентифицировали с помощью РФА и УФ-спектроскопии, размеры и форму частиц определяли с помощью лазерного анализатора, электронной и зондовой микроскопии.

4.1. Кинетика агломерации серы

В данном фрагменте описывается процесс укрупнения наночастиц серы в условиях, когда в растворе присутствуют только частицы серы одного типа. Для иллюстрации этого процесса авторы рассматривают взаимодействие полисульфида кальция с соляной кислотой, в результате чего образуются наночастицы серы и растворимый в воде хлорид кальция (CaCl₂). В такой системе, где присутствуют только наночастицы серы, наблюдается их укрупнение со временем, что приводит к формированию частиц более крупного размера, вплоть до микронных масштабов. Для количественного описания этого процесса укрупнения наночастиц был проведен анализ зависимости диаметра частиц (D) от времени (τ), представленное в виде графика ln(D) = f(τ), где показана логарифмическая зависимость размера частиц от времени. Этот график позволяет исследовать кинетику укрупнения наночастиц серы, показывая, как с течением времени происходит рост частиц от нанометрового до микронного диапазона.

Рис. 15. Зависимость логарифма размера частиц серы от времени.

Из этого рисунка видно, что зависимость ln (D) = f (τ)-для серы имеет очень высокий коэффициент корреляции (R² = 0,99). При этом величина кажущейся константы скорости агломерации оказалась равной Q = 6,7·10⁻², мин⁻¹, что несколько превышает значения Q, характеризующие скорости укрупнения смесей (солей ЩЗМ и серы) (табл. 11). Начальное значение размера частиц серы, найденное по данным рис. 15, оказалось равным D₀ = 25 нм. Это значение оказалось достаточно близким к величине D₀ = 21 нм, установленной экспериментально с помощью лазерного анализатора SALT 7101, результаты размеров частиц показаны в таблице 19. По завершении процесса укрупнения размер частиц серы достиг величины 22 мкм.

Таблица 19. Размеры частиц серы в зависимости от времени, логарифм размеров частиц серы от времени, значение скорости агломерации серы.

Время,	Размер частиц S, мкм							
МИН	D	Ln D						
1	0,025	3,21888						

5	0,03	3,4012						
10	0,05	3,91202						
15	0,077	4,34381						
20	0,094	3,54329						
25	0,13	4,86753						
30	0,25	5,52146						
40	0,35	5,85793						
50	0,67	6,50728						
60	1,5	7,31322						
70	3	8,00637						
80	6	8,69951						
90	15	9,61581						
100	20	9,90349						
105	20,5	9,92818						
Q*10 ² ,								
МИН ⁻¹	0,0672							
\mathbb{R}^2	0,9951							

На рис. 16 а изображены кривые распределения частиц наноразмерной серы (пик соответствует частицам с размерами 21 нм). С помощью РФА (рис. 16 б) установлена орторомбическая структура данных частиц, которая свойственна для макроскопических частиц серы. На рис. 16 в представлено изображение частиц серы, полученное с помощью атомно-силового микроскопа, а на рис. 16 г – УФ-спектр раствора наноразмерной серы с двумя характерными пиками при $\lambda = 225$ нм и $\lambda = 385$ нм.

Рис. 16. Распределение частиц серы по размерам (а), рентгенограмма (б), изображение частиц, полученное с помощью атомно-силового микроскопа (в), и УФ-спектр серы (г).

4.2. Кинетика агломерации солей щелочноземельных металлов

Рассмотрим процесс укрупнения частиц солей ЩЗМ отдельно от серы. Для этого, после осаждения соли ЩЗМ и серы, раствор обрабатывали смесью гидразингидрата с моноэтаноламином. В результате сера растворялась и в осадке оставалась только соль металла. Осадок отфильтровывался и промывался дистиллированной водой. Далее, перед проведением измерений, полученный порошок соли металла В водной среде подвергался воздействию ультразвуковому чтобы для того, вернуть частицам первоначальное наноразмерное состояние. После этого, через определенные промежутки времени проводились измерения размеров частиц (D) с помощью лазерного анализатора SALT 7101.

Замечено, что размеры частиц меняются со временем экспоненциально, что было подтверждено удовлетворительным спрямлением зависимости D = f (τ) в координатах вышеприведенного уравнения: ln (D) = ln (D₀) + Q · τ (см., например, рис. 17).

129

Рис. 17. Зависимости логарифмов размеров частиц сульфатов ЩЗМ от времени: ▲ – CaSO₄, ◆ – SrSO₄, ■ – BaSO₄.

Начальные размеры частиц, определяемые на анализаторе SALT 7101, для CaSO₄, SrSO₄ и BaSO₄ оказались равны 30 нм, 26 нм и 33 нм, соответственно. Начальные размеры частиц (D₀), полученные из пересечения аппроксимирующих прямых с осью ординат (рис. 17), для CaSO₄ и BaSO₄ получились равными 33 нм и 28 нм соответственно, т. е. совпали с экспериментально найденными значениями D₀ в пределах погрешности их определения. Для SrSO₄ величина D₀ оказалась завышенной (80 нм), что, по всей вероятности, обусловлено наблюдаемым (рис. 17, $R^2 = 0.86$) разбросом экспериментальных точек.

В табл. 20 приведены размеры и кажущиеся константы скорости агломерации, полученные нами для всех изученных солей (карбонатов, сульфатов, фосфатов ЩЗМ).

Табл. 20. Размеры и кажущиеся константы скорости агломерации солей щелочноземельных металлов

Соли ЩЗМ	CaCO ₃	SrCO ₃	BaCO ₃	CaSO ₄	SrSO ₄	BaSO ₄	$Ca_3(PO_4)_2$	Sr ₃ (PO ₄) ₂	Ba ₃ (PO ₄) ₂
D, мкм (через 1 мин)	0,024	0,024	0,030	0,030	0,026	0,033	0,025	0,019	0,036
D, мкм (через 25 мин)	23,5	16,5	5,5	10,6	8,0	6,0	14,0	6,8	5,8

$Q \cdot 10^2$, мин ⁻¹	38,4	27,5	22,6	24,5	23,4	23,1	23,6	24,5	24,0
R^2	0,96	0,91	0,97	0,95	0,86	0,97	0,94	0,94	0,93

Из приведенной таблицы следует, что применение ультразвука позволяет восстановить размер частиц в исходном диапазоне 19-36 нм, однако в течение 25 минут происходит агломерация и размер частиц достигает микронных размеров. Величина кажущейся константы скорости агломерации для CaCO₃ оказалась самой высокой (табл. 19), что может быть объяснено возможностью данной соли кристаллизоваться в двух фазах (кальцит и ватерит) (см. ниже). Диапазон изменения Q остальных солей лежит в достаточно небольшом интервале от 22,6 до 27,5 мин⁻¹. Следует отметить, что приведенные в табл. 19 значения кажущихся констант скорости агломерации существенно превышают значения Q, характеризующие скорости укрупнения соответствующих смесей (солей ЩЗМ и серы) (табл. 11). На основании данного факта можно сделать следующий вывод: присутствие серы в смеси мешает агломерации солей ЩЗМ.

В данном фрагменте описывается процесс определения размеров наночастиц карбонатов бария, кальция и стронция с использованием зондового микроскопа. Согласно результатам анализа изображений (как показано на рисунке 18), установлено, что наночастицы этих карбонатов обладают квазисферической формой. Снимки, полученные с помощью зондового микроскопа, позволили точно определить, что средний размер частиц составляет 30 нм для карбоната бария, и по 24 нм для карбонатов кальция и стронция. Эти данные указывают на относительно небольшие и сходные размеры частиц среди исследованных материалов. Эти значения достаточно близки к значениям D₀, найденным с помощью лазерного анализатора SALT 7101.

Рис. 18. Изображения карбонатов бария (а), кальция (б) и стронция (в), полученные с помощью зондового микроскопа.

Анализ ИК-спектров. В этом фрагменте описывается проведение инфракрасной (ИК) спектроскопии для наночастиц сульфатов кальция, бария и стронция. Результаты показали, что их ИК спектры сходны с спектрами соответствующих макроскопических образцов. Это указывает на то, что несмотря на их уменьшенные размеры, наночастицы сохраняют основные структурные характеристики, аналогичные крупным частицам тех же соединений.

 $SrSO_4$

Рис. 19. ИК спектры сульфатов кальция, бария, стронция

ИК- спектры наночастиц сульфатов приведенные на рис. 19 показывают, что они идентичны ИК- спектрам макроскопических образцов. Линии поглощения 3-8 соответствуют колебаниям SO42- групп. Например, на ИК спектре для наночастиц CaSO₄ наблюдаются характерные для кальцита асимметричные деформационные колебания в области 594 см⁻¹ и 618 см⁻¹, симметричные деформационные колебания в области 672 см⁻¹, валентные симметричные и асимметричные колебания в области 1121 и 1151 см⁻¹. Кроме того на ИК- спектре для сульфата кальция линии 1618 см⁻¹ и 1637 см⁻¹ об образовании наблюдается что свидетельствует наличие воды, кристаллогидрата сульфата кальция.

РФА анализ образцов. В данном фрагменте описываются результаты рентгеновского дифракционного анализа наночастиц серы, сульфатов кальция, бария и стронция. Анализ показал, что дифрактограммы наночастиц этих материалов аналогичны дифрактограммам их макроскопических аналогов. Это свидетельствует о том, что наночастицы сохраняют кристаллическую структуру, характерную для крупных частиц тех же веществ.

Рис. 20. Рентгенограмма наночастиц серы

в) BaSO₄

Рис.21. Рентгенограммы наночастиц сульфатов кальция (а), стронция(б) и бария(в).

Результаты анализа рентгеновских дифрактограмм для наночастиц сульфатов кальция, стронция и бария показывают, что эти наночастицы имеют такие же структурные характеристики, как и их макроскопические аналоги. Это свидетельствует о том, что даже в наномасштабе данные материалы сохраняют свою кристаллическую структуру, характерную для более крупных образцов.

Анализ с помощью электронного микроскопа

Анализ серы на электронном микроскопе затруднителен из-за низкой температуры плавления, это ограничивает использование высокоэнергичных электронов, которые дают хорошее разрешение. На рис.22 приведено изображение частиц серы в атомно-силовом микроскопе (ACM) после

отделения от частиц сульфата кальция. Видно, что наночастицы серы собраны в более крупные образования.

Рис.22. Изображение частиц серы, полученное с помощью атомно-силового микроскопа в масштабе 3 мкм.

Рис.23. Изображение частиц сульфатов кальция (а), стронция (б) и бария (с), полученное с помощью атомно-силового микроскопа в масштабе 4 мкм.

Рис.**24.** Изображение частиц сульфатов: кальция (а), стронция (б) и бария (с) в масштабе 100 мкм, полученное с помощью атомно-силового микроскопа

На рис.24 изображены частицы сульфатов кальция (а), стронция (б) и бария (с), полученные после отделения от частиц серы, на основании рисунка видно, что частицы сульфатов действительно демонстрируют тенденцию к укрупнению, при этом состоят из более мелких частиц. Частицы сульфатов стронция и бария принимают форму, близкую к кубической, тогда как частицы сульфата кальция имеют продолговатую форму. На более крупном масштабе 100 мкм (рис.24) частицы сульфата кальция также имеют игольчатую структуру. Например, различимые на микроскопе частицы сульфата бария имеют размер 250 нм, и они сгруппированы в агломераты размером 2-4 мкм. А для сульфата стронция различимые на микроскопе частицы имеют размер 660 нм, которые собраны в более крупные частицы размером 3-5 мкм.

Глава 5. Примеры практического применения исследуемых наноразмерных соединений

Сера, обладая природной гидрофобностью, плохо взаимодействует с водой. Для анализа водоотталкивающих свойств нанопорошок серы был подвергнут прессованию, после чего на его поверхность наносилась капля воды на этом образце показана на рис. 25 а с краевым углом смачивания $\approx 140^{\circ}$. Был также спрессован серосодержащий нанокомпозит карбоната кальция – краевой угол смачивания капли воды на этом образце составил $\approx 120^{\circ}$ (рис. 25 б). Подобные высокие углы смачивания для капель воды на этих образцах указывают на супергидрофобные свойства смеси наноразмерной серы S и CaCO₃.

Рис. 25. Водоотталкивающие свойства спрессованных порошков из наноразмерной серы (а) и смеси серы и карбоната кальция (б).

Полисульфидные растворы кальция роявили себя как хорошие гидрофобизаторы неорганических пористых, в том числе строительных, Пропитка полисульфидным материалов. раствором материала с последующим высушиванием приводит к образованию на поверхности пор слоя из гидрофобных частиц серы, в результате чего материал приобретает водоотталкивающие свойства, что можно использовать для увеличения долговечности строительных материалов.

Рис. 26. Изменение коэффициента водопоглощения известняка (а) и (б) величины побегов (■) и корешков (■) пшеницы (б) от обработки полисульфидом кальция.

В качестве примера можно привести обработку известняка (ракушечника) полисульфидом кальция, коэффициент водопоглощения которого снижается с 24,0% до 5,2% (см. рис. 26а), что обеспечивается заполнением пор смесью (CaCO₃ + S). Необходимо отметить, что это свойство гидрофобности сохраняется в течение длительного времени даже в условиях постоянного присутствия воды. Наряду с полисульфидом кальция, продукты, полученные из него (CaCO₃ + S), (CaSO₄ + S) (рис. 26б) проявляют

ярко-выраженные биологически-активные свойства: обработка ими семян пшеницы приводит к ускорению роста побегов на 40-80%.

Заключение:

На основе предложенного в работе метода получены наночастицы серы и (карбонаты, сульфаты, фосфаты) ШЗМ соли с использованием полисульфидных растворов. Установлены закономерности, по которым происходит агломерация полученных смесей. Установлено, что на стадии формирования образуются наночастицы в диапазоне 20-35 нм, которые в дальнейшем укрупняются по экспоненциальному закону до микронных размеров. Причем, процесс укрупнения зависит ОТ температуры, концентрации использованной кислоты и наличия ПАВ. Полученные смеси наночастиц серы и солей ЩЗМ (карбонатов и сульфатов кальция) показали себя в качестве эффективных стимуляторов роста растений, а смесь наночастиц серы и карбоната кальция показала себя как эффективный гидрофобизатор строительных материалов.

Выводы:

Предложен удобный способ получения наноразмерных 1. смесей – карбонатов, сульфатов, фосфатов щелочноземельных металлов (кальция, бария, стронция) и серы, основанный на смешении растворов полисульфидов ЩЗМ и соответствующих неорганических кислот. Показана возможность разделения получаемых смесей на отдельные компоненты (соль ЩЗМ, сера). 2. Установлено, что агломерация наноразмерных смесей (солей ЩЗМ и серы) (солей ЩЗМ, отдельных компонентов серы) протекает И ПО экспоненциальному закону, что подтверждается хорошим спрямлением экспериментальных результатов в координатах следующего уравнения: ln (D) $= \ln (D_0) + Q \cdot \tau$, где D и D₀ – средние размеры частиц в моменты времени τ и $\tau = 0$, соответственно; Q – кажущаяся константа скорости агломерации.

3. Найдено, что величина Q в процессе агломерации смесей (сульфатов, фосфатов ЩЗМ и серы) возрастает с увеличением концентраций

139

соответствующих кислот и температуры. Обнаружено, что величина энергии активации (13,2 ± 1,3 кДж/моль), характеризующая процесс агломерации смесей (солей ЩЗМ и серы), не зависит от природы используемой соли.

3. Найдено, что применение неонола (ПАВ) приводит существенному снижению скорости агломерации наноразмерных смесей (солей ЩЗМ и серы). Установлена оптимальная концентрации неонола (0,5%), приводящая к самой низкой скорости агломерации исследуемых смесей. Превышение данной концентрации не приводит к дальнейшему уменьшению скорости укрупнения частиц.

4. Выявлено, что наночастицы серы, извлеченные из полисульфидных растворов, позволяют превращать пористые строительные материалы (бетон, кирпич и др.) в материалы, практически непроницаемые для воды (водопоглощение уменьшается в 5 и более раз), что позволяет повысить долговечность строительных материалов. Установлено также, что наноразмерные смеси (CaCO₃ + S или CaSO₄ + S) оказывают положительное влияние на побеги и корешки растений, что позволяет рекомендовать их в качестве эффективных экологически безопасных стимуляторов их роста.

Список литературы

1. Бусев А. И., Симонова Л. Н. Аналитическая химия серы. Серия «Аналитическая химия серы», 1775, 262 с

2. J. H. Karchmer The analytical chemistry of sulfur and its compounds, Part 1 Wiley-Interscience, 1972 – p. 835.

Менковский М.А., Яворский В.Т. Технология серы. М.: Химия. 1983, 327 с.
 4.;

4. Грунвальд В.Р. Технология газовой серы. – М.: Химия, 1992. – 272 с.

5. Природная сера. Под редакцией М.А. Менковского. – М.: Химия. – 1972. – 240 с.

6. Сангалов Ю.А., Карчевский С.Г., Теляшев Р.Г. Элементная сера. Состояние проблемы и направления развития. Сера, высокосернистые соединения и композиции на их основе. Уфа, Издательство ГУП ИНХП РБ, 2010 – 136 с.

7. Сангалов Ю.А., Лакеев С.Н., Карчевский С.Г. и др. Элементная сера: традиционные виды продукции, специализированные и препарированные формы (обзор) // Башк. хим. журн. – 2005. – Т. 12. - № 4. – С. 100-109;

8. Сангалов Ю.А., Лакеев С.Н., Карчевский С.Г. и др. Элементная сера: от традиционных видов продукции до специализированных препаративных и препарированных форм // Хим. пром-ть сегодня. – 2006. - №2. – С. 15-24.

9. Лагутченко С.В., Мухутдинов А.А., Сольяшинова О.А. и др. Некоторые аспекты утилизации газовой серы // Хим. пром-ть. – 2001. - №2. – С. 31-33.;

 Пат. № 2123020 РФ. Клеевая композиция / Сангалов Ю.А., Мусин М.А., Волкова Ю.Н. // Бюлл. изобр. – 1998. - № 34.

 Пат. № 2256602 РФ. Лакеев С.Н., Сангалов Ю.А., Карчевский С.Г. // Бюлл. изобр. – 2005. - № 20;

Пат. № 2142908 РФ. Препаративная форма водорастворимой серы для защиты культурных растений от вредителей / Сангалов Ю.А., Массалимов И.А., Красулина В.А. и др. // Бюлл. изобр. – 1998. - № 35.

141

13. Сангалов Ю.А., Дмитриев Ю.К., Маталинов В.И. и др. Элементная сера: от сырья к новым веществам и материалам // Вестник Башкирского университета. –2004-№2. – С. 31-34.

14. Влох В. М. Процесс получения элементарной серы восстановлением сульфата кальция природным газом. 1983 г., Львов. Диссертация на соискание ученой степени кандидата технических наук. 212 с.

15. Порфирьева Р. Т. Разработка научных основ малоотходных технологий переработки серы и ее соединений в сульфиды и полисульфиды. 2006 г., Казань. Диссертация на соискание ученой степени доктора технических наук. 259 с.;

16. Иваницкий Я.В. Влияние серы и кальция на зерновую продуктивность и качество зерна озимой пшеницы. Краснодар. 2011.дисс. канд. сельскохоз. наук

17. Kutney G. Sulfur. History, Technology, Applications & Industry, 2007, 260 P.;18. Aubrey Stimola Sulfur The Rosen Publishing Group, 2007, 48 p.

19. Richard Beatty Sulfur Marshall Cavendish, 2000, 32 p.

20. Jean F. Blashfield Sulfur: Chemical Elements That Make Life Possible. Raintree Steck-Vaughn, 2001 - 64 p.;

21. A.B. Roy, P.A.Trudinger The Biochemistry of Inorganic Compounds of Sulphur. Cambridge University Pres 1970, 403 p.

22. Max Schmidt The Scientific Basis for Practical Applications of Elemental Sulfur. In New Uses of Sulfur—II; Bourne, Douglas J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1978. doi: 10.1021/ba-1978-0165.ch001

23. G. Nickless (Editor), "Inorganic Sulfur Chemistry" (Elsevier Publishing Company, Amsterdam-London-New York, 1968.

24. Roy Hutchison Brownlee On Precipitated Sulphur. Press of the Chemical publishing Company, 1907 – p. 1050.

142

25. David J. Miller, David Humphreys Miller, T. K. Wiewiorowski, American Chemical Society. Louisiana Section. Sulfur research trends. American Chemical Society, 1972 – p.: 231.

26. Meyer B. Solid Allotropies of Sulfur. – 1964. – vol. 64. – N2. – p. 429-451.
24. Meyer B. Elemental Sulfur// Chem Reviews. – 1976. - - Vol. 76. – N 3. – P. 367-388.

27. Патуроев В.В., Волгушев А.Н. Основные характеристики бетонов, пропитанных серой / М.: ЦИНИС Госстрой СССР. – 1976, 15 с.

28. Aubrey Stimola Sulfur The Rosen Publishing Group, 2007, 48 p. 27 Richard Beatty Sulfur Marshall Cavendish, 2000, 32 p.

29. C.M. Rayner Advances in Sulfur Chemistry Elsevier, 2000, 361 p.;

30. Beat Meyer, Sulphur Institute Elemental sulfur: chemistry and physics Interscience Publishers, 1965 – 390 p.;

31. Elemental sulfur: chemistry and physics. Sulphur Institute Interscience Publishers, 1965 – p. 390.;

32. Graham Nickless Inorganic sulphur chemistry Elsevier Pub. Co., 1968 – p.
770

33. Воронков М.Г. Реакции серы с органическими соединениями.
Новосибирск: Наука, Сиб. отд-ние, 1979, 357 С. 34. Cal Y. Meyers Organic
Sulfur Compounds, v. 2 Pergamon Press, 1966 – 465 р.;

34. Marian Mikołajczyk Chiral Sulfur Reagents CRC Press, 1997 – 274 p. 36.
Shigeru Ōae Organic Sulfur Chemistry CRC Press, 1991 – 433 p.;

35. F. Bernardi, Angelo Mangini Organic sulfur chemistry: theoretical and experimental advances. Elsevier, 1985 - 740 p.

36. Patrick Metzner, Andre[´] Thuillier Sulfur Reagents in Organic Synthesis Academic Press, 1994 – 200 p.

37. Tse-Lok Ho Reagents for organic synthesis, Wiley, 1999, v. 19, 488 p.].

38. Ralf Steudel Elemental Sulfur and Sulfur-Rich Compounds I 230 Topics in Current Chemistry. Springer. 2003. c.202.

39. Halstead, B. D.: Sulfur for the control of diseases. New Jersey Agricultural Experiment Station, Spec. Bull. 8 (1900).;

40. Barker, B. T. P., and T. A. Wallace: A new method of sulfur fumigation. Ann. Rept. Agricultural Horticulture Research Station, Long Ashton, Bristol, p. 122 (1922).;

41. YOUNG, H. C.: The toxic property of sulfur. Ann. Missouri Botan. Garden 9, 403 (1922).; 42. BARKER, B. T. P.:Investigations on the fungicidal action of sulfur. Ann. Rept. Agricultural Horticulture Research Station, Long Ashton, Bristol, p. 130 (1929).;

43. Doran, W. L.: Laboratory studies of the toxicity of some sulfur fungicides. New Hampshire State Agricultural Experiment Station, Tech. Bull. 19 (1922).;

44. THATCHER R. W., and L. R. STREETER: The adherence to foliage of sulfur in fungicidal dusts and sprays. New York State Agr. Expt. Sta., Geneva, New York. Tech. Bull. 116 (1925).

45. Goodwin, W., and H. Marshall: The action of sulphur as a fungicide and as an acaricide. Part I. Ann. Applied Biol. 15, 623 (1982).;

46. Beffa, T. (1993). Inhibitory action of elemental sulphur (S^0) on fungal spores. Can. J. Microbiol. 39, 731–735. doi: 10.1139/m93-107;

47. Morrissey, J. P., and Osbourn, A. E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63, 708–724.

48. Rao KJ, Paria S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 2013;3:10471-10478.;

49. Samrat Roy Choudhury, Mahua Ghosh, Arunava Goswami Inhibitory Effects of Sulfur Nanoparticles on Membrane Lipids of Aspergillus niger: A Novel Route of Fungistasis. Curr Microbiol. 2012 Jul 27;v.65, N1, p.91-98.DOI 10.1007/s00284-012-0130-7.

50. Bauernfeind RJ, Cloyd RA. 2012. Lime-Sulfur: A Multi-Use Pesticide. Kansas Insect Newsletter. Kansas 583 State Research and Extension. Retrieved October
16, 2014 from http://entomology.k584 state.edu/doc/extension-newsletters/ks-insect-newsletter-14-1.pdf.

51.Cordley, A. B.: Lime-sulfur spray to prevent apple scab. Better Fruit 3, 26 (1908).

52. Foreman, F. W.: The fungicidal properties of lime sulphur. J. Agr. Sci. 3, 400 (1910).;

53. Wallace, E., F. M. Blodgett, and L. R. Hesler: Studies of the fungicidal value of lime-sulfur preparations. Cornell Univ. Agr. Expt. Sta. Bull. 290 (1911).;

54. L. Jamar, J. Song Effectiveness of lime sulphur and other inorganic fungicides against pear scab as affected by rainfall and timing application. Journal of Plant Diseases and Protection -New Series- 2017, v.124, N4, p. 1-9, DOI: 10.1007/s41348-017-0085-9;

55. W M Scott Self-Boiled Lime-Sulphur Mixture as a Promising Fungicide. 2019. Forgotten Books, 24 p.].

56. Массалимов И.А., Хусаинов А.Н., Зайнитдинова Р.М., Мусавирова Л.Р.,
Зарипова Л.Р., Мустафин А.Г. Химическое осаждение наночастиц серы.
Журнал прикладной химии, 2014, т.87, №6, С. 705-713.

57. Angel A. García Jr. Elemental sulfur nanoparticle coarsening kinetics and changes in raman and voltammetric signals. A Thesis Presented In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Geology, The Faculty of the Graduate College of The University of Vermont, May, 2013

https://scholarworks.iupui.edu/bitstream/handle/1805/14969/Kafantaris_iupui_010 4D_10256.pdf?isAllowed=y&sequence=1

58. Maria Rahman A thesis submitted in partial fulfillment of the requirement for the degree of master of philosophy (m. phil) in chemistry. Department of Chemistry Faculty of Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh. March, 2015, c.104.

59. Hongwei Chen, Weiling Dong, Jun Ge1, Changhong Wang, Xiaodong Wu, Wei Lu & Liwei Chen. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries. Scientific reports 2013, v. 3, p.1-6. DOI: 10.1038/srep01910.

60. Hoon Kim, Joungphil Lee, Hyungmin Ahn, Onnuri Kim & Moon Jeong Park Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nature communications 2015, v. 6, p. 1-10. DOI: 10.1038/ncomms8278, www.nature.com/naturecommunications.

61. G.T. Zhou, J.C. Yu, X.C. Wang, L.Z. Zhang, Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies, New J. Chem. 28 (2004) 1027–1031.

62. Mehrdad Khatami, Hajar Q. Alijania, Farideh Mousazadeha, Nooshin Hashemic, Zahra Mahmoudic, Samaneh Darijanic, Mehdi Bamorovatd, Alireza Keyhanid, Meghdad Abdollahpour-Alitappehe and Fariba Borhani Calcium carbonate nanowires: greener biosynthesis and their leishmanicidal activity. RSC Adv., 2020, 10, 38063-38068

63. Ranjan, R., Narnaware, S.D. & Patil, N.V. A Novel Technique for Synthesis of Calcium Carbonate Nanoparticles. Natl. Acad. Sci. Lett. 41, 403–406 (2018). https://doi.org/10.1007/s40009-018-0704-4

64. Yuki Kezuka ShinsukeNakai Kei Matsubara MasahikoTajika Calcium carbonate chain-like nanoparticles: Synthesis, structural characterization, and dewaterability Powder Technology Volume 335, 15 July 2018, Pages 195-203. https://doi.org/10.1016/j.powtec.2018.05.011

65. Hiroko Fukano, Takuya Takahashi, Mamoru Aizawa, and Hideyuki Yoshimura Synthesis of Uniform and Dispersive Calcium Carbonate Nanoparticles in a Protein Cage through Control of Electrostatic Potential Inorg. Chem. 2011, 50, 14, 6526–6532 https://doi.org/10.1021/ic200117x

66. Abbas Ibrahim Hussein, Zuryati Ab-Ghani, , Ahmad Nazeer Che Mat , Nur Atikah Ab Ghani , Adam Husein and Ismail Ab. Rahman Synthesis and Characterization of Spherical Calcium Carbonate Nanoparticles Derived from Cockle Shells. Appl. Sci. 2020, 10, 7170, p.1-15. doi:10.3390/app10207170

146

67. Евров Д.А., Швидченко А.В., Курдюков Д.А. Электростатическая стабилизация гидрозолей наночастиц карбоната кальция, синтезированных темплатным методом. Коллоидный журнал объем 82, страницы115 - 121 (2020). https://doi.org/10.1134/S1061933X20020040

68. Ni Made Laksmi Gita Adnyani¹, Renny Febrida², Elin Karlina², Arief Cahyanto^{1,4}, and I Made Joni Synthesis of nano calcium carbonate from natural CaO by CO_2 fine bubbling method AIP Conference Proceedings 2219, 080010 (2020); https://doi.org/10.1063/5.0003072

69. R. Babou-Kammoe, S. Hamoudi? Faical, Khaled Belcacemi. Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions The Canadian Journal of Chemical Engineering 2011 Volume 90, Issue 1 https://doi.org/10.1002/cjce.20673

70. Chengli Yao, Anjian Xie, Yuhua Shen, Jinmiao Zhu, Tengjiao Li Green synthesis of calcium carbonate with unusual morphologies in the presence of fruit extracts J. Chil. Chem. Soc. vol.58 no.4 Concepción dic. 2013 http://dx.doi.org/10.4067/S0717-97072013000400072.

71. E Sulistiyono, M Handayani, M R Arwanda, T Kusumaningsih and F. Firdiyono The effect of alcohol media in the synthesis of calcium carbonate nanoparticles by ultrasonic waves IOP Conference Series: Materials Science and Engineering, Volume 541, International Seminar on Metallurgy and Materials 25–26 September 2018, Tangerang Selatan, Indonesia

72. Juan Song, Ran Wang, Zao Liu and Huashan Zhang Preparation and characterization of calcium carbonate microspheres and their potential application as drug carriers MOLECULAR MEDICINE REPORTS v.17: 8403-8408, 2018.

73. Deniz Uzunoğlu, and Ayla Özer Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant International Advanced Researches and Engineering Journal 02(03): 245-253, 2018.

74. Maria-Beatrice Coltelli, Dario Paolucci, Valter Castelvetro, Sabrina Bianchi, Elisabeth Mascha, Luca Panariello, Cecilia Pesce, Johannes Weber, and Andrea Lazzeri Preparation of Water Suspensions of Nanocalcite for Cultural Heritage Applications. Nanomaterials (Basel). 2018 Apr; 8(4): 254. doi: 10.3390/nano8040254.

75. Nancy M Elbaz, Andrew Owen, Steve Rannard, Tom O McDonald. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery Int J Pharm. 2020 25 Jan 574: 118866. DOI: 10.1016 / j.ijpharm.2019.118866.

76. Solmaz Maleki Dizaj, Simin Sharifi, Elham Ahmadian, Aziz Eftekhari, Khosro Adibkia & Farzaneh Lotfipour (2019) An update on calcium carbonate nanoparticles as cancer drug/gene delivery system, Expert Opinion on Drug Delivery, 16:4, 331-345, DOI: 10.1080/17425247.2019.1587408.

77. Jinjing Xing, Yeqiang Cai, Yikun Wang, Haifu Zheng, and Yujia Liu Synthesis of Polymer Assembled Mesoporous CaCO3 Nanoparticles for Molecular Targeting and pH-Responsive Controlled Drug Release. Advances in Polymer Technology Volume 2020, Article ID 8749238, 8 pages https://doi.org/10.1155/2020/8749238.

78. Cristian Matei, Daniela Berger, Anca Dumbrava, Marius Daniel Radu, Emma Gheorghe Calcium carbonate as silver carrier in composite materials obtained in green seaweed extract with topical applications Journal of Sol-Gel Science and Technology > Issue 2/2020.

79. Biradar S, Ravichandran P. Gopikrishnan R, Goornavar V, Hall JC, Ramesh V, Baluchamy S, Jeffers R B, Ramesh G T Calcium carbonate nanoparticles: synthesis, characterization and biocompatibility. Journal of Nanoscience and Nanotechnology, 01 Aug 2011, 11(8):6868-6874, DOI:10.1166/jnn.2011.4251.

80. Rabiatul Basria S.M.N. Mydin1, Izzah Nadhirah Muhamad Zahidi1,2, Nurul Nadiah Ishak1,3, Nik Shaida Shamim Nik Ghazali1,3, Said Moshawih5, Shafiquzzaman Siddiquee4 Potential of Calcium Carbonate Nanoparticles for Therapeutic Applications Mal J Med Health Sci 14(SUPP1): 201-206, Dec 2018.

81. Wang X, Shi L, Zhang J, Cheng J, Wang X. 2018In situformation of surfacefunctionalized ionic calcium carbonate nanoparticles with liquid-like behaviours and their electrical properties.R. Soc. open sci. 5: 170732. http://dx.doi.org/10.1098/rsos.170732.

82. Katlen Priscila Schlickmann, Janaína Lisi Leite Howarth, Denise Abatti Kasper Silva, Ana Paula Testa Pezzin. Effect of The Incorporation of Micro and Nanoparticles of Calcium Carbonate in Poly (Vinyl Chloride) Matrix for Industrial Application. Mat. Res. vol.22 supl.1 São Carlos 2019 Epub Oct 14, 2019 http://dx.doi.org/10.1590/1980-5373-mr-2018-0870

83. Jonathan Thomas Avaro; Cristina Ruiz-Agudo; Eliane Landwehr; Karin Hauser; Denis Gebauer Impurity-free amorphous calcium carbonate, a preferential material for pharmaceutical and medical applications. European Journal of Mineralogy (2019) 31 (2): 231–236.

84. Sondi, I., & Salopek-Sondi, B. (2005). Influence of the Primary Structure of Enzymes on the Formation of CaCO3Polymorphs: A Comparison of Plant (Canavaliaensiformis)and Bacterial (Bacilluspasteurii)Ureases. Langmuir, 21(19), 8876–8882. doi:10.1021/la051129v

85. A.J. Xie, Y.H. Shen, C.Y. Zhang, Z.W. Yuan, X.M. Zhu, Y.M. Yang, Crystal growth of calcium carbonate with various morphologies in different amino acid systems, J. Cryst. Growth 285 (2005) 436–443

86. B. Sreedhar, Ch. Satya Vani at al Shape Controlled Synthesis of BariumCarbonate Microclusters and Nanocrystallites using Natural Polysachharide – GumAcacia C. Rambabu Published 2012 Materials Science American Journal ofMaterialsScienceID:55713944DOI 10.5022/LMATERDIAL G.20120201.0201

DOI:10.5923/J.MATERIALS.20120201.02Corpus

87. L. Chen, Y. Shen, A. Xie, J. Zhu, Z. Wu, and L. Yang., 2007, Nanosized barium carbonate particles stabilized by cetyltrimethylammonium bromide at the water/hexamethylene interface, Cryst. Res. Technol. 42 (9), 886-889.

88. K. Konno, M. Koide, and A. Kitahara., 1984, Preparation of barium carbonate particles using a W/O microemulsion, J. Chem. Soc. Jpn. 6, 815-822;

89. K. Kandori, K. Kon-no, and A. Kitahara., 1988, Preparation of BaCO3 particles in ionic w/o microemulsions, J. Disp. Sci. Technol. 9(1), 61-73;

90. L. Qi, J. Ma, H. Cheng, and Z. Zhao., 1997, Reverse micelle based formation of BaCO3 nanowires, J. Phys. Chem. B. 101(18), 3460-3463;

91. M. Dinamani, P. V. Kamath, and R. Seshadri., 2003, Electrodeposition of BaCO3 coatings on stainless steel substrates, Cryst. Growth Des. 3 (3), 417-423.

92. P. Balaz, and B. Plesingerova., 2000, Thermal propertie of mechanochemically pre-treated precursors of BaTiO3 synthesis, Journal of Thermal Analysis and Calorimetry, 59 (3) 1017-1021.

93. B. F. Allen, N. M. Faulk, S. C. Lin, R. Semiat, D. Luss, and J.T. Richardson., 1992, A continous coprecipitation process for the production of 1-2-3 precursors, AIChE Symp. Ser. 88, pp. 76-87.

94. J. J. Macketta., 1977, Encyclopedia of Chemical Processing and Design, Marcel Dekker, New York, 51. 1976. V.5, C.494. Corpus ID: 93140648.

95. A. Taubert, G. Glasser, and D. Palms., 2002, Kinetics and particle formation mechanism of zinc oxide particles in polymer-controlled precipitation from aqueous solution, Langmuir 18(110), 4488-4494.

96. J. Norwig, W. H. Meyer, and G. Wegner., 1998, Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer. CHEMISTRY OF MATERIALS, 1998, cilt.10, ss.460-464, pp..460-464. Doi: 10.1021/cm970450z

97. Sa Lv, Ji Sheng, shuang Zhang, Wendong Sun. "Effects of reaction time and citric acid contents on the morphologies of BaCO3 via PVP-assisted method". Material Research Bulletin 43 (2008) 1099-1105;

98. Fangzhi Huanga, Yuhua Shena, Anjian Xiea, , Li Zhangb, Wanghua Xuc, Shikuo Lia and Wensheng Lua. "Polymorph control of a complex BaCO3 superstructure through the cooperation of an insoluble polylactide self-assembled film and soluble poly allylamine modifie", Reactive & Functional polymers 69 (2009) 843-850]MAA diblock copolymer, Chem. Mater. 10(2), 460-463.

99. Whitelaw, G.P., (2003-10-25). "Standard Chrome Bath Control". Finishing.com. Retrieved 2006-11-29.

100. Fangzhi Huanga, Yuhua Shena, Anjian Xiea, , Li Zhangb, Wanghua Xuc, Shikuo Lia and Wensheng Lua. "Polymorph control of a complex BaCO3

superstructure through the cooperation of an insoluble polylactide self-assembled film and soluble poly allylamine modifie", r. Reactive & Functional polymers 69 (2009) 843-850.

101. R. Dewri, and N. Chakraborti. "Simulating recrystallization through cellular automata and genetic algorithms". Modelling Simul. Mater. Sci. Eng. 2005, 13 (3): 173-183.

102. Amir Zelati, Ahmad Amirabadizadeh, Ahmad Kompany Preparation and Characterization of Barium Carbonate Nanoparticles International Journal of Chemical Engineering and Applications 2(4):299-303 DOI: 10.7763/IJCEA.2011.V2.121.

103. Tauseef Shahid, Muhammad Arfan, Aurang Zeb, Tayyaba BiBi, and Taj Muhammad Khan Preparation and physical properties of functional barium carbonate nanostructures by a facile composite-hydroxide-mediated route Nanomaterials and Nanotechnology 2018, Volume 8: 1–8 https://doi.org/10.1177/1847980418761775

104. Hulin Zhang, Chenguo Hu, Michao Zhang, Rusen Yang, Chunhua Zheng Synthesis of BaCO3 Nanowires and Their Humidity Sensitive Property Journal of Nanoscience and Nanotechnology 2011, Vol. 11, 10706–10709, doi:10.1166/jnn.2011.4066.

105. Chen, L, Shen, Y, Xie, A. Nanosized barium carbonate particles stabilized by cetyltrimethylammonium bromide at the water/hexamethylene interface. Cryst Res Technol 2007; 42(9): 886–889; https://doi.org/10.1002/crat.200710942.

106. Цзянь-Мин Ли, Dan-Ping Wei, Юн Бин Ху, Джи-Fang, Чжу-An Xu Synthesis of ultrafine green-emitting BaCO3 nanowires with 18.5 nm-diameter by CO₂ vapor-assisted electrospinning CrystEngComm 2014, v.16 p.964-968. https://doi.org/10.1039/C3CE41988F

107. Wenjie, Z, Chunhua, C, Jiaping, L. Polymer micelle-directed growth of BaCO₃ spiral nanobelts. Chem Commun 2012; 48(68): 8544–8546.

108. P.C. Nagajyothi, Muthuraman Pandurangan, T.V.M. Sreekanth and Jaesool Shim In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route. Journal of Photochemistry and Photobiology B: Biology, 2016, 156, 29. DOI: 10.1016/j.jphotobiol.2016.01.008

109. Mahnaz Dadkhah, Masoud Salavati-Niasari, Fatemeh Davar "A new inorganic framework in the synthesis of barium carbonate nanoparticles via convenient solid state decomposition route". Advanced Powder Technology Volume 24, Issue 1, January 2013, Pages 14-20. https://doi.org/10.1016/j.apt.2012.01.004

110. Mohammad Amin Alavi,ali Morsali Syntheses of BaCO₃ nanostructures by ultrasonic method Ultrasonics Sonochemistry Volume 15, Issue 5, July 2008, Pages 833-838

111. A. Askarinejad, A. Morsali Mater. Lett., 62 (2008), c. 478] и CaCO₃ [50. K.S. Suslick, D.A. Hammerton, R.E. Cline J. Am. Chem. Soc., 108 (1986), p. 5641

112. Li. Li, Y. Chu, Y. Liu, Li. Dong, Lei Huo, F. Yang Microemulsion-based synthesis of BaCO3 nanobelts and nanorods Mater. Lett., 60 (2006), p. 2138-2142.

113. S.H. Yu, H. Colfen, A.W. Xu, W.F. Dong, Complex spherical BaCO₃ superstructures self-assembled by a facile mineralization process under control of simple polyelec-trolytes, Cryst. Growth Des. 4 (2004) 33–37. https://doi.org/10.1021/cg0340906

114. Guo, X.-H., & Yu, S.-H. (2007). Controlled Mineralization of Barium Carbonate Mesocrystals in a Mixed Solvent and at the Air/Solution Interface Using a Double Hydrophilic Block Copolymer as a Crystal Modifier. Crystal Growth & Design, 7(2), 354–359. doi:10.1021/cg060575t

115. Škapin, S. D., & Sondi, I. (2005). Homogeneous Precipitation of Mixed Anhydrous Ca–Mg and Ba–Sr Carbonates by Enzyme-Catalyzed Reaction. Crystal Growth & Design, 5(5), 1933–1938. doi:10.1021/cg050197c

116. Christo Karagiozov, Dafina Momchilova Synthesis of nano-sized particles from metal carbonates by the method of reversed mycelles. Chemical Engineering and Processing 44 (2005) 115–119. doi:10.1016/j.cep.2004.05.004.

117. B. Sreedhar, Ch. Satya Vani, D. Keerthi Devi, M.V. Basaveswara Rao, C. Rambabu, Shape controlled synthesis of barium carbonate microclusters and

nanocrystallites using natural polysachharide — gum acacia, Am. J. Mater. Sci. 2 (2012) 5–13. DOI:10.5923/j.materials.20120201.02

118. S. Vadivelan, J. Bennet, N. Victor Jaya, Investigation of structural, thermal and magnetic behaviors of pristine barium carbonate nanoparticles synthesized by chemical Co-precipitation method, Int. J. Chem. Tech. Res. 07 (2014-15) 293–301

119. M.P. Dinamani, V. Kamath, R. Seshadri, Electrodeposition of BaCO3 on stainless steel substrates, Cryst. Growth Des. 3 (2003) (2003) 417–423

120. H. Zhang, J. Hong, Y. Ni, Y. Zhou, Microwave-assisted synthesis of BaCO3 crystals with higher-order superstructures in the presence of SDS, Cryst. Eng. Comm. 10 (2008) 1031–1036.

121. L. Mädler, Liquid-fed Aerosol Reactors for One-step Synthesis of Nanostructured Particles KONA 22 (2004) 107–120. DOI: 10.14356/kona.2004014

122. H. Zhang, J. Hong, Y. Ni, Y. Zhou, Microwave-assisted synthesis of BaCO3 crystals with higher-order superstructures in the presence of SDS Cryst. Eng. Comm. 10 (2008) 1031–1036. https://doi.org/10.1039/B800901E;

123 H. Zhang, J. Hong, Y. Ni, Y. Zhou, Microwave-assisted synthesis of BaCO3 crystals with higher-order superstructures in the presence of SDS Cryst. Eng. Comm. 10 (2008) 1031–1036. https://doi.org/10.1039/B800901E.;

124. Guo Chen, Xiaodong Chang, Jin Chen, Wei Zhao and Jinhui Peng Investigation of BaCO₃ Powders Synthesized by Microwave Homogeneous Precipitation. High Temp. Mater. Proc. 2015; 34(8): 757–764, DOI: https://doi.org/10.1515/htmp-2014-0153

125. H. Zhang, J. Hong, Y. Ni, Y. Zhou, Microwave-assisted synthesis of BaCO3 crystals with higher-order superstructures in the presence of SDS Cryst. Eng. Comm. 10 (2008) 1031–1036. https://doi.org/10.1039/B800901E

126. A.J. Xie, Y.H. Shen, C.Y. Zhang, Z.W. Yuan, X.M. Zhu, Y.M. Yang, Crystal growth of calcium carbonate with various morphologies in different amino acid systems J. Cryst. Growth 285 (2005) 436–443. DOI: 10.1016/j.jcrysgro.2005.08.039

153

127. G.T. Zhou, J.C. Yu, X.C. Wang, L.Z. Zhang, Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies New J. Chem. 28 (2004) 1027–1031. https://doi.org/10.1039/B315198K

128. M. Dinamani, P. Vishnu Kamath, and, Ram Seshadri. Electrodeposition of BaCO3 Coatings on Stainless Steel Substrates. Crystal Growth & Design 2003, 3
(3), 417-423. https://doi.org/10.1021/cg025608t

129. Sha, F., Guo, B., Zhao, J., Zhang, F., Qiao, X., Ma, L. Zhang, J. (2017). Facile and controllable synthesis of $BaCO_3$ crystals superstructures using a CO_2 -storage material. Green Energy & Environment, 2(4), 401–411. doi:10.1016/j.gee.2017.03.004

130. M. Dinamani, P. Vishnu Kamath, and, Ram Seshadri. Electrodeposition of BaCO3 Coatings on Stainless Steel Substrates. Crystal Growth & Design 2003, 3
(3), 417-423. https://doi.org/10.1021/cg025608t

131. Guo Chen, Jin Chen and Jinhui Peng Syntheses of ultra-fine barium carbonate powders by homogeneous precipitation method. DOI: https://doi.org/10.1515/gps-2015-0095

132. Anukorn Phuruangrat, Somchai Thongtem Characterization of SrCO3 and BaCO3 nanoparticles synthesized by cyclic microwave radiation Materials Letters 87:153–156 DOI: 10.1016/j.matlet.2012.08.002

133. Minhua Cao, Xinglong Wu, Xiaoyan He, Changwen Hu Microemulsionmediated solvothermal synthesis of SrCO3 nanostructures. Langmuir 2005 Jun;21(13):6093-6 http://dx.doi.org/10.1021/la050736f

134. Joseph, S., Upadhya, S., & Vishnu Kamath, P. (2009). Electrodeposition of BaCO3 coatings on stainless steel substrates: Oriented growth in the presence of complexing agents. Journal of Chemical Sciences, 121(5), 685–691. doi:10.1007/s12039-009-0082-z

135. Gao, J., Meng, Y., Lee, S., Tong, J., & Brinkman, K. S. (2018). Effect of Infiltration of Barium Carbonate Nanoparticles on the Electrochemical Performance of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes for Protonic Ceramic Fuel Cells. JOM. The Minerals, Metals & Materials Society 2018 p.1-6. doi:10.1007/s11837-018-3098-3

136. Wang, S., Sun, Zhu, Du, Liu, & Qian, W.-Y. (2012). pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. International Journal of Nanomedicine, 5781. doi:10.2147/ijn.s34773

137. D.-M. Sun, Q.-S. Wu and Y.-P. Ding A novel method for crystal control: synthesis and design of strontium carbonate with different morphologies by supported liquid membrane J. Appl. Cryst. (2006). 39, 544-549 https://doi.org/10.1107/S0021889806015925

138. Nastaran Dayani, Ali AmirArjmand, Mohsen Nouri-Khezrabad, Saeed Hasani Int J Appl Ceram Technol. 2020;00:1–8 DOI: 10.1111/ijac.13612

139. Xingwu Zou, Yanan Wang, Shudong Liang and Dongping Duan Facile synthesis of ultrafine and high purity spherical strontium carbonate via gas-liquid reaction Mater. Res. Express 7 (2020) 025009

140. Erfan Alimohammadi, Saeed Sheibani*, Abolghasem Ataie Preparation of nano-structured strontium carbonate from Dasht-e kavir celestite ore via mechanochemical method Journal of Ultrafine Grained and Nanostructured Materials Vol. 51, No.2, December 2018, pp. 147-152 DOI: 10.22059/JUFGNSM.2018.02.06

141. Lishuo Li, Rongyi Lin, Zhangfa Tong and Qingge Feng Facile synthesis ofSrCO3 nanostructures in methanol/water solution without additives NanoscaleResearchLetters2012,v.7,p.305-310,http://www.nanoscalereslett.com/content/7/1/305

142. Debabrata Rautaray, Ambarish Sanyal, Suguna D.Adyanthaya, Absar Ahmad, and Murali Sastry Biological Synthesis of Strontium Carbonate Crystals Using the Fungus Fusarium oxysporum Langmuir 2004, v.20, 6827-6833

143. Mehdi Ranjbar, Hojjat Ghasempour Synthesis and characterization of strontium carbonate nanostructures via simple and fast microwave approach Nano Science and Nano Technology. An Indian Journal 2015, v.9, N4, p.119-122.

155

144. Pornnaphat Wichannananon, Thawanrat Kobkeatthawin and Siwaporn Meejoo Smith Visible Light Responsive Strontium Carbonate Catalyst Derived from Solvothermal Synthesis Catalysts 2020, v.10, p.1069; doi:10.3390/catal10091069

145. Bizzozero J.; Scrivener K. L. Limestone reaction in calcium aluminate cement–calcium sulfate systems. Cement Concrete Res. 2015, 76, 159–169. 10.1016/j.cemconres.2015.05.019.

146.Ma B.; Lu W.; Su Y.; Li Y.; Gao C.; He X. Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum. J. Clean. Prod. 2018, 195, 396–405. 10.1016/j.jclepro.2018.05.228.

147.Woo K. M.; Jung H.-M.; Oh J.-H.; Rahman S. u.; Kim S. M.; Baek J.-H.; Ryoo H.-M. Synergistic effects of dimethyloxalylglycine and butyrate incorporated into α -calcium sulfate on bone regeneration. Biomaterials 2015, 39, 1–14. 10.1016/j.biomaterials.2014.10.054.

148.Jiang G.; Fu W.; Wang Y.; Liu X.; Zhang Y.; Dong F.; Zhang Z.; Zhang X.; Huang Y.; Zhang S.; Lv X. Calcium Sulfate Hemihydrate Nanowires: One Robust Material in Separation of Water from Water-in-Oil Emulsion. Environ. Sci. Technol. 2017, 51, 10519–10525. 10.1021/acs.est.7b02901.

149.Yu W.; Jiang G.; Liu D.; Li L.; Chen H.; Liu Y.; Huang Q.; Tong Z.; Yao J.; Kong X. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mat. Sci. Eng. C-Mat. 2017, 71, 725–734. 10.1016/j.msec.2016.10.063

150. Tritschler U.; van Driessche A. E. S.; Kempter A; Kellermeier M; Cölfen H Controlling the selective formation of calcium sulfate polymorphs at room temperature. Angew. Chem. Int. Ed. 2015, 54, 4083–4086.
10.1002/anie.201409651.

151. Bari S.; Chatterjee A.; Mishra S. Ultrasonication assisted and surfactantmediated synergistic approach for synthesis of calcium sulfate nano-dendrites. Ultrasonic.Sonochem. 2016, 31,39–50.

10.1016/j.ultsonch.2015.11.024.

152. Gareth D. Rees, Richard Evans-Gowing, Stephen J. Hammond, and Brian H. Robinson Formation and Morphology of Calcium Sulfate Nanoparticles and Nanowires in Water-in-Oil Microemulsions Langmuir 1999, v.15, N6, p.1993–2002 https://doi.org/10.1021/la981026v

153. Chen Q.; Jia C.; Li Y.; Xu J.; Guan B.; Yates M. Z. α-Calcium SulfateHemihydrate Nanorods Synthesis: A Method for Nanoparticle Preparation byMesocrystallization. Langmuir 2017, 33,2362–2369.

10.1021/acs.langmuir.7b00013.;

154. Wang Y. W.; Kim Y. Y.; Christenson H. K.; Meldrum F. C. A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. Chem. Commun. 2012, 48, 504–506. 10.1039/C1CC14210K.

155. van Driessche A. E. S.; Benning L. G.; Rodriguez-Blanco J. D.; Ossorio M.; Bots P.; García-Ruiz J. M. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 2012, 336, 69–72. 10.1126/science.1215648.

156. Jiang G.; Li J.; Nie Y.; Zhang S; Dong F.; Guan B.; Lv X. Immobilizing water into crystal lattice of calcium sulfate for its separation from water-in-oil emulsion. Environ. Sci. Technol. 2016, 50, 7650–7657. 10.1021/acs.est.6b01152.

157.Jiang G.; Chen Q.; Jia C.; Zhang S.; Wu Z.; Guan B. Controlled synthesis of monodisperse α-calcium sulfate hemihydrate nanoellipsoids with a porous structure. Phys. Chem. Chem. Phys. 2015, 17, 11509–11515. 10.1039/C5CP00804B.

158. Jiang G.; Fu W.; Shu S.; Zhang Z.; Zhang S; Zhang Y.; Zhang X.; Dong F.; Lv X. MgAl layered double oxide: One powerful sweeper of emulsified water and acid for oil purification. J. Hazard. Mater. 2019, 367, 658–667. 10.1016/j.jhazmat.2019.01.018.

159. Kong B.; Guan B. H.; Yates M. Z.; Wu Z. B. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir 2012, 28, 14137–14142.

160. Hou S.; Wang J.; Wang X.; Chen H.; Xiang L. Effect of Mg2+ on hydrothermal formation of α -CaSO4·0.5 H2O whiskers with high aspect ratios. Langmuir 2014, 30, 9804–9810. 10.1021/la502451f

161. Zhang Y. Q.; Wang D.; Zhang L. L.; Le Y.; Wang J. X.; Chen J. F. Facile Preparation of α -Calcium Sulfate Hemihydrate with Low Aspect Ratio Using High-Gravity Reactive Precipitation Combined with a Salt Solution Method at Atmospheric Pressure. Ind. Eng. Chem. Res. 2017, 56, 14053–14059. 10.1021/acs.iecr.7b03356.

162. Ganguli A. K.; Ganguly A.; Vaidya S. Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 2010, 39, 474–485. 10.1039/B814613F.

163. Okoli C.; Sanchez-Dominguez M.; Boutonnet M.; Järås S.; Civera C.; Solans C.; Kuttuva G. R. Comparison and functionalization study of microemulsionprepared magnetic iron oxide nanoparticles. Langmuir 2012, 28, 8479–8485. 10.1021/la300599q

164. Guan W.; Zhou W.; Lu C.; Tang B. Z. Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets. Angew. Chem., Int. Ed. 2015, 54, 15160–15164. 10.1002/anie.201507236.

165. Liu Z.; Xu X.; Fang J.; Zhu X.; Chu J.; Li B. Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Appl. Surf. Sci. 2012, 258, 3771–3778. 10.1016/j.apsusc.2011.12.025

166. Housaindokht M. R.; Pour A. N. Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion. Solid State Sci. 2012, 14, 622–625.
10.1016/j.solidstatesciences.2012.01.016.

167. Mao D.; Ding S.; Meng L.; Dai Y.; Sun C.; Yang S.; He H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable

morphologies and excellent visible-light photocatalytic removal of pollutants. Appl. Catal., B 2017, 207, 153–165. 10.1016/j.apcatb.2017.02.010

168. Shun Chen, Yan Xu, Xingyang He, Ying Su, Jin Yang, Wei Chen, and Hongbo Tan Microemulsion Synthesis of Nanosized Calcium Sulfate Hemihydrate and Its Morphology Control by Different Surfactants ACS Omega. 2019 May 31; 4(5): 9552–9556. doi: 10.1021/acsomega.9b00797

169. Sebastian Leukel, Martin Panthöfer, Mihail Mondeshki, Wolfgang Schaertl, Sergi Plana Ruiz, and Wolfgang Tremel Calcium Sulfate Nanoparticles with Unusual Dispersibility in Organic Solvents for Transparent Film Processing. Langmuir 2018 v.8, 34(24), p.7096-7105 DOI: 10.1021/acs.langmuir.8b00927

170. Qiaoshan Chen, Caiyun Jia, Yu Li, Jie Xu, Baohong Guan, and Matthew Z. Yates Calcium Sulfate Hemihydrate Nanorods Synthesis: a Method for Nanoparticle Preparation by Mesocrystallization. Langmuir 2017, 2017, 33, 9, 2362–2369 DOI: 10.1021/acs.langmuir.7b00013

171. C. B. Patil, P. S. Shisode, U. R. Kapadi, D. G. Hundiwale and P. P. Mahulikar Effect of calcium sulphate nanoparticles on fusion, mechanical and thermal behaviour polyvinyl chloride (PVC) International Journal of Modern Physics B Vol. 24, Nos. 1 & 2 (2010) 64–75

172. Shun Chen, Youzhi Jiang, Yan Xu, Jianjian Fu, Xingyang He, Ying Su, XiongjueWang and Bohumir Strnadel Micro-environment regulation synthesis of calcium sulphate nanoparticles and its water removal application Mater. Res. Express 6 (2019) 1050b8

173. Neil Osterwalder, Stefan Loher, Robert N. Grass, Tobias J. Brunner, Ludwig K. Limbach, Samuel C. Halim and Wendelin J. Stark Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles Journal of Nanoparticle Research 2007 v.9, p.275–281. DOI: 10.1007/s11051-006-9149-7.

174. Caiyun Jia, Luchao Wu, Qiaoshan Chen, Peng Ke, James J. De Yoreo, and Baohong Guan Structural evolution of amorphous calcium sulfate nanoparticles into crystalline gypsum phase CrystEngComm. p.1-19 DOI: 10.1039/D0CE01173H

175.Young Bum Park, Kathiravan Mohan, Abdulazi Al-Sanousi,Bandar Almaghrabi, Robert J Genco, Mark T Swihart and Rosemary Dziak Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration Biomedical Materials 2011 v.6 N5, p.1-11. DOI: 10.1088/1748-6041/6/5/055007.

176. Dose-Related Effects of Melatonin on Human Osteoblastic Cells via in vitroControlled Release from Nanoscale Calcium Sulfate DOI: 10.16966/2378-7090.325

177. Tyler Laurel, Mally Perelman Karmon, Dinh Nguyen and Rosemary Dziak Nanocalcium sulfate and collagen biomaterials: Effects on osteoblastic cells DOI: 10.15761/DOCR.1000210 34. Hytham Fageeh, Hoda Moussa, Abhiram Maddi, Rosemary Dziak International Journal of Dentistry and Oral Health Open Access Nano-Calcium Sulfate as a Local Delivery System for Antibiotics DOI: 10.16966/2378-7090.234.

178. Miguel Burgos-Ruiz, Gloria Pelayo-Punzano, Encarnacion Ruiz-Agudo, Kerstin Elert and Carlos Rodriguez-Navarro Synthesis of high surface area CaSO4 0.5H2O nanorods using calcium ethoxide as precursor Chem. Comm. 2021, DOI: 10.1039/d1cc02014e

179. Neil Osterwalder, Versum Materials, Stefan Loher, Robert Grass, ETH Zurich, Tobias J Brunne Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles J. Crys. Growth. 2007, 244 (3–4), 379–383 DOI: 10.1007/s11051-006-9149-7

180. Shen, Y., C. Li, X. Zhu, A. Xie and L. Qiu et al., 2007. Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids. J. Chem. Sci., 119: 319-324. DOI: 10.1007/s12039-007-0043-32007;

181. Wu, G., H. Zhou and S. Zhu, 2007. Precipitation of barium sulfate nanoparticles via impinging streams. Mater. Lett., 61: 168-170. DOI:10.1016/J.MATLET.2006.04.096;

182. Kucher, M., T. Beierlein and M. Kind, 2008. In situ WAXS synchrotron radiation study on particle formation of precipitated barium sulphate. .AIChE J., 54: 1178-1188. DOI: 10.1002/aic.11450

183. Oncul, A.A., K. Sundmacher, A. Seidel-Morgenstern and D. Thevenin, 2006. Numerical and analytical investigation of barium sulphate crystallization. Chem. Eng. Sci., 61: 652-664. DOI:10.1016/J.CES.2005.07.037;

184. Kieffer, R., D. Mangin, F. Puel and C. Charcosset, 2009. Precipitation of barium sulphate in a hollow fiber membrane contactor: Part II The influence of process parameters. Chem. Eng. Sci., 64: 1885-1891. DOI: 10.1016/J.CES.2009.01.013

185. Adityawarman, D., A. Voigt, P. Veit and K. Sundmacher, 2005. Precipitation of BaSO4 nanoparticles in a non-ionic microemulsion: Identification of suitable control parameters. Chem. Eng. Sci., 60: 3373-3381. DOI:10.1016/J.CES.2004.12.050]

186. Wu, G., H. Zhou and S. Zhu, 2007. Precipitation of barium sulfate nanoparticles via impinging streams. Mater. Lett., 61: 168-170. DOI:10.1016/J.MATLET.2006.04.096

187. Wang, Q.A., J.X. Wang, M. Li, L. Shao and J.F. Chen et al., 2009. Largescale preparation of barium sulphate nanoparticles in a high-throughput tube-intube microchannel reactor. Chem. Eng. J., 149: 473-478. DOI: 10.1016/J.CEJ.2009.02.018

188. Judat, B. and M. Kind, 2004. Morphology and internal structure of bariumderivation of a new growth mechanism. J. Colloid Interf. Sci., 269: 341-353. DOI: 10.1016/J.JCIS.2003.07.047;

189. Bala, H., W. Fu, J. Zhao, X. Ding and Y. Jiang et al., 2005. Preparation of BaSO4 nanoparticles with self-dispersing properties. Colloids Surfaces

A:Physicochem. Eng. Aspects, 252: 129-134. DOI:10.1016/J.COLSURFA.2004.10.064

190. Jones, F., A. Oliviera, G.M. Parkinson, A.L. Rohl and A. Stanley et al., 2004. The effect of calcium cations on the precipitation of barium sulfate 1 calcium ions in the presence of organic additives. J. Crys. Growth, 262: 572-580. DOI: 10.1016/J.JCRYSGRO.2003.10.069;

191. Gupta, A., Singh, P., & Shivakumara, C. (2010). Synthesis of nanoparticles by precipitation method using sodium hexa metaphosphate as a stabilizer. Solid State Communications, 150(9-10), 386–388. doi:10.1016/j.ssc.2009.11.039

192. Nagaraja, B.M., H. Abimanyu, K.D. Jung and K.S. Yoo, 2007. Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization. J. Colloid Interf. Sci., 316:645-651. DOI: 10.1016/J.JCIS.2007.09.004

195. Shen, Y., C. Li, X. Zhu, A. Xie and L. Qiu et al., 2007. Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids. J. Chem. Sci., 119: 319-324. DOI: 10.1007/s12039-007-0043-3

196. Li, Z., S. Guo, W. Song and Y. Yan, 2002. Effect of the interfacial interaction on the phase structure and rheological behavior of polypropylene/ethyleneoctene copolymer/BaSO4 ternary composites. J. Polym. Sci. Part B: Polymer Phys., 40: 1804-1812. DOI: 10.1002/polb.10244;

197. Bala, H., W. Fu, J. Zhao, X. Ding and Y. Jiang et al.,2005. Preparation of BaSO4 nanoparticles with self-dispersing properties. Colloids Surfaces A:Physicochem. Eng. Aspects, 252: 129-134. DOI:10.1016/J.COLSURFA.2004.10.064

198. He, J., W. Ma, S. Tan and J. Zhao, 2005. Study on surface modification of ultrafine inorganic antibacterial particles. Applied Surf. Sci., 241: 279-286. DOI: 10.1016/J.APSUSC.2004.06.161

199. Bala, H., W. Fu, Y. Guo, J. Zhao and Y. Jiang et al., 2006. In situ preparation and surface modification of barium sulfate nanoparticles. Colloids Surfaces

A:Physicochem. Eng. Aspects, 274: 71-76. DOI:10.1016/J.COLSURFA.2005.08.050

200. D'Andrea, S.C. and A.Y. Fadeev, 2003. Covalent surface modification of calcium hydroxyapatite using n-Alkyl-and n-fluoroalkylphosphonic acids. Langmuir, 19: 7904-7910. DOI:10.1021/la027000s

201. Ivanova, N. I., Rudelev, D. S., Summ, B. D., & Chalykh, A. A. (2001). Colloid Journal, 63(6), 714–717. doi:10.1023/a:1013267702613

202. Qi, L., Ma, J., Cheng, H., Zhao, Z., 1996. Preparation of BaSO4 nanoparticles in non-ionic w/o microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 108, 117–126

203. Mohamed El-Shahate Ismaiel Saraya and Inas Mostafa Bakr American Journal of Nanotechnology 2 (1): 106-111, 2011; DOI: 10.3844 / ajnsp.2011.106.111

204. Bernd Judat and Matthias Kind Morphology and internal structure of barium sulfate—derivation of a new growth mechanism Journal of Colloid and Interface Science 269 (2004) 341–353

205. Dendy Adityawarmana, Andreas Voigtb, Peter Veitc, Kai Sundmacher Precipitation of BaSO4 nanoparticles in a non-ionic microemulsion: Identification of suitable control parameters Chemical Engineering Science v.60 (2005) p.3373–33813

206. Mohamed El-Shahate Ismaiel Saraya and 2Inas Mostafa Bakr Synthesis of Baso4 Nanoparticles by Precipitation Method Using Polycarboxylate as a Modifier American Journal of Nanotechnology 2 (1): 106-111, 2011.

207. Nagaraja, B.M., H. Abimanyu, K.D. Jung and K.S. Yoo, 2007. Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization. J. Colloid Interf. Sci., 316:645-651. DOI: 10.1016/J.JCIS.2007.09.004

208. S. Mende, F. Stenger, W. Peukert, J. Schwedes Mechanical production and stabilization of submicron particles in stirred media mills. Powder Technology 2003, v.132 p.64-73.

209. Emel Akyol, Murat Alper Cedimagar Size and morphology controlled synthesis of barium sulfate: Size and Morphology Controlled synthesis of barium sulfate Crystal Research and Technology 2016, v.51, N6, p.393-399 DOI: 10.1002 / crat.201600046

210. V. Ramaswamy Synthesis Of Monodispersed Barium Sulphate Nanoparticles Using Water-Benzene Mixed Solvent Advanced Materials Letters 3(1):29-33 DOI: 10.5185 / amlett.2011.4240.

211. Martin Pieper, Sergej Aman, Jürgen Tomas, Agglomeration kinetics of submicron barium sulfate precipitates, Chemical Engineering Science, , 77, (228-234), (2012). DOI:10.1016/j.ces.2011.12.043.

212. V. Ramaswamya, R. M. Vimalathithana and V. Ponnusamy Journal of Ceramic Processing Research. Vol. 12, No. 2, pp. 173~175 (2011): https://www.researchgate.net/publication/267244876

213. V. Ramaswamya, R. M. Vimalathithana and V. Ponnusamy Synthesis and characterization of BaSO4 nanjpaticles using micrj emulsion technique Adv. Appl. Res. 2010, 1 (3): 197-20. www.pelagiaresearchlibrary

214. Le Fang, Qian Sun, Yong-Hong Duan, Jing Zhai, Dang Wang and Jie-Xin Wang Preparation of transparent BaSO4 nanodispersions by high-gravity reactive precipitation combined with surface modification for transparent X-ray shielding nanocomposite film. Frontiers of Chemical Science and Engineering 2021, 15, 902-921. https://doi.org/10.1007/s11705-020-1985-y

215. L. Du, Y.J. Wang, Y.C. Lu, G.S. Luo Process intensification of BaSO4 nanoparticle preparation with agitation of microbubbles Powder Technology 247:60–68. DOI:10.1016/j.powtec.2013.06.030

216. Waleed Ali , Wahyu Putranto , Stefanus Muryanto , and Athanasius Bayuseno MATEC Web of Conferences 159, 01056 (2018) IJCAET & ISAMPE 2017, p.1-6 https://doi.org/10.1051/matecconf/201815901056.

217. Hua Yang, Shi-Xiao Wei, Han Chen, Lang Chen, Chak Tong Au, Ting-Liang Xie, Shuangfeng Yin

A High-Throughput Chaotic Advection Microreactor for Preparation of Uniform and Aggregated BaSO4 Nanoparticles AIChE Journal 202268(10) DOI:10.1002/aic.17810

218. Long CHEN 1, Jianli WANG , Hongfeng WANG , Yuchuan ZHENG, Zhaopeng QI, Guangru CHANG, Shaohua XU , Ruifeng LI, Tiantian WU, Wen XU Green Synthesis of Barium Sulfate Particles Using Plant Extracts MATEC Web of Conferences , 02017 (2016) DOI: 10.1051/matecconf/20166 SMAE 2016, pp.1-7.

219. J. R. Camphell, G. H. Nancollas Crystallization and dissolution of strontium sulfate in aqueous solution. J. Phys. Chem. 1969, 73, 6, 1735–1740 httpi.org/10.1021s://do/j100726a017

220. Otakar Sühnel, Marie Handlířová. Precipitation of Strontium
Sulphate. Crystal Research and Technology 1984, 19 (4) , 477490. https://doi.org/10.1002/crat.2170190407

221. E. Aboelezz, M.A. Sharaf, G.M. Hassan, A. El-Khodary Nano-barium– strontium sulfate as a new thermoluminescence dosimeter Journal of Luminescence Journal of Luminescence 2015 V.166, Pages 156-161.

222. M.A. Sharaf, G.M. Hassan, E. Aboelezz, A. El-Khodary, Effect of strontium additive on thermoluminescence properties of (Ba1-xSrxSO4)99.8%: Eu0.2% nanophosphor Radiat. Meas. 2014, V. 65 p. 29-35.

223. U. Madhusoodanan, A.R. Lakshmanan, Development of BaSO4:Eu thermoluminescence phosphor Radiat. Meas. V.30 Issue1, p.65-72 (1999) https://doi.org/10.1016/S1350-4487(98)00083-3

224. Emad Alhseinat, Maguy Abi Jaoude, Afra Alkatheeri, Ismail Darawsheh, Ahmad Safieh. Insights into the Composite Scale Formation and Coprecipitation Behavior of CaSO₄ and SrSO4 at different salinity level. Surfaces and Interfaces 2021, 22, 100875. https://doi.org/10.1016/j.surfin.2020.100875

225. Prutviraj K., Thimmasandra Narayan Ramesh. Surfactant mediated synthesis of barium sulfate, strontium sulfate and barium-strontium sulfate

nanoparticles. Inorganic and Nano-Metal Chemistry 2019, 49 (4) , 93-99. https://doi.org/10.1080/24701556.2019.1603162

226 Yu-Feng Li, Jia-hu Ouyang, Yu Zhou, Xue-song Liang, Ji-yong Zhong Synthesis and characterization of nano-sized BaxSr1–xSO4 ($0 \le x \le 1$) solid solution by a simple surfactant-free aqueous solution route Bull. Mater. Sci., Vol. 32, No. 2, April 2009, pp. 149–153

227. Ибарра Фернандо, Мейер Кристиане, Хаубольд Штефан, Хайдельберг Торстен Способ получения наночастиц сульфатов щелочно-земельных металлов. RU 2 338 690, WO 0220696 A1, 14.03.2002. https://yandex.ru/patents/doc/RU2338690C2_20081120.

228. Yu-Feng Li, Jia-Hu Ouyang, Yu Zhou, Xue-Song Liang, Ji-Yong Zhong Facile fabrication of SrSO4 nanocrystals with different crystallographic morphologies via a simple surfactant-free aqueous solution route. Materials Letters Volume 62, Issue 29, 30 November 2008, Pages 4417-4420. https://doi.org/10.1016/j.matlet.2008.07.0532

29. Le Geros R., Le Geros J. Phosphate minerals in human tissues / in: Phosphate minerals, edts. J.O. Nriagu and P.B. Moore. Berlin: Springer, 1984. P.351-385.

230. К. В. Васильев, М. Ю. Королева, Е. В. Юртов Получение наночастиц фосфата кальция методом контролируемого осаждения в жидкой фазе Успехи в химии и химической технологии. ТОМ XXVIII. 2014. № 6 с.49-51.

231. Е. Ю. Фадеева, М. Ю. Королева Синтез наночастиц фосфатов кальция, стабилизированных цитратом натрия Успехи в химии и химической технологии. ТОМ XXVIII. 2015. № 6 с.128-1ё29.

232. E.A. Flores-Hernández, R.H. Lira-Saldívar, R. Acosta-Ortiz, B. Méndez-Arguello, J.I. García-López, E. Díaz-Barriga-Castro, A. González-Torres, M. García-Carrillo Synthesis and characterization of calcium phosphate nanoparticles and effect of the agitation type on particles morphology Revista Mexicana de Ingeniería Química Vol. 19, No. 1 (2020) 285-298.

166

233. C.M.Manuel, M.Foster, F.J.Monteiro, M.P.Ferraz, R.H.Doremus, R.Bizios Preparation and Characterization of Calcium Phosphate Nanoparticles Key Engineering Materials Vols 254-256 (2004) pp 903-906

234. Marika Mosina and Janis Locs Synthesis of Amorphous Calcium Phosphate: A Review Key Engineering Materials 2020 Vol. 850, pp 199-206

235. Yanbao Li Æ Wenjian Weng In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios J Mater Sci: Mater Med (2007) 18:2303–2308 DOI 10.1007/s10856-007-3132-4

236. Yanbao Li, Tjandra Wiliana, Kam C. Tam Synthesis of amorphous calcium phosphate using various types of cyclodextrins Materials Research Bulletin 42 (2007) 820–827

237. Fan Zhang, Zhong Wei, Wanning Zhang, Haiyan Cui Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution Spectrochim Acta A Mol Biomol Spectrosc 2017; 182: 116-122. DOI: 10.1016 / j.saa.2017.03.066

238. Junyi Song, Fan Zhang, Yuxiong Huang, Arturo A. Keller, Xiaoxiu Tang, Wanning Zhang, Weibin Jia, Jerome Santos Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environmental Science: Nano 2018, pp. 1-28. DOI: 10.1039/C8EN00403J

239. Wafa I Abdel-Fattah1, Fikry M Reicha2 and Tarek A Elkhooly Nano-betatricalcium phosphates synthesis and biodegradation: 1. Effect of microwave and SO2– 4 ions on β -TCP synthesis and its characterization. Biomed. Mater. 3 (2008) 034121 (13pp)

240. Rehab H. Hagab Yousra H. Kotp, Doaa Eissa Using nanotechnology for enhancing phosphorus fertilizer use efficiency in peanut bean grown in sandy soils. J Adv Pharm Edu Res 2018; 8(3):59-67

241. Shundong Miaoa, Wenjian Wenga ,Kui Chengb, Piyi Duc, Ge Shend, Gaorong Hane Preparation of Nano-sized Strontium Containing Tricalcium Phosphate Particles Key Engineering Materials ISSN: 1662-9795, Vols. 330-332, pp 263-266. doi:10.4028/www.scientific.net/KEM.330-332.263

242. Dong Zhang Removal of Heavy Metal Ions from Water Using Nano-barium Strontium Titanate Immobilized on the Silica gel G as an Adsorbent. Applied Mechanics and Materials Vols 71-78 (2011) pp 3500-3503

243. Bangshang Zhu, Falei Yuan, Xiaoya Yuan, Yang Bo, Yongting Wang, Guo-Yuan Yang,, Gregor P. C. Drummen, Xinyuan Zhu. Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo. J Nanopart Res (2014) 16:2279 DOI 10.1007/s11051-014-2279-4

244. Langlang Liu, Yanzeng Wu, Chao Xu, Suchun Yu, Xiaopei Wu, and Honglian Dai Synthesis, Characterization of Nano-β-Tricalcium Phosphate and the Inhibition on Hepatocellular Carcinoma Cells Journal of Nanomaterials Volume 2018, Article ID 7083416, 7 pages https://doi.org/10.1155/2018/7083416

245. Fan Zhang, Xin Chen, Wanning Zhang, Yuefei Ji, Dual-functionalized strontium phosphate hybrid nanopowder for effective removal of Pb2 + and malachite green from aqueous solution, Powder Technology (2017), doi:10.1016/j.powtec.2017.05.031