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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. Проводники из алюминия и сплавов на его 

основе сегодня широко применяются в электротехнике и в транспортных системах 

различного назначения, постепенно замещая существенно более дорогие аналоги, 

выполненные из меди. 

Проблема ограниченной прочности, пропускной способности и стабильности 

физико-механических свойств определяет повышенный интерес исследователей к 

созданию высокопрочных и термостойких проводниковых сплавов на основе 

алюминия. 

На сегодняшний день достигнуты обнадеживающие результаты в разработке 

проводников с улучшенными характеристиками на основе низколегированных сплавов 

систем Al-Zr, Al-Mg-Zr, Al-Mg-Si и сплавов алюминия с редкоземельными металлами 

(РЗМ) с использованием разнообразных методов интенсивной пластической 

деформации (ИПД). Такая обработка позволяет формировать в сплавах 

ультрамелкозернистую (УМЗ) и нано- структуры, содержащие частицы 

интерметаллидных фаз, регламентированные по химическому составу, размерам и 

морфологии. 

Сплавы системы Al-Fe очень привлекательны для использования в качестве 

проводников, так как их основной легирующий элемент – железо, является самым 

распространенным и дешевым металлом, практически нерастворимым в алюминии, что 

благоприятно сказывается на уровне его электропроводности. Также представляет 

интерес развитие системы сплавов Al-Fe с малыми добавками меди, которая оказывает 

положительное влияние на прочность, существенно не влияя на их электропроводность. 

В России и за рубежом освоено производство проводников на основе системы Al-Fe, 

например, таких марок как 8030 и 8176, содержание железа в которых не превышает 1 

вес.%. Однако, как и чистый алюминий, они демонстрируют низкую механическую 

прочность и нестабильность свойств при повышенных температурах эксплуатации. 

Осуществленные ранее попытки улучшить комплекс физико-механических свойств 

сплавов Al-Fe путем измельчения структурных параметров до нанометрического 

диапазона размеров, используя ИПД, показали, что сочетание высокой прочности и 

улучшенной термостойкости можно достичь в наноструктурированных образцах с 

помощью обработки методом кручения под высоким давлением (КВД), однако этот 

метод не пригоден для коммерческого производства проводников. 

В последнее время для получения проводниковых алюминиевых сплавов начали 

использовать метод непрерывного литья в электромагнитный кристаллизатор (ЭМК). 

При его реализации, за счет высокой скорости кристаллизации, которая превышает 103 

К/с, в сплавах системы Al-РЗМ удалось получить высокодисперсную структуру, 

состоящую из смеси алюминия и эвтектики, в состав которой входит наноразмерная 

интерметаллидная фаза Al11(Ce,La)3. В образцах сплавов системы Al-РЗМ, полученных 

методом литья в ЭМК после ИПД методом КВД, формируется УМЗ структура, 

происходит дополнительное измельчение наночастиц фазы Al11(Ce,La)3 до 

нанометрических размеров. Это наноструктурированное состояние обеспечивает им 

уникальное сочетание прочности, электропроводности и термостойкости. Однако, 

содержание РЗМ в сплаве системы Al-РЗМ может достигать 9 вес.%, а метод их 

обработки, как отмечалось выше, не пригоден для серийного коммерческого 

применения и при этом РЗМ очень дорогостоящие металлы. 

В связи с этим, в рамках настоящей работы предлагается решение научно-

технической задачи создания перспективных алюминиевых сплавов 

электротехнического назначения, за счет легирования алюминия наиболее 

распространенным и дешевым материалом – железом, а также за счет использования 

технологической схемы, включающей метод непрерывного литья в ЭМК и 
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двухэтапную деформационную обработку (ДО) равноканальным угловым 

прессованием (РКУП) или РКУП по схеме Конформ (РКУП-К) с последующей 

деформацией холодной прокаткой (ХП) или холодным волочение (ХВ) в целях 

достижения в проводниках рационального сочетания прочности, электропроводности и 

термостойкости. 

Степень разработанности темы исследования. В разработку и исследование 

различных подходов, позволяющих повысить прочностные характеристики и 

термостойкость проводниковых материалов на основе алюминия, при сохранении 

высокого уровня электрической проводимости существенный вклад внесли: Воронцова 

Л.А., Белов Н.А., Валиев Р.З., Мурашкин М.Ю., Медведев А.Е., Орлова Т.С., Рогачев 

С.О., Sauvage X., Horita Z., Cubero-Sesin J.N., Hou J.P. и др. В частности, научно-

исследовательские работы российских и зарубежных ученых связаны с изучением 

влияния различных методов получения и обработки, а также химического состава и 

особенностей микроструктуры на физико-механические свойства алюминиевых 

сплавов. В большом количестве исследований показано, что одним из подходов 

существенного повышения прочности при сохранении электропроводности сплавов 

является их наноструктурирование с использованием методов ИПД.  

Цели и задачи 

Цель работы: повысить физико-механические свойства и термостойкость сплавов 

системы Al-Fe, предназначенных для применения в качестве проводниковых 

материалов в электротехнике, за счет использования перспективных методов литья в 

сочетании с деформационной обработкой, включающей интенсивную пластическую 

деформацию. 

Для достижения поставленной цели решались следующие задачи: 

1. Исследовать влияние методов традиционного литья в кокиль, литья 

совмещенного с прокаткой и перспективного метода непрерывного литья в 

электромагнитный кристаллизатор на микроструктуру, физико-механические свойства 

и электропроводность сплавов системы Al-Fe с содержанием железа от 0,5 до 3,4 вес.%. 

2. Исследовать влияние методов литья, содержания железа и двухэтапной 

деформационной обработки, включающей на первом этапе РКУП или РКУП-К, а на 

втором этапе ХП или ХВ, на микроструктуру, физико-механические свойства и 

термостойкость сплавов системы Al-Fe. 

3. Исследовать влияние малой добавки меди (0,3 вес.%) на микроструктуру, 

физико-механические свойства и термостойкость сплава Al-0,5Fe, полученного 

методом литья ЭМК и подвергнутого двухэтапной деформационной обработке. 

4. Разработать рекомендации по выбору рационального содержания железа, 

методов литья и режимов деформационной обработки, обеспечивающих наилучшую 

комбинацию прочности, электропроводности и термостойкости в сплавах системы Al-

Fe и апробировать их на производстве. 

Научная новизна:  

1. Установлено, что в сплавах системы Al-Fe с содержанием железа от 0,5 до 2,5 

вес.%, полученных непрерывным литьем в ЭМК, формируется микроструктура, 

образованная алюминиевой матрицей и эвтектикой (Al)+Al2Fe, отличающаяся тем, что 

в состав эвтектики входят наноразмерные частицы (90±20 нм) метастабильной фазы 

Al2Fe. 

2. Установлено, что дополнение метода непрерывного литья в ЭМК двухэтапной 

ДО, включающей ИПД методами РКУП или РКУП-К и ХП или ХВ, обеспечивает 

формирование в сплавах Al-0,5Fe, Al-0,5Fe-0,3Cu, Al-1,7Fe и Al-2,5Fe, 

наноструктурированных состояний, характеризующихся УМЗ структурой 

алюминиевой матрицы, отличающейся тем, что размер наночастиц фазы Al2Fe 

уменьшается до 70±10 нм, что позволяет достичь наиболее благоприятного сочетания 
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«прочность-термостойкость» по сравнению со сплавами, полученными традиционными 

методами литья. 

3. Установлено, что малая добавка меди (0,3 вес.%) в сплаве Al-0,5Fe, полученном 

литьем в ЭМК и подвергнутом двухэтапной ДО, позволяет сформировать в нем 

наноструктурированное состояние, обеспечивающее существенное увеличение 

прочности, отличающиеся тем, что предел прочности увеличивается в 1,5 раза по 

сравнению с наноструктурированным сплавом без меди, достигая 309 МПа. 

4. Установлено, что метод непрерывного литья в ЭМК с последующей 

двухэтапной ДО для сплавов Al-Fe c содержанием железа 1,0-2,2 вес.% позволяет 

получить высокопрочные термостойкие электропроводные материалы, отличающиеся 

тем, что предел прочности таких материалов достигает до 310 МПа, 

электропроводность − до 58,5% IACS и термостойкость (температура длительной 

эксплуатации) до 150 ºС, что позволяет их использовать в качестве проводниковых 

материалов в электротехнике. 

Теоретическая и практическая значимость работы: 

Теоретическая значимость работы заключается в том, что определен тип и 

обоснованы количественные характеристики наноразмерных элементов 

микроструктуры, наличие и содержание которых в сплавах системы Al-Fe обеспечивает 

достижение заданного уровня физико-механических свойств и их термической 

стабильности для применения в электротехнике. 

1. Предложен метод литья и двухэтапной ДО сплавов системы Al-Fe, 

позволяющий получить в них наноструктурированные состояния, обеспечивающие 

заданное сочетание прочности в диапазоне от 239 до 310 МПа, электропроводности от 

51,3 до 58,5% IACS и термостойкости (температура длительной эксплуатации до 

150 ºС), который может быть использован при выполнении опытно-технологических 

работ при производстве электропроводников. 

2. Определено рациональное содержание железа (1,0-2,2 вес.%) в сплавах 

системы Al-Fe, полученных методом непрерывного литья в ЭМК, режимы их ДО, 

обеспечивающий комплекс прочности, электропроводности и термостойкости, 

позволяющий рассматривать их в качестве альтернативы используемым традиционным 

сплавам системы Al-Zr, Al-РЗМ и Al-Mg-Si.  

3. Предложен способ получения проводника из сплава системы Al-Fe, 

включающий непрерывное литье в ЭМК и ДО − холодную деформацию литой 

заготовки, обеспечивающий получение пластин или проволоки электротехнического 

назначения из сплава Al-1,7Fe вес.%. Получен патент РФ №2815427. 

Результаты диссертационной работы были использованы в производственных 

условиях компании ООО «Научно-производственный центр магнитной 

гидродинамики», что подтверждено актом использования результатов от 21.11.2024 г,    

г. Красноярск).  

Методология и методы исследования 

Работа выполнена с использованием теоретических и экспериментальных методов 

исследования. Для исследований использовали образцы сплавов системы Al-Fe, 

полученных способом литья в кокиль, совмещенного литья и прокатки (СЛП), а также 

непрерывного литья в ЭМК, образцы литого сплава прошли двухэтапную ДО с 

применением ИПД, осуществленной методом РКУП или непрерывного РКУП-К и 

последующей деформации методом ХП или ХВ. В работе для решения поставленных 

задач использовались современные методы исследования: растровая электронная 

микроскопия (РЭМ) и просвечивающая электронная микроскопия (ПЭМ), 

рентгеноструктурный анализ (РСА), а также механические испытания на растяжение, 

измерение удельного электросопротивления проводников и оценка термической 

стойкости материала.  
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Положения, выносимые на защиту: 

1. Применение метода литья в ЭМК с последующей двухэтапной ДО, 

включающей ИПД и ХП или ХВ для сплавов Al-0,5Fe, Al-0,5Fe-0,3Cu, Al-1,7Fe и Al-

2,5Fe, позволяющее сформировать наноструктурированные состояния, 

характеризующееся УМЗ структурой алюминиевой матрицы с наноразмерными 

частицами фазы Al2Fe (соответствует п. 1.1 паспорта специальности).  

2. Закономерности эволюции микроструктуры и фазового состава сплавов 

системы Al-Fe, в зависимости от используемых методов литья, последующей 

обработки, включающей ИПД методом РКУП или РКУП-К и ХП или ХВ, а также после 

отжига (соответствует п. 1.2 паспорта специальности). 

3. Вклад микроструктурных механизмов и наноразмерных частиц фазы Al2Fe в 

упрочнение сплавов системы Al-Fe, полученных непрерывным литьем в ЭМК и 

подвергнутых двухэтапной ДО, включающей ИПД методом РКУП или РКУП-К и ХП 

или ХВ, позволяющий достичь высокую прочность материала (соответствует п. 1.5 

паспорта специальности). 

4. Рациональное содержание железа (1,0-2,2 вес.%) в сплаве Al-Fe с 

наноразмерными частицами фазы Al2Fe, обеспечивающее высокий уровень физико-

механических свойств и термостойкости (соответствует п. 1.5 паспорта специальности). 

Степень достоверности и апробация результатов 

Степень достоверности и обоснованности результатов диссертационной работы 

обеспечивается использованием независимых, взаимодополняющих современных 

методов исследования, применяемых в современном материаловедении, и большим 

объемом экспериментальных данных, использованием уникальных установок для 

осуществления ИПД и промышленного оборудования, а также непротиворечивостью 

диссертационного исследования с исследованиями других авторов и апробацией 

основных результатов работы через публикации в отечественных научных ВАК-

изданиях, а также международных площадках Web of Science и Scopus, представление 

результатов научных исследований на всероссийских и международных конференциях 

и симпозиумах. 

Результаты научных исследований представлены и обсуждены на V 

Международной научно-технической конференции «Мавлютовские чтения» (г. Уфа, 

2021 г.); XIX Всероссийской конференции «Актуальные проблемы недропользования 

(г. Санкт-Петербург, 2021 г.); девятой Международной конференции «Кристаллофизика 

и деформационное поведение перспективных материалов» (г. Москва, 2021 г.); 

Всероссийской научной конференции с международным участием «IV Байкальский 

материаловедческий форум» (г. Улан-Удэ, 2022 г.); XI Международной школы 

«Физическое материаловедение» (г. Тольятти, 2023 г.); третьей Международной 

школы-конференции молодых ученых «Кайбышевские чтения» (г. Уфа, 2023 г.); LXVII 

Международной конференции «Актуальные проблемы прочности» (г. Екатеринбург, 

2024 г.); Всероссийской конференции с международным участием «Электронные, 

спиновые и квантовые процессы в молекулярных и кристаллических системах» (г. Уфа, 

2024 г.), Международной конференции «UUST Nanomaterials Days» (г. Уфа, 2024 г.). 

Работа выполнена при финансовой поддержке гранта РНФ № 20-79-10133 

«Разработка и исследование перспективных проводниковых материалов на основе 

алюминия для использования в передовых транспортных системах» и в рамках 

выполнения государственного задания «Разработка критических технологий создания 

силовых установок для малой и региональной авиации, а также беспилотных 

авиационных систем» № FEUE-2023-0007 (2023-2025 г.г). («Уфимский университет 

науки и технологий»).  

Личный вклад автора заключается в поиске и анализе научной литературы по 

теме работы. Автор совместно с научным руководителем определил цели и задачи 
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исследования, непосредственно участвовал в выполнении экспериментальных 

исследований, в перепроверке достоверности полученных результатов. Под 

руководством к.ф.-м.н. Медведева А.Е. в рамках проекта РНФ, в составе научной 

группы, автором проведена аттестация микроструктуры и свойств экспериментальных 

образцов проводников из наноструктурированных сплавов системы Al-Fe. Совместно с 

научным руководителем и другими соавторами научного коллектива, автор принимал 

участие в интерпретации и обсуждении результатов экспериментов, подготовке, 

написании и публикаций статей. 

Публикации. По теме диссертации опубликовано 19 научных работ, из них 3 

работы в рецензируемых журналах, входящих в перечень ВАК РФ, 4 работы входят в 

международные базы цитирования Web of Science и/или Scopus, 11 публикаций в 

сборниках трудов конференций и 1 патент РФ. 

Структура и объем диссертации. Диссертация изложена на 168 страницах, 

включает 62 рисунка и схем, 42 таблицы. Список использованной литературы содержит 

226 наименования. Работа состоит из введения, пяти глав, каждая из которых 

завершается выводами, заключения и списка литературы. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении обоснована важность и актуальность темы научно-

квалификационной работы (диссертации), сформулированы цель и задачи 

исследования, научная новизна, теоретическая и практическая значимость полученных 

результатов, представлены положения, выносимые на защиту, обоснованы 

достоверность и апробация результатов. 

В первой главе представлен литературный обзор по теме диссертационной 

работы, посвященный современным проводникам на основе алюминия. Особое 

внимание уделено алюминиевым сплавам, демонстрирующим высокий уровень 

физико-механических и эксплуатационных свойств, перспективным методам их 

производства, например, таким как непрерывное литье в ЭМК, а также методам их 

последующей обработки. Отмечена перспективность использования в качестве 

проводников сплавов системы Al-Fe, обладающих невысокой стоимостью по 

сравнению с другими сплавами. Проведен анализ публикаций, посвященных 

исследованиям возможности улучшения свойств проводниковых сплавов за счет 

формирования в них УМЗ и наноструктурированных состояний, используя методы 

ИПД. 

Во второй главе приведены материалы исследования и описаны методики 

проведения исследований. В работе объектами исследования были сплавы системы   

Al-Fe. 

Катанка из сплава 8176 с содержанием железа 0,5 вес.% произведена на 

Кандалакшском Алюминиевом заводе ОК «РУСАЛ» (г. Кандалакша, Россия) методом 

СЛП. Диаметр катанки 9,5 мм. Исходные заготовки сплавов Al-1,7Fe, Al-3,4Fe (вес.%) в 

виде прутков диаметром 22 мм и длиной около 200 мм получены на кафедре обработки 

металлов давлением в Российском национальном исследовательском технологическом 

университете «МИСиС» (г. Москва) методом литья в кокиль (скорость охлаждения − 

около 20 К/с). 

Заготовки из сплавов Al-0,5Fe, Al-1,7Fe, Al-2,5Fe, Al-0,5Fe-0,3Cu (вес. %) 

получены в виде прутков диаметром 11 мм методом непрерывного литья в ЭМК в  

ООО «Научно-практический центр магнитной гидродинамики» (Красноярск, Россия). 

Скорость охлаждения − не менее 103 К/с. 

Исходные образцы сплавов подвергались 4 циклам РКУП или РКУП-К при 

комнатной температуре (КТ) по режиму Вс (с поворотом вокруг оси образца на 90°) в 

оснастке с углом сопряжения каналов 120°.  
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После ИПД образцы сплавов подвергались ХП за шесть переходов с общей 

степенью деформации 85% или ХВ за 8 переходов с суммарной деформацией 

(обжатием) 94%.  

Определение уровня термостойкости проводилось по результатам отжига при 

температурах 230 и 280 С в течение 1 часа в соответствии требованиями стандартов 

ГОСТ Р МЭК 62004-2014 и IEC 62641:2023. 

Исследование параметров микроструктуры проводились по изображениям, 

полученные методами ПЭМ и РЭМ. 

РСА проводили на дифрактометре с использованием монохроматического Cu-Kα-

излучения (длина волны λ=1,5406 Å). Значения параметра решетки (a), размеры 

области когерентного рассеяния (ОКР) и уровня упругих микроискажений (<ε2>½) 

вычислялись с помощью программного обеспечения MAUD по методу Ритвельда. 

Механические испытания на растяжение проводились в соответствии с ГОСТ 

1497-84. Механические испытания проволоки осуществлялись по ГОСТ 10446-80.  

Величины удельной электрической проводимости (УЭП) образцов сплавов 

определяли вихретоковым методом по ГОСТ 27333-87, а удельное электрическое 

сопротивление (УЭС) измеряли стандартным четырехточечным/четырехзондовым 

методом по ГОСТ 7229-76. 

В третьей главе представлены результаты исследований микроструктуры и 

физико-механических свойств сплавов системы Al-Fe с содержанием железа от 

0,5 вес.% (сплав марки 8176) до 3,4 вес.%, полученных традиционными методами литья 

после двухэтапной ДО, включающей РКУП.  

На Рисунке 1 продемонстрирована микроструктура исходных образцов сплавов. В 

катанке сплава 8176, в результате СЛП формируется микроструктура, состоящая из 

вытянутых в направлении деформации субзерен шириной 1,5±0,3 мкм и длиной до 

4 мкм (Рисунок 1 а). 

   
а б в 

Рисунок 1 − Исходная микроструктура сплавов Al-Fe: а – 8176, б – Al-1,7Fe, в – Al-3,4Fe 

В процессе прокатки, реализуемой на второй стадии СЛП, образуются скопления 

интерметаллидных частиц в виде строчек, большинство из которых имеют форму 

стержней. Размер частиц составляет 310±45 нм, длиной до 2 мкм. Объемная доля 

интерметаллидных фаз составляет 2,9±0,5%. Микроструктура сплава Al-1,7Fe (Рисунок 

1 б) состоит из алюминиевой матрицы и эвтектической фазы (Al+AlхFeу), образующей 

стенки дендритных ячеек алюминия со средним размером 13±5 мкм. Объемная доля 

интерметаллидной фазы, входящей в состав эвтектики в сплаве Al-1,7Fe составляет 

6,1±1,0%. Частицы фазы, входящие в состав эвтектики, имеют форму тонких пластин 

толщиной 300±100 нм и длиной до 10 мкм. В микроструктуре сплава Al-3,4Fe 

наблюдаются более грубые интерметаллидные частицы, имеющие преимущественно 

форму в виде стержней, толщиной до 2 мкм и длиной 12 мкм, которые хаотично 

ориентированы в алюминиевой матрице. В структуре также наблюдаются ячейки, 

размером от 10 до 30 мкм, стенки которых образованы эвтектикой, содержащей 

алюминиды железа толщиной менее 1 мкм, длиной от 2 до 4 мкм. Объемная доля 

интерметаллидных частиц составляет 11,0±2,1 % (Рисунок 1 в).  
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По данным РСА установлено, что в образцах всех сплавов в процессе 

кристаллизации расплава образуются преимущественно интерметаллидные частицы 

фазы Al6Fe. Период решетки (а) литых сплавов практически совпадает с величиной а 

характерным для чистого алюминия, что свидетельствует об отсутствии признаков 

формирования твердого раствора железа в алюминии. 

Вид типичной УМЗ структуры, сформированной в результате ИПД методом 

РКУП, представлена на примере сплава Al-1,7Fe (Рисунок 2).  

   
а б в 

Рисунок 2 − Микроструктура сплава Al-1,7Fe после РКУП (ПЭМ): а – поперечное сечение,   

б – темнопольное изображение, в – продольное сечение 

(стрелками отмечены частицы фазы Al6Fe) 

В результате ИПД во всех материалах сформировалась УМЗ структура с 

преимущественно равноосными зернами (Рисунок 2 а, б). Средний размер зерна 

уменьшается с увеличением содержание железа и составляет 920±140 нм в сплаве 8176 

и 695±160 нм в сплаве Al-1,7Fe. Судя по виду картины электронной дифракции, УМЗ 

структура образована преимущественно большеугловыми границами зерен (БУГЗ). 

Интерметаллидные частицы в результате РКУП не претерпели заметных изменений ни 

в морфологии, ни в размере. В темнопольном изображении ПЭМ (Рисунок 2 б) хорошо 

видно, что в поперечном сечении образца, обработанного РКУП, частицы Al6Fe имеют 

сферическую форму. В отличии от сплава 8176, в сплаве с содержанием железа 

1,7 вес.% в результате ИПД отмечается фрагментация интерметаллидных частиц 

имеющих форму тонких пластин входящих в состав эвтектики, толщина которых 

составила 335±65 нм и длиной ~ 2500 нм. В сплаве Al-3,4Fe, как и в сплаве 8176, в 

исходной микроструктуре присутствовали в основном крупные интерметаллиды, при 

этом ДО методом РКУП не приводит к заметным изменениям их размеров.  

По данным РСА параметр а в литых сплавах после РКУП не изменяется, что 

свидетельствует об отсутствии признаков образования твердого раствора. УМЗ сплавы 

с повышением содержания Fe характеризуются более высокой плотностью дислокаций. 

В УМЗ сплаве 8176 плотность дислокаций составляет 0,3×1013 м-2, а в сплаве Al-1,7Fe – 

1,3×1013 м-2 соответственно.  

Типичная УМЗ структура, 

сформированная в материалах 

исследования после 

дополнительной ДО методом 

ХП представлена на Рисунке 3. 

Она образована зернами в виде 

волокон, ориентированных в 

направлении деформации 

(Рисунок 3 а, б). Ширина зерен 

заметно меньше в УМЗ сплаве с 

содержанием железа 1,7 вес.% 

(среднее значение 445±120 нм и 

260±100 нм для сплавов 8176 и Al-1,7Fe соответственно) (Рисунок 3 б). 

  
а б 

Рисунок 3 − Микроструктура сплава Al-1,7Fe после 

РКУП и ХП в продольном сечении (ПЭМ)  

(частицы фазы Al6Fe, отмечены стрелками) 
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ХП не привела к заметному изменению размеров интерметаллидных частиц. 

Отмечается лишь некоторое уменьшение их длины, что свидетельствует об их 

дальнейшей фрагментации при ХП. По данным РСА в результате ХП в УМЗ сплавах 

отмечается дальнейшее повышение плотности дислокаций. 

Формирование УМЗ структуры после РКУП привело к увеличению предела 

прочности сплавов с содержанием железа 0,5 вес.% на 53 МПа, 1,7 вес.% - на 96 МПа, а 

3,4 вес.% - на 20 МПа. Относительное удлинение образцов снизилось с 32 до ~ 13 %. 

При этом электропроводность практически не изменилась (Рисунок 4 б). 

Дополнительная ХП обеспечила дальнейшее упрочнение УМЗ материалов: на 16 МПа 

для сплава 8176 и на 56 МПа для сплава Al-1,7Fe (Рисунок 4 а), а их относительное 

удлинение осталось на уровне не ниже 10%. Электропроводность УМЗ образцов 

изменилась незначительно. 

Оценка термической 

стабильности свойств 

УМЗ образцов, 

выполненная на сплавах 

8176 и Al-1,7Fe после 

двухэтапной ДО, 

показала, что они 

претерпевают заметное 

разупрочнение только 

после отжига при 280 ºС 

(Рисунок 4 а). Снижение 

прочности составляет 

более 40%, при этом отмечается заметное увеличение пластичности и прирост 

электропроводности в диапазоне 1-4% IACS (Рисунок 4 б). 

Изменения физико-механических свойств после отжига в УМЗ сплавах в основном 

обусловлены увеличением размера ультрамелких зерен. В сплавах 8176 и Al-1,7Fe 

средняя ширина волокон составила 950±170 нм и 685±260 нм соответственно, а длина в 

направлении ХП не изменилась. Размер частиц фазы Al6Fe, после отжигов при 230 и 

280 °С также не претерпел изменений.  

По совокупности полученных экспериментальных данных установлено, что 

сплавы с содержанием железа 0,5 и 1,7 вес.%, полученные традиционными методами 

литья после двухэтапной ДО, включающей ИПД, по уровню физико-механических 

свойств и их термической стабильности сопоставимы с традиционными 

электротехническими сплавами системы Al-Zr и Al-РЗМ. При этом прочностные 

характеристики УМЗ образцов из исследуемых сплавов не достигают уровня свойств 

наиболее прочных сплавов системы Al-Mg-Si, в настоящее время используемых в 

электротехнике. 

В четвертой главе представлены результаты исследований микроструктуры и 

физико-механических свойств сплавов системы Al-Fe с содержанием железа от 0,5 до 

2,5 вес.%, полученных методом литья в ЭМК, подвергнутые двухэтапной ДО, 

осуществленной методами РКУП или РКУП-К. На втором этапе ДО использовали ХП 

или ХВ. 

Микроструктура сплавов в литом состоянии представляет собой алюминиевую 

матрицу и эвтектическую фазу, образованную алюминием и интерметаллидами AlxFey 

(Рисунок 5). Повышение содержания железа в сплавах сопровождается увеличением 

количества эвтектики и соответственно интерметаллидной фазы. В сплаве Al-0,5Fe 

эвтектика носит дискретный характер (Рисунок 5 а), в отличии от сплавов Al-1,7Fe и 

Al-2,5Fe, в которых она образует сплошную сетку (Рисунок 5 б, в). 

  
а б 

Рисунок 4 − Изменение свойств сплавов Al-Fe:  

а – предел прочности на растяжение, б – электропроводность 
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а б в 

Рисунок 5 − Микроструктура сплавов Al-Fe, полученных литьем в ЭМК: а – Al-0,5Fe, 

 б − Al-1,7Fe, в − Al-2,5Fe 

Средний размер дендритной ячейки в сплавах составляет в Al-0,5Fe – 5,8±0,6 мкм, 

в Al-1,7Fe – 4,6±1,5 мкм, в Al-2,5Fe – 1,7±0,1 мкм. Толщина алюминидов железа, 

имеющих форму тонких ламелей, входящих в состав эвтектики: в сплаве Al-0,5Fe 

составляет 150±40 нм, в Al-1,7Fe – 90±20 нм, в Al-2,5Fe 150±40 нм. Длина частиц 

достигает 1,5 мкм. Объемная доля частиц алюминидов железа, входящей в состав 

эвтектики: в сплаве Al-0,5Fe составляет 2,9±1,5%, в сплаве Al-1,7Fe – 4,9±1,0%, в 

сплаве Al-2,5Fe – 16,3±4,2%.  

РСА выявил образование необычной метастабильной интерметаллической 

триклинной фазы типа Al2Fe во всех сплавах, полученных литьем в ЭМК, в процессе 

которого реализуется скорость охлаждения расплава не менее 103 К/с. 

Типичная микроструктура, сформированная в сплавах Al-Fe после 4 проходов 

РКУП представлена на Рисунке 6, проиллюстрирована на примере сплава Al-1,7Fe.  

   
а б в 

Рисунок 6 − Микроструктура сплава Al-1,7Fe: а − изображение РЭМ, поперечное сечение,  

б – ПЭМ, светлопольное изображение, в – ПЭМ, темнопольное изображение, продольное 

сечение, с указанием частиц фазы Al2Fe  

В результате РКУП во всех материалах исследования отмечается формирование 

УМЗ структуры. Средний размер зерна в сплавах Al-0,5Fe, Al-1,7Fe и Al-2,5Fe составил 

890±40 нм, 620±20 нм, и 560±20 нм соответственно. Зерна преимущественно 

равноосные (Рисунок 6 a). Судя по виду электронной дифракции, УМЗ структура 

образована в основном сеткой БУГЗ. Формирование УМЗ структуры сопровождается 

фрагментацией интерметаллидных частиц Al2Fe входящих в состав эвтектики до 

нанометрического диапазона размеров (в сплаве Al-0,5Fe до 65±10 нм, в Al-1,7Fe до 

85±25 нм, в Al-2,5Fe до 50±15 нм) (Рисунок 6 б, в). Их распределение остается близким 

к литому состоянию. 

По данным РСА параметр а во всех исследуемых сплавах после РКУП не 

изменяется, что свидетельствует об отсутствии признаков образования твердого 

раствора. Повышение содержания Fe, и соответственно объемной доли наноразмерных 

частиц Al2Fe, сопровождается увеличением плотности дислокаций c 1,1×1013 м-2 в УМЗ 

сплаве Al-0,5Fe, до 2,7×1013 м-2 - в сплаве Al-2,5Fe.  



12 
 

 На Рисунке 7, на примере 

образца Al-1,7Fe, представлена 

типичная микроструктура, 

сформированная после РКУП и 

ХП. ХП приводит к удлинению 

зерен в направлении 

деформации, их длина 

увеличивается до 2 мкм, а 

ширина уменьшается до 

335±15 нм в сплаве Al-0,5Fe, 

до 290±20 нм в сплаве Al-

1,7Fe, до 195±10 нм в сплаве 

Al-2,5Fe. Средний размер 

наноразмерных частиц после РКУП и ХП в исследуемых сплавах заметно не 

изменяется (в сплаве Al-0,5Fe составляет 70±10 нм, в Al-1,7Fe 60±30 нм, в Al-2,5Fe 

65±15 нм). Однако частицы, как и в сплавах, полученных традиционным литьем, 

образуют компактные скопления, ориентированные в наплавлении ХП.  

По данным РСА, в результате дополнительной ХП, плотность дислокаций 

повышается до 1,2×1013 м-2 и 4,2×1013 м-2 для сплавов Al-0,5Fe и Al-2,5Fe 

соответственно. Изменения параметра а отсутствуют, что указывает на отсутствие 

признаков образования твердого раствора железа в алюминии в результате двухэтапной 

ДО.  

Сплавы Al-Fe, 

полученные литьем в 

ЭМК, характеризуются 

сравнительно невысокими 

значениями прочности 

(Рисунок 8), имеющими 

тенденцию к росту с 

увеличением 

концентрации железа в 

сплаве. Изменение 

электропроводности 

демонстрирует обратное 

поведение – увеличение 

концентрации железа приводит к уменьшению электропроводности, более 

выраженному, чем в сплавах, полученных традиционным литьем. В исходном 

состоянии содержание железа не существенно влияет на пластичность. РКУП в 

исследуемых сплавах приводит к увеличению предела прочности (до 156 МПа в сплаве 

Al-0,5Fe, до 268 МПа в сплаве Al-1,7Fe, до 258 МПа в сплаве Al-2,5Fe). 

Электропроводность сплавов не претерпевает заметных изменений. После РКУП 

относительное удлинение до разрушения УМЗ сплавов составляет от 11,7 до 19,8%.  

ХП, осуществляемая после РКУП, продолжает тенденцию упрочнения сплавов − 

предел прочности сплава Al-0,5Fe увеличивается до 200 МПа, сплава Al-1,7Fe − до 

298 МПа, а сплава Al-2,5Fe до 340 МПа (Рисунок 8). При этом электропроводность 

исследуемых сплавов также увеличилась приблизительно на 2% IACS, что объясняется 

разрушением непрерывной сетки образованной эвтектикой в результате ХП. 

Относительное удлинение до разрушения заметно ниже, чем в исходном состоянии, но 

остается на достаточно высоком уровне – не менее 15%. 

УМЗ структура сплавов Al-Fe после РКУП-К и ХВ подобна микроструктуре, 

  
а б 

Рисунок 7 − Микроструктура сплава Al-1,7Fe после 

РКУП и ХП в продольном сечении (ПЭМ): а – 

светлопольное изображение, б – темнопольное 

изображение, с указанием частиц фазы Al2Fe стрелками 

  
а б 

Рисунок 8 – Изменение свойств сплавов Al-Fe в зависимости 

от режимов обработки:  

а – предел прочности на растяжение, б – электропроводность 
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сформированной в результате обработки РКУП и ХП. ХВ образцов сплавов Al-0,5Fe и 

Al-1,7Fe, предварительно подвергнутых обработке методом РКУП-К, повысило 

прочностные характеристики до 239 и 310 МПа соответственно (Рисунок 9).  

Относительное 

удлинение до разрыва 

проволоки, выполненной из 

обоих сплавов, составляет 

3-5%, что является весьма 

хорошим показателем для 

токопроводящих жил из 

проводниковых сплавов. 

Электропроводность 

сплавов Al-0,5Fe и Al-1,7Fe 

после ХВ также 

претерпевает некоторое 

увеличение до 57,7 и до 

50,7% IACS. 

Отжиг при температуре 230 ℃ приводит к разупрочнению менее чем на 10% 

тонких пластин и проволоки из наноструктурированных сплавов, полученных после 

ХП (Рисунок 8) или ХВ (Рисунок 9), вызывая увеличение электропроводности на 1-

2% IACS. Отжиг при 280 ℃ приводит к разупрочнению до недопустимого уровня для 

термостойких проводников, что связано с увеличением размера (ширины) зерен 

(Рисунок 10), как это ранее было отмечено для УМЗ сплавов, полученных 

традиционными методами литья.  

 В результате отжига при 

280 ℃ (Рисунок 10) зерна 

остаются вытянутыми в 

направлении ХП или ХВ. Их 

ширина увеличивается до 

595±25 нм в сплаве Al-0,5Fe, 

до 575±25 нм в сплаве Al-1,7Fe 

и до 410±20 нм в сплаве Al-

2,5Fe. В результате отжига не 

происходит изменения размера 

интерметаллидных частиц. Их 

средний размер составляет в 

сплавах: Al-0,5Fe − 60±10 нм, 

Al-1,7Fe − 50±20 нм, Al-2,5Fe − 

60±15 нм.  

Сопоставление уровня термостойкости УМЗ сплавов, полученных традиционным 

литьем и УМЗ сплавов, полученных литьем в ЭМК, показало, что согласно 

требованиям стандартов ГОСТ Р МЭК 62004-2014 и IEC 62641:2023, их термическая 

стабильность сопоставима с проводниковыми сплавами системы Al-Zr и Al-РЗМ. 

Однако, тонкие пластины и проволока, выполненные из УМЗ сплавов Al-0,5Fe и Al-

1,7Fe полученных литьем в ЭМК, демонстрируют более высокие прочностные 

характеристики как до, так и после отжига (см. Рисунки 4, 8 и 9), что свидетельствует о 

том, что наноразмерные частицы обеспечивают заметно большую стабильность 

физико-механических свойств при повышенных температурах.  

В пятой главе представлены результаты исследования влияния легирования 

малой добавкой меди (0,3 вес.%) на микроструктуру, физико-механические свойства и 

их термическую стабильность сплава Al-0,5Fe-0,3Cu – аналога по химическому составу 

  
а б 

Рисунок 9 – Изменение свойств сплавов системы Al-Fe после 

РКУП-К, ХВ и отжига:  

а – предел прочности на растяжение, б – электропроводность 

  
а б 

Рисунок 10 – Микроструктура сплава Al-1,7Fe после 

РКУП, ХП и отжига 280 ℃, 1 ч., продольное сечение 

(ПЭМ): а – светлопольное изображение,  

б – темнопольное изображение, с указанием стрелками 

частиц фазы Al2Fe 
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сплаву 8030, полученного методом литья ЭМК и подвергнутого двухэтапной ДО, 

включающей РКУП или РКУП-К, а на втором этапе ХП или ХВ.  

Микроструктура литого сплава Al-0,5Fe-0,3Cu качественно подобна 

микроструктуре сплава Al-0,5Fe, полученного литьем в ЭМК и представляет собой 

ячейки, границы которых сформированы сеткой интерметаллидов. Средний размер 

дендритных ячеек составляет 5,7±0,9 мкм. Интерметаллидная фаза имеет форму тонких 

ламелей, толщина которых составляет 120±30 нм, а длина до нескольких микрон. РСА 

показал, что в сплаве в исходном состоянии присутствуют частицы метастабильной 

фазы Al2Fe, обнаруженной ранее в сплавах системы Al-Fe, полученных литьем в ЭМК. 

Кроме того, по результатам энергодисперсионного анализа в микроструктуре сплава 

обнаружено незначительное 

количество тройной фазы, 

близкой по составу Al7Cu2Fe.  

После РКУП в сплаве   Al-

0,5Fe-0,3Cu сформировалась 

равноосная УМЗ структура со 

средним размером зерна 

650±70 нм (Рисунок 11 а). В 

результате ДО происходит 

фрагментация частиц фазы 

Al2Fe (Рисунок 11 б), средний 

размер которых составляет 

70±10 нм. 

РСА показал, что после обработки РКУП в сплаве наблюдается уменьшение 

параметра a (до 4,0498 Å), по сравнению с исходным литым (a ~ 4,0522 Å), что 

свидетельствует о растворении некоторого количества меди в алюминии в результате 

ДО.  

В результате дополнительной 

ХП равноосные зерна 

трансформируются в волокна в 

направлении деформации. Их 

длина достигает 1,5 мкм, а 

ширина 220±28 нм 

(Рисунок 12). В процессе ХП, 

как и в случае сплавов, не 

содержащих медь, отмечается 

дополнительная фрагментация 

наноразмерных частиц Al2Fe и 

формирование ими компактных 

скоплений в виде строчек 

(Рисунок 12 б). 

После РКУП-К образцы сплава подвергали ХВ для получения проволоки. Средняя 

ширина зерна составила 200±50 нм, а длина около 2 мкм. Интерметаллидные частицы в 

результате такой ДО фрагментировались до наноразмеров (средний размер составил 

60±10 нм), образуя строчечные скопления, как и после ХП.  

Формирование наноструктурированных состояний на первом этапе ДО приводит к 

существенному (в 2 раза) повышению прочностных характеристик, которое 

сопровождается заметным уменьшением относительного удлинения (до 13,7%) и 

снижением электропроводности (с 56,1 до 54,8% IACS), которое обусловлено 

растворением меди в алюминии в результате РКУП (Рисунок 13). 

  
а б 

Рисунок 11 − Микроструктура сплава Al-0,5Fe-0,3Cu в 

состоянии после РКУП (ПЭМ), а – светлопольное 

изображение, б – темнопольное изображение 

  
а б 

Рисунок 12 − Микроструктура сплава Al-0,5Fe-0,3Cu 

после РКУП и последующей ХП со степенью обжатия 

85%, продольное сечение (ПЭМ): а – светлопольное 

изображение, б – темнопольное изображение 
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Последующая ХП 

повышает предел 

прочности сплава до 

309 МПа, что превышает 

этот показатель исходного 

образца почти в 3 раза и не 

оказывает существенное 

влияния на относительное 

удлинение образцов, при 

этом электропроводность 

восстанавливается до 

уровня исходного образца. 

Таким образом, 

дополнительное, 

относительно небольшое 

легирование медью (до 0,3 вес.%), в совокупности с формированием УМЗ структуры 

содержащей наноразмерные частицы фазы Al2Fe, вызывает значительно большее 

упрочнение по сравнению с наноструктурированным сплавом Al-0,5Fe после 

аналогичной обработки. В сплаве Al-0,5Fe-0,3Cu двухэтапная ДО приводит к 

двухкратному повышению прочности, снижению относительного удлинения до 

разрушения, а также электропроводимости (Рисунок 13). 

Физико-механические свойства тонких пластин и проволоки из сплава Al-0,5Fe-

0,3Cu, полученной литьем в 

ЭМК и последующей 

двухэтапной ДО, также, как и 

аналогичные образцы сплава 

Al-1,7Fe, демонстрируют 

соотношение «прочность-

электропроводность» на 

уровне высокопрочных 

проводников, выполненных из 

сплавов системы Al-Mg-Si, 

полученных по серийной 

технологии, заметно 

превосходя проводники из 

сплава Al-0,5Fe без меди, 

полученного ЭМК после 

двухэтапной ДО, выполненной 

по аналогичным режимам. 

В отличии от 

наноструктурированных 

сплавов Al-Fe без меди, сплав 

Al-0,5Fe-0,3Cu существенно 

разупрочняется в результате 

отжига уже при 230 °С (Рисунок 14 а, б) из-за заметного укрупнения зерен – их средняя 

ширина увеличивается до 700±35 нм. Интерметаллидные частицы фазы Al2Fe 

нанометрических размеров выступают в роли барьеров, сдерживающих миграцию 

границ зерен, формируя зернограничные прослойки (Рисунок 14 б). Отжиг при 280 °С 

приводит к еще большей деградации микроструктуры. Средняя ширина ультрамелких 

зерен достигает 900 нм (Рисунок 14 в, г).  

  
а б 

Рисунок 13 – Эволюция свойств сплавов Al-0,5Fe-0,3Cu и  

Al-0,5Fe после двухэтапной ДО, включающей РКУП, ХП,  

а также отжига при 230 или 280 °С:  

а – предел прочности на растяжение, б – электропроводность 

  
а б 

  
в г 

Рисунок 14 – Микроструктура сплава Al-0,5Fe-0,3Cu 

после РКУП, ХП и последующего отжига при 230 °С в 

течение 1 ч. (а, б) и отжига при 280 °С в течение 1 ч. (в, 

г), продольное сечение (ПЭМ) 
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Вклады микроструктурных механизмов на физико-механические свойства 

исследуемых сплавов оценивались согласно аддитивной модели, где предел текучести 

сплава и его электросопротивление складываются из отдельного влияния каждого 

параметра микроструктуры.  

Общее упрочнение рассчитывается по формуле: 𝜎0,2 = 𝜎0 + 𝜎гз + 𝜎тв + 𝜎ор + 𝜎д, 

где σ0 – напряжение сдвига (Пайерлса-Набарро); σгз – упрочнение за счет границ зерен 

(ГЗ); σтв – упрочнение за счет твердого раствора; σор – упрочнение за счет присутствия 

частиц интерметаллидных фаз (Орована); σд – упрочнение за счет дислокаций. 

Полное электросопротивление проводника рассчитывается по правилу 

Маттиссена: 𝜌 = 𝜌𝐴𝑙 + 𝜌вак + 𝜌д + 𝜌гз + 𝜌ч + 𝜌тв, где ρAl – удельное сопротивление 

чистого алюминия; ρвак – вклад от вакансий; ρд – вклад от дислокаций; ρгз – вклад от ГЗ; 

ρч – вклад от частиц алюминидов железа; ρтв – вклад от твердого раствора.  

Оценка вкладов на примере наноструктурированных сплавов Al-0,5Fe, Al-0,5Fe-

0,3Cu и Al-1,7Fe, полученных литьем в ЭМК после ИПД методом РКУП, показала, что 

вклад наноразмерных частиц фазы Al2Fe в общее упрочнения составляет 25, 27 и 35% 

соответственно. На Рисунке 15 а изображены диаграммы распределения вкладов на 

примере сплава Al-0,5Fe. 

Анализ возможных 

микроструктурных механизмов 

вкладов в упрочнение сплавов 

Al-Fe, наноструктурированных в 

результате двухэтапной ДО 

методом РКУП и ХП, на примере 

сплавов Al-0,5Fe и Al-2,5Fe 

показал, что вклад ГЗ в 

упрочнение составляет 39 и 41%, 

а на втором месте по значимости 

в упрочнение – вклад от 

наноразмерных частиц, который 

составляет 33 и 38% соответственно.  

В отсутствие влияния твердого раствора в сплавах системы Al-Fe на удельное 

электрическое сопротивление, основной вклад на его величину оказывает объемная 

доля интерметаллидных частиц, а также, в меньшей степени размеры и морфология 

ультрамелких зерен и частиц. Изменение геометрических размеров образцов УМЗ 

сплавов в результате ХП или ХВ приводит к перераспределению частиц, их 

перестройке и изменению межчастичных расстояний. Оценка возможных механизмов 

вкладов на электрическое сопротивление УМЗ сплавов показало, что вклад ГЗ на 

электросопротивление составил около 18 и 31%. Вклад наноразмерных частиц фазы 

Al2Fe заметно менее выражен и достигает 3 и 8% для сплавов Al-0,5Fe и Al-2,5Fe 

соответственно. 

Анализ микроструктурных процессов, количественная оценка их вкладов на 

свойства и физические характеристики материала показали, что присутствие в УМЗ 

структуре сплавов системы Al-Fe, полученных по технологии литья в ЭМК и 

подвергнутых двухэтапной ДО, наноразмерных частиц фазы Al2Fe обеспечивают 

значительное увеличение их прочности без существенной потери электропроводности, 

повышая термическую стабильность свойств до уровня термостойких проводниковых 

сплавов системы Al-Zr. 

На Рисунке 16 обобщены полученные в работе экспериментальные данные. 

Микроструктуры, сформированные в ЭМК сплаве Al-0,5Fe после РКУП и ХП или ХВ 

повысили механическую прочность до уровня, превышающего прочность 

  
а б 

Рисунок 15 – Диаграммы распределения вкладов 

микроструктурных механизмов в прочность сплава  

Al-0,5Fe, полученных литьем в ЭМК после ДО: 

 а – РКУП, б – РКУП+ХП 
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коммерческих сплавов серии 8000 и термостойких сплавов системы Al-Zr типа АТ1 и 

АТ2. 

Наноструктурированный 

сплав с содержанием Fe 1,7 

вес.%, полученный в 

результате такой же 

обработки, по комплексу 

физико-механических 

свойств, может быть 

рассмотрен в качестве 

недорогого перспективного 

материала для замены 

высокопрочных проводников 

таких марок как 6101, 6201 и 

АВЕ из термически 

упрочняемых сплавов 

системы Al-Mg-Si. 

Проводниковая продукция, 

такая как проволока и токопроводящие шины, изготовленная из сплава Al-1,7Fe с УМЗ 

структурой, имеет схожие и даже превосходит по показателям соотношения «предел 

прочности – электропроводность» промышленных сплавов системы Al-Mg-Si, и более 

чем в 1,5 раза превосходят их по уровню термостойкости, показывая ее на уровне 

сплавов системы Al-Zr типа АТ1 и АТ2. 

По сочетанию физико-механических свойств, проволока из УМЗ сплава Al-0,5Fe-

0,3Cu превосходит проводники, получаемые из промышленных термоупрочняемых 

сплавов системы Al-Mg-Si, которые наиболее широко используются для изготовления 

проводов воздушных линий электропередачи, кабелей и самонесущих изолированных 

проводов. По физико-механическим свойствам УМЗ сплав Al-0,5Fe-0,3Cu после отжига 

230℃ превосходит промышленный сплав 8030, а также УМЗ сплав Al-0,5Fe, не 

содержащий медь.  

ЗАКЛЮЧЕНИЕ 

На основе результатов проведенных исследований установлено влияние методов 

литья, содержания железа и деформационной обработки, включая интенсивную 

пластическую деформацию, на улучшение физико-механических свойств и 

термическую стабильность сплавов системы Al-Fe, предназначенных для 

использования в качестве проводниковых материалов в электротехнике.  

1. Установлено, что при использовании традиционных методов литья в кокиль и 

литья, совмещенного с прокаткой, в сплавах Al-Fe образуются преимущественно 

интерметаллидные частицы стабильной фазы Al6Fe. При непрерывном литье в ЭМК в 

сплавах впервые установлено образование частиц метастабильной фазы Al2Fe, 

имеющие близкие к нанометрическому диапазону размеры (90±20 нм), входящей в 

состав эвтектики (Al)+Al2Fe.  

2. Установлено, что ИПД, реализуемая методами РКУП или непрерывного РКУП-

К при комнатной температуре позволяет сформировать в сплавах Al-0,5Fe, Al-0,5Fe-

0,3Cu, Al-1,7Fe и Al-2,5Fe, полученных литьем в ЭМК, наноструктурированные 

состояния, характеризующиеся ультрамелким размером зерна алюминиевой матрицы и 

частицами фазы Al2Fe нанометрических размеров (70±10 нм).  

3. Установлено, что наноструктурирование сплавов Al-0,5Fe, Al-0,5Fe-0,3Cu и Al-

1,7Fe, полученных двухэтапной обработкой, включающей РКУП или РКУП-К с 

последующей ХП или ХВ − позволяет повысить предел прочности от 239 до 310 МПа, 

 
Рисунок 16 – Изменение свойств исследуемых сплавов 

системы Al-Fe в сопоставлении с коммерчески 

используемыми сплавами: C.P. Al (1000 серия)  

[ГОСТ 13843-2019], Al-Fe (8000 серия) [ГОСТ 58019-

2017]; 2 – Al-Zr (AT1-AT4) [IEC 62004:2007, МЭК 

62004:2007]; 3 – Al-Mg-Si (6000 серия) [EN 50183:2002] 
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сохраняя высокую электропроводность от 51,3 до 58,5% IACS соответственно, а также 

термостойкость эквивалентную длительной эксплуатации в течение теоретически 

неограниченного времени при температуре 150 ºС. Показано, что вклад наноразмерных 

частиц (70±10 нм) фазы Al2Fe в упрочнение сплавов Al-0,5Fe, Al-0,5Fe-0,3Cu и Al-1,7Fe 

является определяющим, составляя 25, 27 и 35 % соответственно.  

4. Экспериментально установлено рациональное содержание железа (от 1,0 до 

2,2 вес.%) в сплавах системы Al-Fe с наноразмерными частицами (70±10 нм) фазы 

Al2Fe, полученных методом литья в ЭМК и режимы их деформационной обработки, 

обеспечивающие сочетание «прочность-электропроводность» на уровне 

высокопрочных проводниковых сплавов Al-Mg-Si при термостойкости, аналогичной 

проводникам, выполненным из сплавов систем Al-Zr и Al-РЗМ. 
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