На правах рукописи

Auf

АНОСОВА ЕЛИЗАВЕТА ПЕТРОВНА

ФИЛЬТРАЦИЯ ФЛЮИДА В ТРЕЩИНЕ ГРП, ПЕРПЕНДИКУЛЯРНОЙ К ГОРИЗОНТАЛЬНОЙ СКВАЖИНЕ

1.1.9. Механика жидкости, газа и плазмы

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

 $У \varphi a - 2024$

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Уфимский государственный нефтяной технический университет»

Научный руководитель:	Нагаева Зиля Мунировна кандидат физико-математических наук
Официальные оппоненты:	Байков Виталий Анварович доктор физико-математических наук, профессор, старший эксперт бюро старших экспертов Общества с ограниченной ответственностью «РН-БашНИПИнефть»
	Игошин Дмитрий Евгеньевич кандидат физико-математических наук, профессор кафедры фундаментальной математики и механики Федерального государственного автономного образовательного учреждения высшего образования «Тюменский государственный университет»
Ведущая организация	Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет», г. Казань

Защита диссертации состоится «03» октября 2024 года в 14:00 часов на заседании диссертационного совета 24.2.479.05 на базе ФГБОУ ВО «Уфимский университет науки и технологий», по адресу: 450008, г. Уфа, ул. К. Маркса, д.12.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Уфимский университет науки и технологий» и на сайте <u>https://uuts.ru/</u>.

Автореферат диссертации разослан «____» ____ 2024 г.

Ученый секретарь диссертационного совета, канд. физ.-мат. наук, доцент

Киреев Виктор Николаевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертационной работы. Гидравлический разрыв пласта (ГРП) в горизонтальных скважинах позволяет увеличить площадь дренирования и тем самым увеличить производительность скважины. Использование горизонтальных скважин позволяет ограничить поступление нежелательных флюидов при разработке залежей с активной подошвенной водой и газовой шапкой.

В настоящее время остаётся актуальной проблема описания процесса фильтрации вблизи горизонтальной скважины. Для этого в основном активно используются численные методы. Вследствие этого, актуальным является построение теории, описывающей распространение волн давления в трещинах ГРП и окружающей их пористой и проницаемой среде. Наличие точных аналитических решений позволяет получить более детальную информацию о давлении вблизи скважины и на её забое, позволяет анализировать продуктивность выработки пластов и определять их коллекторские свойства. Кроме того, точные аналитические решения позволяют тестировать решения, найденные численными методами по другим моделям.

Цель исследовательской работы. Цель диссертационной работы заключается в построении математической модели, описывающей нестационарную фильтрацию флюида в системе «пласт – трещина ГРП – скважина», получение по этой модели аналитических решений задачи о распределении давления в трещине ГРП, расположенной перпендикулярно к горизонтальной скважине, с учетом фильтрационных потоков между трещиной и пористым пластом, а также анализ влияния коллекторских характеристик углеводородного пласта и трещины ГРП на эволюцию давления и дебит скважины.

Для достижения цели определены и решены следующие задачи:

 сформулирована математическая модель, представляющая собой интегро-дифференциальное уравнение, для описания эволюции давления в трещине ГРП, расположенной перпендикулярно к горизонтальной скважине, с учетом фильтрационного потока флюида через стенки трещины в окружающую породу;

 изучена динамика гармонических фильтрационных волн давления в трещине ГРП, перпендикулярной к горизонтальной скважине; проведен сравнительный анализ результатов решения задачи распространения гармонических волн давления при наличии трещины ГРП и при её отсутствии;

– получены точные аналитические решения, описывающие эволюцию полей давления жидкости в трещине ГРП, перпендикулярной к

горизонтальной скважине, при повышении давления на скважине на фиксированную величину с дальнейшим удержанием данного значения;

 – для проведения анализа эффективности применения технологии ГРП рассмотрена задача о распределении давления на забое скважины при отсутствии трещины ГРП;

 получены точные аналитические решения, описывающие эволюцию полей давления жидкости в трещине ГРП, перпендикулярной к горизонтальной скважине, при работе скважины в режиме постоянного расхода;

– получены приближенные решения методом последовательной смены стационарных состояний (ПССС), описывающие эволюцию полей давления жидкости в трещине ГРП, перпендикулярной к горизонтальной скважине, при работе скважины в режиме постоянного перепада давления между скважиной и пластом и при работе скважины в режиме постоянного расхода; проведен сравнительный анализ полученных точных и приближенных решений;

 изучено влияние фильтрационно-ёмкостных характеристик пласта и трещины ГРП на динамику распределения давления в самой трещине и на забое скважины.

Научная новизна диссертационной работы. В ходе проведенных исследований в диссертационной работе получены следующие результаты:

– построена математическая модель в виде интегро-дифференциального уравнения для описания распределения давления в трещине ГРП, перпендикулярной стволу горизонтальной скважины, с учетом фильтрации жидкости через стенки трещины в окружающую трещину пористую и проницаемую среду; разработанная модель позволяет определять приток флюида по трещине к горизонтальной скважине;

 получены аналитические решения, описывающие возмущение волн давления в трещине ГРП, перпендикулярной к горизонтальной скважине, а также в пористой среде вблизи трещины, при гармонических колебаниях давления флюида в скважине;

– получены точные аналитические решения для распределения давления жидкости в трещине ГРП, перпендикулярной к горизонтальной скважине, с учетом фильтрации флюида через стенки трещины в окружающую трещину пористую среду при различных режимах работы скважины (при задании постоянного перепада давления между скважиной и пластом и/или при задании постоянного расхода на скважине), получены формулы для определения забойного давления и дебита скважины. Полученные формулы позволяют определить основные закономерности изменения давления в скважине и её дебита в зависимости от коллекторских характеристик нефтяного пласта и характеристик трещины ГРП; – получены приближенные решения методом последовательной смены стационарных состояний (ПССС) для распределения давления жидкости в трещине ГРП, перпендикулярной к горизонтальной скважине, при задании постоянного перепада давления между скважиной и пластом, а также при задании постоянного расхода на скважине.

Степень достоверности апробация результатов u обусловливается корректностью физической и математической постановки разработке применением при математических моделей задачи, фундаментальных законов механики многофазных сред И теории фильтрации; приближенных решений, получением точных И гидродинамическим непротиворечащих общим представлениям И находящихся в соответствии с результатами, которые были получены другими исследователями в рассматриваемой области.

Теоретическая и практическая ценность полученных результатов заключается в следующем:

1) Позволяют расширить теоретические основы описания нестационарной фильтрации для горизонтальных скважин, пересеченных перпендикулярными к оси скважины трещинами ГРП.

2) Позволяют установить качественные и количественные закономерности формирования полей давления в системе «скважина – трещина ГРП – пласт» при различных режимах работы скважины, а именно в режиме постоянного перепада давления между скважиной и пластом и при работе скважины в режиме постоянного расхода.

3) Показывают, что трещина ГРП в пористой и проницаемой среде является «волновым каналом» для низкочастотных колебаний давления в призабойной зоне скважины, что позволяет диагностировать качество ГРП посредством гидропрослушивания.

4) Позволяют на основе полученных аналитических решений, соответствующих заданию на забое скважины постоянной депрессии и/или расхода, исследовать влияние фильтрационно-ёмкостных характеристик в призабойной зоне скважины на закономерности распространения давления в трещинах ГРП.

5) Полученные решения могут служить основой для тестирования алгоритмов расчетов при теоретическом описании процессов фильтрации в пластах с трещинами ГРП по более сложным математическим моделям.

Методы исследования. В диссертационной работе для постановки и решения задач были использованы уравнения математической физики, методы теории обыкновенных дифференциальных уравнений, методы решений уравнений в частных производных. Для нахождения точных решений использовались методы интегральных преобразований Лапласа и Меллина, методы теории функций комплексного переменного. Для

визуализации численных решений через графическое представление использовались пакеты прикладных программ GNU Octave и Maple.

Основные положения и результаты, выносимые на защиту:

1. Математическая модель нестационарной фильтрации, в виде интегро-дифференциального уравнения для описания фильтрации жидкости в трещине ГРП, расположенной перпендикулярно стволу горизонтальной скважины, с учетом фильтрации флюида в пласт (или из пласта в трещину ГРП и в скважину).

2. Решения, описывающие распределение давления в трещине ГРП, перпендикулярной к горизонтальной скважине, при гармоническом законе изменения давления на скважине.

3. Точные аналитические решения, описывающие эволюцию давления в трещине ГРП, перпендикулярной к горизонтальной скважине, при повышении давления на скважине на фиксированную величину с дальнейшим удержанием данного значения.

4. Точные аналитические решения, описывающие эволюцию давления в трещине ГРП, перпендикулярной к горизонтальной скважине, а также закон изменения давления на забое скважины, при работе скважины в режиме постоянного расхода.

5. Приближенные решения, полученные методом ПССС, описывающие эволюцию давления в трещине ГРП, перпендикулярной к горизонтальной скважине, при работе скважины в режиме постоянного перепада давления между скважиной и пластом и в режиме постоянного расхода.

Результаты работы докладывались на следующих научных конференциях:

XII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики (г. Уфа, август 2019 г.); Всероссийская научная конференция с международным участием «Актуальные проблемы механики сплошной среды – 2020» (28 сентября – 2 октября 2020 г. Казань); семинары лаборатории механики многофазных систем Института механики им. Р. Р. Мавлютова под руководством доктора физико-математических наук, профессора В.Ш. Шагапова, (г. Уфа, 2019 – 2022 гг.); IV Международная научно – практическая конференция «Физика конденсированного состояния и ее приложения (Республика Башкортостан, г. Стерлитамак, сентябрь 2022 Международная научная конференция «Уфимская г.); осенняя математическая школа» (г. Уфа, сентябрь 2022 г); XX Всероссийская конференция молодых ученых по математическому моделированию и информационным технологиям (г. Новосибирск, октябрь 2022 г.); Международная научная конференция «Комплексный анализ. математическая нелинейные уравнения» (Республика физика И Башкортостан, оз. Банное, 13-17 марта 2023 г.); Третья международная летняя конференция «Физико-химическая гидродинамика: модели и приложения»

(25-30 июня, г. Уфа); XXIV Всероссийская конференция молодых ученых по математическому моделированию и информационным технологиям (г. Красноярск, октябрь 2023 г., диплом победителя); Международная научно-практическая конференция имени Д.И. Менделеева, посвященная 15 – летию Института промышленных технологий и инжиниринга, (г. Тюмень, 16-18 ноября 2023 г., диплом III степени).

Публикации. Основные научные результаты исследований в диссертационной работе представлены в 11 работах, опубликованных в журналах и научных сборниках, в том числе 4 работы в рецензируемых научных изданиях, входящих одновременно в наукометрические базы Scopus, Web of Science, и RSCI.

Благодарность. Автор выражает безмерную благодарность и глубокую признательность, доктору физико-математических наук, профессору Владиславу Шайхулагзамовичу Шагапову за постановку данной задачи, ценные советы, постоянное внимание к исследовательской работе и разделяет горечь и невосполнимую утрату в связи с кончиной прекрасного деятеля науки. Особую благодарность автор выражает научному руководителю, кандидату физико-математических наук, Зиле Мунировне Нагаевой за помощь и поддержку на всех этапах исследования.

Структура и объем диссертационной работы. Исследовательская работа состоит из введения, четырех глав, заключения и списка литературы. Объем диссертационной работы составляет 127 страниц, включая 31 рисунок, 4 таблицы и список литературы, содержащий 152 работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении раскрыта актуальность темы диссертационного исследования, перечислены цели и задачи, приведены основные положения и результаты исследовательской работы, выносимые на защиту, представлена научная новизна, достоверность, теоретическая и практическая значимость исследований.

Первая глава посвящена обзору ключевых литературных источников, посвященных изучению технологии гидравлического разрыва пласта, исследованию фильтрации флюида в трещине ГРП и в пористой проницаемой среде, окружающей трещину.

Во второй главе дается постановка задачи и описывается процесс построения математической модели, которая сводится к одному интегродифференциальному уравнению, описывающему фильтрацию флюида от скважины по трещине ГРП в пласт или из пласта в трещину ГРП и в скважину. Исследовано распространение гармонических волн давления.

Рассмотрим вертикальную трещину ГРП, которая расположена перпендикулярно к горизонтальной скважине (рис.1). Предполагается, что

трещина бесконечной протяженности симметрична относительно ствола скважины (в силу данного допущения будем рассматривать течение жидкости только с одной её стороны) и ее размеры не изменяются, в следствии, закрепления ее пропантом. Течение в трещине, инициированное функционированием скважины, радиально симметричное. Относительно пласта, окружающего трещину, вносим следующие предположения: пласт считаем однородным с постоянной проницаемостью, а скелет трещины ГРП и самой породы будем считать несжимаемым.

Рис. 1. Схема области течения флюида (1/2 часть области фильтрации)

Рассмотрим уравнение неразрывности для флюида в трещине ГРП

$$\frac{\partial \left(m_{f} \rho_{f}\right)}{\partial t} + \frac{1}{r} \frac{\partial \left(r \rho_{f} \upsilon_{f}\right)}{\partial r} = -2 \frac{\rho_{p} \upsilon_{p}}{d_{f}} \bigg|_{\nu=0}, \quad a < r$$
(1)

где a – радиус скважины, m_f – пористость флюида в трещине, m_p – пористость флюида в пористой среде, ρ_p – плотность флюида в пласте, ρ_f – плотность флюида в трещине, υ_p – скорость фильтрации флюида в пласте, υ_f – скорость фильтрации флюида в трещине.

Правая часть уравнения (1) выражает переток жидкости в системе «трещина–пласт». Для его определения решим сопряженную фильтрационную задачу в пласте вне трещины. Запишем уравнение неразрывности в пористой среде

$$\frac{\partial \left(m_{p}\rho_{p}\right)}{\partial t} + \frac{\partial \left(\rho_{p}\upsilon_{p}\right)}{\partial y} = 0, \quad 0 < y < \infty.$$

$$\tag{2}$$

Здесь ось Оу отсчитывается от стенки трещины.

Фильтрацию в трещине и пласте опишем с помощью закона Дарси

$$\nu_f = -\frac{k_f}{\mu} \frac{\partial P_f}{\partial r}, \quad a < r < \infty, \quad \nu_p = -\frac{k_p}{\mu} \frac{\partial P_p}{\partial y}, \quad a < r < \infty, \quad 0 < y < \infty, \quad (3)$$

где k_p — коэффициент проницаемости пласта; k_f — коэффициент проницаемости трещины; μ — динамическая вязкость флюида; P_f — давление жидкости в трещине; P_p — давление жидкости в пласте.

Сжимаемость флюида учитываем в акустическом приближении

$$P_{p} - P_{0} = C^{2}(\rho_{p} - \rho_{0}), \quad P_{f} - P_{0} = C^{2}(\rho_{f} - \rho_{0}), \quad (4)$$

где C – скорость распространения звука, индекс 0 внизу для давления и плотности соответствует их невозмущенным значениям. Флюид будем считать слабо сжимаемым $|\rho_i - \rho_0| \ll \rho_i \approx \rho_0$, i = p, f. Нижние индексы p и f здесь и в дальнейшем соответствуют значениям параметров в пласте и трещине ГРП.

Подставляя (3) и (4) в уравнения (1) и (2) получим систему, описывающую фильтрацию в трещине ГРП и окружающей пористой среде:

$$\frac{\partial P_f}{\partial t} = \frac{\mathfrak{a}_f}{r} \frac{\partial}{\partial r} \left(r \frac{\partial P_f}{\partial r} \right) + 2 \frac{m_p}{m_f} \frac{\mathfrak{a}_p}{d_f} \left(\frac{\partial P_p}{\partial y} \right) \bigg|_{y=0}, \quad a < r < \infty,$$
(5)

$$\frac{\partial P_p}{\partial t} = \mathfrak{a}_p \frac{\partial^2 P_p}{\partial y^2}, \quad a < r < \infty, \quad 0 < y < \infty, \text{ где } \mathfrak{a}_i = \frac{k_i \rho_0 C^2}{m_i \mu}, \quad (i = f, p).$$
(6)

Функция P_{f} зависит от переменных от t и r, а функция P_{p} , зависит от t, r, y.

Система (5) и (6) сводится к одному интегро-дифференциальному уравнению для P_f :

$$\frac{\partial P_f}{\partial t} = \frac{\mathfrak{a}_f}{r} \frac{\partial}{\partial r} \left(r \frac{\partial P_f}{\partial r} \right) - 2 \frac{m_p}{m_f} \frac{\mathfrak{a}_p}{d_f} \int_{-\infty}^{t} \frac{\partial \left(P_f(\tau, r) - P_0 \right)}{\partial \tau} \frac{d\tau}{\sqrt{\pi \mathfrak{a}_p(t - \tau)}}.$$
 (7)

Уравнение (7) является линейным для функции $\Delta P_f = P_f - P_0$. Пусть возмущение давления в скважине меняется по гармоническому закону

$$P_{(w)} - P_0 = A_{(w)}^{(p)} \cos(\omega t) = \operatorname{Re}(A_{(w)}^{(p)} e^{-i\cdot\omega \cdot t}), \qquad (8)$$

где индекс (w) соответствует значениям параметров на забое скважины.

Решение уравнения (7) будем искать в виде бегущей волны

$$\Delta P_f = \operatorname{Re}(A_f^{(p)}(r)e^{-i\cdot\omega\cdot t}).$$
(9)

Подставляя (9) в (7), получим

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d}{dr}A_{f}^{(p)}\right) = z^{2}A_{f}^{(p)}, \quad z^{2} = -i\left(\frac{\omega}{\omega_{f}} + \frac{2}{d_{f}}\frac{m_{p}}{m_{f}}\frac{\sqrt{\omega_{p}}}{\omega_{f}}\sqrt{i\omega}\right).$$
(10)

Исследуя зависимость параметра z^2 от круговой частоты, можно сделать вывод, что $\frac{\omega}{w_f} \ll \left|z^2\right|$ в плане рассмотрения гармонических

колебаний для частот, удовлетворяющих условию $\omega \ll \omega_*$, где $\omega_* = 4 \frac{m_p^2}{m_f^2} \frac{\alpha_p}{d_f^2}$.

Поскольку для случаев, представляющих практический интерес, данное условие всегда выполняется, в дальнейшем для параметра z^2 будем использовать выражение $z^2 = \frac{2}{d_c} \frac{m_p}{m_c} \frac{\sqrt{w_p}}{w_c} \sqrt{-i\omega}$.

Будем считать, что давление на бесконечности равно невозмущенному значению, то есть

$$P_f = P_0 \quad \text{или} \quad \Delta P_f = 0 \quad (r = \infty). \tag{11}$$

Решение уравнения (10), которое в соответствии с (8) и (11) должно удовлетворять следующим граничным условиям

$$A_{f}^{(p)} = A_{(w)}^{(p)} \quad (r = a) \quad \text{if} \quad A_{f}^{(p)} = 0 \quad (r = \infty), \tag{12}$$

имеет следующий вид

$$A_{f}^{(p)} = A_{(w)}^{(p)} \frac{K_{0}(zr)}{K_{0}(za)},$$
 где $K_{0}(zr) = \int_{0}^{\infty} \exp(-zrch(\xi))d\xi.$ (13)

С учетом выражения (13) решение (9) представляется в следующем виде

$$\Delta P_{f} = A_{f}^{\prime(p)} \cos\left(\omega t - \Delta\varphi_{f}\right), \text{ где } A_{f}^{\prime(p)} = A_{(w)}^{(p)} \left| \frac{K_{0}\left(zr\right)}{K_{0}\left(za\right)} \right|, \Delta\varphi_{f} = \arg\left(\frac{K_{0}\left(zr\right)}{K_{0}\left(za\right)}\right).$$
(14)

На основе системы (5) – (6) с учетом решения (14) можно получить решение, для распределения давления в пористой среде, вблизи трещины

$$P_{p} = P_{0} + A_{(w)}^{(p)} \left| \frac{K_{0}(zr)}{K_{0}(za)} \right| e^{-\delta y} \cos\left(\omega t - \Delta\varphi_{f} - ky\right), \qquad k = \delta = \sqrt{\frac{\omega}{2\varpi_{p}}}.$$
 (15)

Следовательно, в каждой точке пористой среды (r > a, y > 0) давление флюида будет совершать гармонические колебания с амплитудой

$$A_{p}^{\prime(p)} = A_{(w)}^{(p)} \left| \frac{K_{0}(zr)}{K_{0}(za)} \right| e^{-\delta y}$$

и со сдвигом по фазе от колебаний давления в скважине $\Delta \varphi_p = \Delta \varphi_f + ky$.

Для сравнительного анализа рассмотрено распространение гармонических волн в однородной пористой и проницаемой среде при отсутствии трещины ГРП. Получено решение, описывающее распространение давления вокруг скважины, в виде

$$\Delta \tilde{P}_{p} = \tilde{A}_{p}^{\prime(p)} \cos\left(\omega t - \Delta \tilde{\varphi}_{p}\right), \tag{16}$$

где

$$\begin{split} \tilde{A}_{p}^{\prime(p)} &= A_{(w)}^{(p)} \left| K_{0} \left(r \sqrt{\frac{i\omega}{\alpha_{p}}} \right) \right/ K_{0} \left(a \sqrt{\frac{i\omega}{\alpha_{p}}} \right) \right|, \\ \Delta \tilde{\varphi}_{p} &= \arg \left(K_{0} \left(r \sqrt{\frac{i\omega}{\alpha_{p}}} \right) \right/ K_{0} \left(a \sqrt{\frac{i\omega}{\alpha_{p}}} \right) \right). \end{split}$$

При вычислительных расчетах во второй главе примем некоторые типичные характерные величины для системы «скважина – трещина ГРП – пласт»: $k_p = 10^{-15} \text{ m}^2$, $k_f = 10^{-10} \text{ m}^2$, $d_f = 10^{-2} \text{ m}$, $a = 10^{-1} \text{ m}$, $m_p = m_f = 10^{-1}$. В качестве флюида принята нефть: $\rho_0 = 860 \text{ кг/m}^3$, $\mu = 10^{-2} \text{ Па \cdot с}$.

На рис. 2 сплошными линиями представлено распределение безразмерной амплитуды $\Delta_f = \frac{A_f^{\prime(p)}}{A_{(w)}^{(p)}}$ колебаний давления по радиальной

координате r, пунктирными линиями показано распределение $\tilde{\Delta}_n$ в пласте при отсутствии трещины ГРП для различных значений круговой частоты. Линии 1, 2, 3 соответствуют значениям круговой частоты $\omega = 10^{-4}, 10^{-3}, 10^{-2} \text{ c}^{-1},$ соответственно. Из сравнения графиков, представленных на рис. 2 следует, что характерное расстояние затухания гармонических возмущений давления, распространяющихся вдоль трещины, может значительно превышать аналогичное расстояние от скважины при отсутствии трещины ГРП.

На рис. З представлено распределение безразмерной амплитуды давления $\Delta_p = \frac{A_p^{r(p)}}{A_{(w)}^{(p)}}$ по координате *y* при $\omega = 10^{-3}$ с⁻¹. Линии *1, 2, 3, 4* соответствуют значениям радиальной координаты r = 0.1, 10, 20, 50 м, соответственно, где r – расстояние от скважины.

Рис.2 Распределение безразмерной амплитуды колебаний давления Δ_f
 вдоль трещины ГРП (сплошные линии) и в пласте Δ̃_p при отсутствии
 трещины ГРП (пунктирные линии) при различных значениях ω

Рис.3 Распределение безразмерной амплитуды колебаний давления Δ_p в пласте в зависимости от расстояния до трещины при различных значениях r – расстояния от скважины

В третьей главе рассматривается процесс нестационарной фильтрации флюида в трещине ГРП, расположенной в пористой и проницаемой среде, перпендикулярно стволу скважины, в режиме постоянного перепада давления между скважиной и пластом, а также при работе скважины в режиме постоянного расхода.

Рассматривается начальный этап фильтрационных процессов, когда возмущения давления в пластах вблизи соседних трещин ГРП, обусловленные повышением давления в скважине, слабо взаимодействуют. Кроме того, влияние дальней границы трещины на фильтрационные процессы в ней незначительно. Эти предположения позволяют принять краевые условия для давления в пласте и трещине ГРП: $P_f = P_p = P_0$ при $r \to \infty$, $y \to 0$, где r – радиальная координата; y – координата, отсчитываемая от внешней границы трещины. Пусть в исходном состоянии (t < 0) жидкость в трещине ГРП и пласте находится в состоянии равновесия $(v_i = 0, P_i = P_0, i = f, p)$. В момент времени t = 0 давление в скважине $P_{f(w)}$ изменяется на величину $\Delta P_{f(w)}$ и далее поддерживается постоянным $P_{f(w)} = P_0 + \Delta P_{f(w)} = const$.

Полагаем, что левая часть уравнения (7) равна нулю. При проведении оценки времени, когда данным слагаемым можно пренебречь, получено, что значение критического времени составляет меньше секунды, а так как в данной работе, как и в большинстве работ представляющих практический интерес, рассматриваются времена больше данного значения, то процесс фильтрации жидкости по трещине ГРП к скважине (или от скважины), можно рассматривать с учетом равенства нулю левой части уравнения (7).

С учетом приведенных допущений, уравнение (7) и система начальных и граничных условий запишется, как

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\Delta P_{f}}{\partial r}\right) = \chi_{f} \int_{0}^{t} \frac{\partial\Delta P_{f}}{\partial\tau} \frac{d\tau}{\sqrt{\pi(t-\tau)}}, \text{ rge } \chi_{f} = \frac{2}{d_{f}} \frac{m_{p}}{m_{f}} \frac{\sqrt{\alpha_{p}}}{\alpha_{f}}, a < r < \infty; (17)$$

$$\Delta P_f = 0, \ t \le 0, \ r > a \ ; \quad \Delta P_f = \Delta P_{f(w)}, \ t > 0, \ r = a, \ \Delta P_f = P_f - P_0.$$
(18)

Используя аппарат преобразований Лапласа и методы комплексного анализа, получим решение, описывающее эволюцию распределения давления в трещине ГРП

$$\Delta P_{f} = \Delta P_{f(w)} \left[1 + \frac{2}{\pi i} \int_{0}^{+\infty} \left(\frac{K_{0}\left(e^{i\pi/4}ru\right)}{K_{0}\left(e^{i\pi/4}au\right)} - \frac{K_{0}\left(e^{-i\pi/4}ru\right)}{K_{0}\left(e^{-i\pi/4}au\right)} \right) \frac{e^{-u^{4}t/\chi_{f}^{2}}du}{u} \right].$$
(19)

Используя решение (19), для расхода жидкости в скважине (r = a) через трещину ГРП получаем

$$q = -4iad_{f} \frac{k_{f}}{\mu} \Delta P_{f(w)} \int_{0}^{+\infty} \left(\frac{K_{1}\left(e^{i\pi/4}au\right)}{K_{0}\left(e^{i\pi/4}au\right)} e^{i\pi/4} - \frac{K_{1}\left(e^{-i\pi/4}au\right)}{K_{0}\left(e^{-i\pi/4}au\right)} e^{-i\pi/4} \right) \cdot e^{-u^{4}t/\chi_{f}^{2}} du.$$
(20)

Для проведения анализа эффективности трещин ГРП рассмотрена задача для скважины с открытым участком протяженностью l_p , где трещины ГРП отсутствуют. Решение будет иметь вид

$$\Delta P_{p}(t,r) = \Delta P_{p(w)} \left[1 + \frac{2}{\pi i} \int_{0}^{+\infty} \left(\frac{K_{0}\left(e^{i\pi/2}ru^{2}\right)}{K_{0}\left(e^{i\pi/2}au^{2}\right)} - \frac{K_{0}\left(e^{-i\pi/2}ru^{2}\right)}{K_{0}\left(e^{-i\pi/2}au^{2}\right)} \right) \frac{e^{-u^{4}w_{p}t}du}{u} \right].$$
(21)

Используя решение (21), для расхода жидкости через открытый участок скважины протяженностью l_p получим

$$q = -4al_{p} \frac{k_{f}}{\mu} \Delta P_{f(w)} \int_{0}^{+\infty} \left(\frac{K_{1}(e^{i\pi/2}au^{2})}{K_{0}(e^{i\pi/2}au^{2})} + \frac{K_{1}(e^{-i\pi/2}au^{2})}{K_{0}(e^{-i\pi/2}au^{2})} \right) \cdot e^{-u^{4}w_{p}t} u du .$$
 (22)

При вычислительных расчетах в третьей и четвертых главах примем некоторые типичные характерные величины для системы «скважина, трещина ГРП, пласт»: $k_f = 10^{-10} \text{ m}^2$, $d_f = 3 \times 10^{-3} \text{ m}$, $a = 10^{-1} \text{ m}$, C = 1500 m/c, $m_p = m_f = 10^{-1}$, $l_p = 10 \text{ m}$, $\Delta P_{f(w)} = 5 \text{ M} \Pi a$, $P_0 = 10 \text{ M} \Pi a$, для величины расхода принято значение $q = 5 \times 10^{-5} \text{ m}^3/\text{c}$. В качестве флюида принята нефть: $\rho_0 = 860 \text{ кг/m}^3$, $\mu = 10^{-2} \Pi a \cdot \text{c}$.

На рис. 4 представлено распределение давления в трещине ГРП и в пласте при отсутствии трещины для различных значений коэффициента проницаемости пласта k_p : 10^{-16} , 10^{-15} , 10^{-14} м², при $t = 10^5$ с. Видно, что с ростом проницаемости пласта наблюдается более быстрое падение давления.

На рис. 5 представлены графики, иллюстрирующие распределение давления в трещине и в пласте при отсутствии трещины ГРП для различных моментов времени $t: 10^4, 10^5, 10^6$ с при проницаемости пласта равной $k_p = 10^{-15}$ м². Видно, что с увеличением времени значение давления на фиксированном расстоянии r от скважины увеличивается.

На рис.6(а) показано влияние проницаемости пласта на эволюцию расхода жидкости при $d_f = 3 \cdot 10^{-3}$ м. Видно, что в начальный период времени $t \approx 10^4$ с наблюдается существенное уменьшение дебита, а в дальнейшем дебит уменьшается более медленно. Также, при наличии трещины ГРП изменение проницаемости пласта не оказывает значительного влияния на дебит скважины. Увеличение проницаемости пласта даже на два порядка, к примеру, от значения $k_p = 10^{-16}$ м² до значения $k_p = 10^{-14}$ м², приводит к увеличению дебита приблизительно на 25%. При отсутствии трещины ГРП и значении коэффициента проницаемости пласта $k_p = 10^{-14}$ м² дебит скважины приблизительно в три раза меньше, чем при наличии трещины ГРП.

На рис.6(б) показано влияние ширины трещины ГРП на дебит скважины при $k_p = 10^{-15}$ м². Для сравнения показана зависимость q(t) для случая отсутствия трещины. Видно, что дебит жидкости через трещину ГРП увеличивается пропорционально ее ширине. Увеличение ширины трещины с $d_f = 2$ мм до $d_f = 4$ мм приводит к увеличению дебита в два раза. Следовательно, дебит жидкости лимитируется пропускной способностью

трещины. При отсутствии трещины ГРП дебит скважины приблизительно в 10 раз меньше, чем при наличии трещины шириной $d_f = 2 \text{ мм}$.

Рис.4 Распределение давления в трещине (точные решения – сплошные, приближенные решения – пунктирные линии) и в пласте при отсутствии трещины ГРП (штрихпунктирные линии) при $t = 10^5$ с и различных k_p : $1 - 3 - k_p = 10^{-16}, 10^{-15}, 10^{-14}$ м²

Рис. 5 Распределение давления в трещине (точные решения – сплошные, приближенные решения – пунктирные линии) и в пласте при отсутствии трещины ГРП (штрихпунктирные линии) в различные моменты времени $1-3-t = 10^4, 10^5, 10^6, c$

Рис. 6 Зависимость дебита скважины q от времени t

 $(a) - при различных значениях <math>k_p$: I-3- $k_p = 10^{-16}, 10^{-15}, 10^{-14} \text{ м}^2$

(сплошные линии-точные решения, пунктирные – приближенные, штрихпунктирные линии - при отсутствии трещины ГРП)

(б) – при различных значениях
$$d_f$$
:
 $1 - d_f = 2 \cdot 10^{-3}$ м, $2 - d_f = 3 \cdot 10^{-3}$ м,
 $3 - d_f = 4 \cdot 10^{-3}$ м, $4 - d_f = 0$
(отсутствие трещины ГРП)
(сплошные линии – точные
решения, пунктирные –
приближенные решения)

Рассмотрим фильтрацию в режиме постоянного расхода. Пусть в исходном состоянии $(t \le 0)$ флюид в трещине ГРП и окружающей ее пористой среде находится в покое, и, следовательно, давление однородно. В момент времени t = 0 начинается с постоянным расходом отбор (q > 0) или нагнетание (q < 0) жидкости из скважины в трещину. Рассмотрим случай, когда q > 0. Так же, как и для случая повышения давления, принимаем левую часть уравнения (7) равной нулю. Тогда, само уравнение и его система начальных и граничных условий будут иметь следующий вид

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\Delta P_{f}}{\partial r}\right) = \chi_{f}\int_{0}^{t}\frac{\partial\Delta P_{f}}{\partial\tau}\frac{d\tau}{\sqrt{\pi(t-\tau)}}, \quad a < r < \infty, \quad \chi_{f} = \frac{2}{d_{f}}\frac{m_{p}}{m_{f}}\frac{\sqrt{x_{p}}}{x_{f}} \quad (23)$$

$$\Delta P_{f} = 0, \ \left(\Delta P_{f} = P_{f} - P_{0}\right), \ (t \le 0, r > a)$$
(24)

$$q = -2\pi a d_f \left. \frac{k_f}{\mu} \left(\frac{\partial \Delta P_f}{\partial r} \right) \right|_{r=a} = const.$$
(25)

Далее, как и для случая с повышением давления, будем использовать преобразование Лапласа и методы комплексного анализа.

Решение будет иметь вид

$$\Delta P_{f}(t,r) = \frac{q\mu}{\pi^{2}iad_{f}k_{f}\sqrt{\chi_{f}}} \times \int_{0}^{+\infty} \left(\frac{K_{0}\left(\sqrt{\chi_{f}}ue^{-i\frac{\pi}{4}}r\right)}{K_{1}\left(\sqrt{\chi_{f}}ue^{-i\frac{\pi}{4}}a\right)e^{-i\frac{\pi}{4}}} - \frac{K_{0}\left(\sqrt{\chi_{f}}ue^{i\frac{\pi}{4}}r\right)}{K_{1}\left(\sqrt{\chi_{f}}ue^{i\frac{\pi}{4}}a\right)e^{i\frac{\pi}{4}}} \right) \frac{\left(1 - e^{-u^{4}t}\right)}{u^{2}}du.$$
(26)

Из решения (26) получим закон изменения на забое скважины, полагая r = a

$$\Delta P_{f(w)}(t,r) = \frac{q\mu}{\pi^{2}iad_{f}k_{f}\sqrt{\chi_{f}}} \times \int_{0}^{+\infty} \frac{1}{u^{2}} \left(\frac{K_{0}\left(\sqrt{\chi_{f}}ue^{-i\frac{\pi}{4}}a\right)}{K_{1}\left(\sqrt{\chi_{f}}ue^{-i\frac{\pi}{4}}a\right)e^{-i\frac{\pi}{4}}} - \frac{K_{0}\left(\sqrt{\chi_{f}}ue^{i\frac{\pi}{4}}a\right)}{K_{1}\left(\sqrt{\chi_{f}}ue^{i\frac{\pi}{4}}a\right)e^{i\frac{\pi}{4}}} \right) (1 - e^{-u^{4}t})du .$$
(27)

На рис.7(а) представлено распределение давления в трещине при различных значениях коэффициента проницаемости пласта для

фиксированного момента времени. Из характера кривых распределения давления следует, что уменьшение коэффициента проницаемости пласта на один порядок (в десять раз) приводит примерно к двукратному росту перепада давления ΔP_f между пластовым значением P_0 ($P_p = P_0, y \rightarrow \infty$) и значением в трещине. Также, следует отметить, что для пластов с более низкой проницаемостью давление в трещине ГРП приближается к пластовому значению P_0 медленнее с ростом радиальной координаты r.

На рис.7(б) изображены графики, иллюстрирующие эволюцию давления в трещине для различных моментов времени. Линии *1, 2 и 3* соответствуют моментам времени $t = 10^4, 10^5, 10^6$ с, соответственно. По характеру распределения кривых можно сделать вывод, что давление в трещине ГРП при увеличении расстояния от скважины приближается к пластовому, а с увеличением времени приближение к пластовому давлению происходит на большем расстоянии от скважины.

Рис. 7 Распределение давления в трещине ГРП

$a) - в$ момент времени $t = 10^5$ с
для различных значений k_p :
$l - 3 - k_p = 10^{-16}, 10^{-15}, 10^{-14} \text{ m}^2$

 δ) – для различных моментов времени. Линии 1, 2, 3 соответствуют значениям времени $t = 10^4, 10^5, 10^6$ с

(сплошные линии – точные решения, точечные линии – приближенные решения)

На рис.8 представлены графики, иллюстрирующие распределение давления в трещине при различных значениях дебита. Линии 1, 2, 3 соответствуют значениям дебита $q = 10^{-5}$, 3×10^{-5} , 5×10^{-5} м³/с при $k_p = 10^{-15}$ м² в момент времени $t = 10^5$ с.

Рис.8 Распределение давления в трещине для различных значений дебита. Линии 1, 2, 3 соответствуют значениям времени

$$q = 10^{-5}, 3 \times 10^{-5}, 5 \times 10^{-5} \text{ m}^3/\text{c}$$

сплошные линии – точное решение, точечные – приближенное решение

В четвёртой главе получены приближенные решения с использованием метода последовательной смены стационарных состояний (ПССС), описывающие эволюцию давления в трещине ГРП при работе скважины в режиме постоянного перепада давления между скважиной и пластом и в режиме постоянного расхода. Проведен сравнительный анализ численных результатов по полученным приближенным решениям с точными, которые представлены в предыдущих главах и являются более сложными решениями. Получены оценки критического времени, определяющего область применимости построенных решений.

Для распределения давления в пласте вблизи трещины ГРП при повышении давления в момент времени (t = 0) на величину $\Delta P_f = P_f - P_0$ запишем

$$P_{p} = -\Delta P_{f} \frac{y}{l_{p}} + P_{f}, l_{p} = \sqrt{2\omega_{p}t}, 0 < y < l_{p}.$$
(28)

Пусть в исходном состоянии (t < 0) жидкость в трещине ГРП и пласте находится в состоянии равновесия $(\upsilon_i = 0, P_i = P_0, i = f, p)$. В момент времени t = 0 давление в скважине $P_{f(w)}$ изменяется на величину $\Delta P_{f(w)}$ и далее поддерживается постоянным $P_{f(w)} = P_0 + \Delta P_{f(w)} = const$.

Тогда решение, описывающее распределение давления в трещине ГРП

$$\Delta P_f = \Delta P_{f(w)} \frac{K_0(\sqrt{\chi_f}/\sqrt{2t}r)}{K_0(\sqrt{\chi_f}/\sqrt{2t}a)},$$
(29)

а формула для определения величины расхода жидкости будет иметь вид

$$q = -2\pi a d_f \frac{k_f}{\mu} \Delta P_{f(w)} \sqrt{\frac{\chi_f}{\sqrt{2t}}} \frac{K_1(\sqrt{\chi_f} / \sqrt{2t}a)}{K_0(\sqrt{\chi_f} / \sqrt{2t}a)}.$$
(30)

Рисунки 4 и 5 иллюстрируют распределение давления в трещине, построенное по формуле (19) для точного решения и формуле (29) для приближенного решения. На рис. 4 показано влияние проницаемости пласта на распределение давления в трещине. На рис. 5 представлено распределение давления в трещине моменты времени при проницаемости пласта, равной $k_p = 10^{-15}$ м². Видно, что кривые, соответствующие точному и приближенному решениям, расположены достаточно близко, особенно на участках вблизи скважины ($r \le 10$ м), где относительное различие решений не превышает 2–3 %.

На рис. 6(а) показано влияние проницаемости пласта на эволюцию расхода жидкости при $d_f = 3 \cdot 10^{-3}$ м, построенное по формуле (21) для точного решения и формуле (30) для приближенного решения. На рис. 6(б) показано влияние ширины трещины ГРП на дебит скважины при $k_p = 10^{-15}$ м² построенное по тем же формулам, что и рис. 6(а). Видим, что кривые, соответствующие точным и приближенным решениям, хорошо согласуются.

При сравнении точных и приближенных решений для определения полей давления в трещине ГРП и объемного расхода жидкости из скважины в трещину видно, что они практически совпадают (относительное различие не превышает 1-3%.

Рассмотрим решение методом ПССС задачи о фильтрации к скважине через трещину ГРП в режиме постоянного расхода.

Требуется определить эволюцию распределения давления в трещине ΔP_f и закон изменения давления в скважине $\Delta P_{f(w)}$ при граничном условии

$$q = -\frac{2\pi a d_f k_f}{\mu} \left(\frac{\partial \Delta P_f}{\partial r} \right) \bigg|_{r=a} = const \; .$$

Общее решение будет иметь вид

$$\Delta P_f(t;r) = -\frac{q\mu}{2\pi a d_f k_f} \sqrt{\frac{\sqrt{2t}}{\chi_f}} \frac{K_0(r\sqrt{\chi_f}/\sqrt{2t})}{K_1(a\sqrt{\chi_f}/\sqrt{2t})}.$$
(31)

Отсюда, для закона изменения давления в скважине (r = a) имеем

$$\Delta P_{f(w)}(t) = -\frac{q\mu}{2\pi a d_f k_f} \sqrt{\frac{\sqrt{2t}}{\chi_f}} \frac{K_0(a\sqrt{\chi_f}/\sqrt{2t})}{K_1(a\sqrt{\chi_f}/\sqrt{2t})}.$$
(32)

При анализе решения (32) для больших времен, когда

$$\xi_* \ll 1 \qquad \left(\xi_* = a\sqrt{\chi_f / \sqrt{2t}}\right),$$

получено следующее неравенство для времени $t^{1/4} \gg t_*^{1/4}, t_* = \chi_f^2 a^4$.

Для χ_f получена оценка $\chi_f \approx 0.15\sqrt{c} / M^2$ и для вышеприведенных характерных величин рассматриваемой системы имеем $t_* = 2.25 \times 10^{-6}$ с. Следовательно, в рассматриваемой задаче всегда $t \gg t_*$, и поэтому можно

считать $\xi \ll 1$. Учитывая асимптотику функций $K_0(\xi) \simeq -\left(\gamma + \ln\left(\frac{\xi}{2}\right)\right)$ и $K_1(\xi) \simeq \xi^{-1}$ получим

$$\Delta P_{f(w)} = \frac{q\mu}{2\pi k_f d_f} \left(\ln\left(0,75\sqrt{\chi_f}a\right) - \frac{1}{4}\ln t \right). \tag{33}$$

Выражение (33) может быть использовано при гидродинамическом исследовании скважины, подверженной ГРП.

Это асимптотическое решение можно, в свою очередь, записать в следующем виде

$$\Delta P_{f(w)} = B - A \ln t, \text{ rge } A = \frac{q\mu}{8\pi k_f d_f}, \quad B = 4A \ln\left(0,75\sqrt{\chi_f}a\right). \tag{34}$$

Как показывают вышеприведенные численные оценки для t_* , при отборе жидкости с постоянным расходом q, функционирование скважины почти мгновенно должно выйти на этот асимптотический режим. Поэтому, обрабатывая промысловые данные в координатах $(\ln t, \Delta P_{f(w)})$, можем определить A и B, и тем самым найти проводимость трещины $k_f d_f$ и величину χ_f . Используя асимптотику для $K_1(\xi)$, решение (31) можно записать в виде

$$\Delta P_f = \frac{q\mu}{2\pi d_f k_f} K_0 \left(r \sqrt{\frac{\chi_f}{\sqrt{2t}}} \right). \tag{35}$$

Следовательно, для распределения давления в трещине ГРП имеет место автомодельное решение. Отсюда, если перепад давления ΔP_f принять

за постоянное фиксированное значение, то величины r и t связаны следующим законом $r = \xi \sqrt{\sqrt{2t} / \chi_f}$ $(\xi = const)$.

Таким образом, фиксированное значение давления в трещине для рассматриваемого режима фильтрации распространяется по закону $r \sim t^{\frac{1}{4}}$.

На рис. 7(а) показано распределение давления в трещине при различных значениях коэффициента проницаемости пласта для фиксированного момента времени, построенное по формуле (26) для точного решения и формуле (31) для приближенного решения. Кроме того, на рисунках представлены фрагменты графиков вблизи призабойного участка в увеличенных масштабах.

На рис. 7(б) изображены графики, иллюстрирующие динамику давления в трещине для различных моментов времени, построенные по тем же формулам, что и рис. 7(а). Видим, что точные и приближенные решения хорошо согласуются.

На рис. 8 представлены графики, иллюстрирующие распределение давления в трещине для различных значений дебита, построенные по формуле (27) для точного решения и формуле (32) для приближенного решения.

Таким образом, из представленных результатов расчетов видно, что решения, полученные с использованием метода ПССС, практически совпадают с точными аналитическими решениями.

Также получены оценки для критического времени, которое определяет область применимости полученных в диссертации решений. Найдено характерное время \tilde{t} , при котором возмущение давления на расстоянии R от скважины не превосходит десятой части давления на скважине.

На основании формул (31) и (32) имеем

$$\frac{K_0 \left(R \sqrt{\frac{\chi_f}{\sqrt{2\tilde{t}}}} \right)}{K_0 \left(a \sqrt{\frac{\chi_f}{\sqrt{2\tilde{t}}}} \right)} = \frac{1}{10}.$$
(36)

Решая данное уравнение для параметров, определяющих свойства и состояния пористого пласта, флюида и трещины: $k_p = 10^{-15} \text{ м}^2$, $k_f = 10^{-10} \text{ м}^2$, $m_p = m_f = 10^{-1}$, $d_f = 3 \times 10^{-3} \text{ м}$, $\mu = 10^{-2} \text{ Па} \times \text{с}$, $\rho_0 = 860 \text{ кг/м}^3$, R = 15 м,

получим значение $\tilde{t} \approx 19$ мин. Формулу (36) можно получить также, если исходить из формулы (29). Таким образом, если толщина нефтяного пласта

меньше 2R, то формулы (29) и (33) могут быть использованы для времени \tilde{t} , определяемого из уравнения (36), полученных в предположении бесконечной протяженности трещины ГРП.

Также получена оценка характерного времени, когда влияние фильтрационных полей соседних трещин (в случае системы радиальных трещин) слабые. Справедлива следующая оценка

$$\tilde{t}_1 = \frac{L^2 m_p \mu}{8k_p \rho_0 C^2},$$
(37)

где *L* – расстояние между двумя соседними трещинами ГРП.

Основные результаты, полученные в ходе исследований, в рамках работы над диссертацией представлены в заключении.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

Основные выводы по проведенному диссертационном исследованию:

1. Сформулирована математическая модель в виде интегродифференциального уравнения для упругого режима фильтрации в трещине ГРП, перпендикулярной к горизонтальной скважине, учитывающая переток флюида между трещиной ГРП и пористой средой, окружающей трещину. Показано, что слагаемое, отвечающее за упругоёмкость флюида в трещине, не существенно при

$$\omega \ll 4 \frac{m_p k_p \rho_0 C^2}{m_f^2 d_f^2 \mu}.$$

2. При рассмотрении распространения гармонических волн давления флюида в трещинах ГРП, расположенных перпендикулярно к горизонтальной скважине в углеводородных пластах с низкой проницаемостью, показано, что при задании низкочастотных колебаний трещины ГРП проявляют свойство «волнового канала». Это позволяет фиксировать волны на больших расстояниях.

3. Получены точные аналитические решения и приближенные решения (с помощью метода последовательной смены стационарных состояний), описывающие распределение давления в трещине ГРП, перпендикулярной оси горизонтальной скважины, в режиме поддержания постоянного давления на скважине (первая краевая задача для интегро-диффереренциального уравнения) и в режиме постоянного расхода флюида (вторая краевая задача). Показано, что разница между точным и приближенным решениями мала (1– 3%), что позволяет использовать для практических задач приближенное, существенно более простое решение. С помощью полученных решений представляется возможность определять параметры трещины ГРП по кривым изменения давления в призабойной зоне, проводя сопоставление их с промысловыми данными, полученными на скважине при прочих известных значениях параметров пласта и флюида.

4. Получены автомодельные решения для описания распределения давления в трещине ГРП, перпендикулярной к горизонтальной скважине. Согласно этим решениям, закон распространения фиксированного значения перепада давления $r \sim \sqrt[4]{t}$. Показано, что при работе скважины в режиме постоянного расхода, изменение перепада давления на забое $\Delta P_{f(w)} \sim 1/\sqrt{d_f k_f}$.

5. Предложен метод оценки для определения неизвестных значений коллекторских характеристик призабойной зоны (например, величины проводимости трещины) на основе сравнения дебита скважины и давления в забое с точными теоретическими решениями.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Основные результаты диссертации опубликованы в следующих научных трудах:

Статьи в научных изданиях, входящих в перечень RSCI:

- Аносова, Е.П. Фильтрация флюида к скважине через радиальную трещину ГРП при постоянном расходе / Е.П. Аносова, З.М. Нагаева, В.Ш. Шагапов // Известия РАН. Механика жидкости и газа. – 2023. – № 2. – С. 90 – 101.
- 2. Шагапов, В.Ш. О динамике гармонических фильтрационных волн в гидроразрывной трещине, расположенной перпендикулярно к скважине / В.Ш. Шагапов, Е.П. Аносова, З.М. Нагаева // РАН. Акустический журнал. 2020. Т. 66. № 6. С. 669 674.
- Шагапов, В.Ш. Упругий режим фильтрации жидкости к скважине через перпендикулярную ей трещину, образовавшуюся при гидроразрыве пласта / В.Ш. Шагапов, З.М. Нагаева, Е.П. Аносова // Прикладная механика и техническая физика. – 2022. – Т. 63. – № 4. – С. 105 – 115.
- Bashmakov, R.A. Determination of parameters of hydraulic fracture perpendicular to borehole axis / R.A. Bashmakov, Z.M. Nagaeva, E.P. Anosova, A.A. Shammatova // Lobachevskii Journal of Mathematics – 2023. – V.44. – N 5. – p. 1571 – 1578.

Статьи в научных изданиях, входящих в перечень РИНЦ:

- 5. Шагапов, В.Ш. Упругий режим фильтрации жидкости к скважине через трещину ГРП / В.Ш. Шагапов, Е.П. Аносова, З.М. Нагаева // В сборнике: Физика конденсированного состояния и ее приложения. Сборник трудов IV Международной научно-практической конференции. Стерлитамак. 2022. С. 87–90.
- Аносова Е.П. Фильтрация флюида в трещине ГРП, перпендикулярной скважине / Е.П. Аносова, З.М. Нагаева // В сборнике: Уфимская осенняя математическая школа. Материалы Международной научной конференции. – Уфа. – 2022. С. 294 – 295.
- Нагаева З.М. Фильтрация флюида в трещине ГРП, расположенной перпендикулярно горизонтальной скважине / З.М. Нагаева, Е.П. Аносова // В сборнике: Комплексный анализ, математическая физика и нелинейные уравнения. Сборник материалов Международной научной конференции. – Уфа. – 2023. С. 81.
- Аносова Е.П. Динамика давления в трещине ГРП, перпендикулярной скважине / Е.П. Аносова, З.М. Нагаева // В книге: Тезисы XXIII Всероссийской конференции молодых учёных по математическому моделированию и информационным технологиям. Тезисы докладов. – Новосибирск. – 2022. С.7.
- 9. Аносова Е.П. Фильтрационные волны давления в вертикальной трещине ГРП, инициируемые гармоническими колебаниями в горизонтальной скважине / Е.П. Аносова // В сборнике: XII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики. Сборник трудов в 4-х томах. 2019. С. 1159– 1161.
- 10. Аносова Е.П. Динамика давления в трещине ГРП, расположенной перпендикулярно к горизонтальной скважине, в режиме постоянного расхода / Е.П. Аносова // В книге: Тезисы XXIV Всероссийской конференции молодых учёных по математическому моделированию и информационным технологиям. Тезисы докладов. – Новосибирск. – 2023. С. 9.
- 11. Аносова Е.П. Динамика давления в трещине ГРП, расположенной перпендикулярно к горизонтальной скважине / Е.П. Аносова // В сборнике: Материалы Международной научно-практической конференция им. Д.И. Менделеева, посвященной 15-летию Института промышленных технологий и инжиниринга. Сборник статей конференции. В 3-х томах. – Тюмень. – 2024. Т.3. – С. 15 – 16.

АНОСОВА Елизавета Петровна

ФИЛЬТРАЦИЯ ФЛЮИДА В ТРЕЩИНЕ ГРП, ПЕРПЕНДИКУЛЯРНОЙ К ГОРИЗОНТАЛЬНОЙ СКВАЖИНЕ

1.1.9. Механика жидкости, газа и плазмы

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Подписано в печать _____ 2024 г. Отпечатано на ризографе с оригинала заказчика. Гарнитура «Times New Roman», бумага офсетная. Формат 60х84/16. Объем ____уч.-изд.-л. Заказ № _____. Тираж 100 экз.

Отпечатано в Типографии ИП Виноградова О.Е. 450054, Респ. Башкортостан, г. Уфа, пр-кт Октября, 60