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Общая характеристика работы

Актуальность темы исследования и степень ее разработанности.

Обозначим через X топологическое векторное пространство. Рассмотрим в нем
линейный непрерывный оператор T : X → X. Тогда в пространстве X можно
задать дискретную динамическую систему

(X, T ) = {T nx : x ∈ X}n∈N∪{0}.

Для описания поведения этой системы были введены такие характеристики для
операторов, как цикличность, гиперцикличность, хаотичность и часто-гипер­
цикличность.

В работе изучаются свойства гиперцикличности, хаотичности и часто­
гиперцикличности классических линейных непрерывных операторов в следую­
щих пространствах:
пространство H(Ω) аналитических в Ω функций;
весовое пространство F(ϕ) целых в C

n функций;
весовое пространство E(ϕ) бесконечно дифференцируемых в R

n функций.
Они определяются следующим образом.
Пусть Ω — произвольная односвязная область на плоскости C. Обозначим

через H(Ω) пространство аналитических в Ω функций с топологией равномер­
ной сходимости на компактах из Ω, задаваемой системой норм

pm(f) = sup
z∈Km

|f(z)|, m = 1, 2, . . . ,

где Km — компакты в Ω с непустой внутренностью такие, что Km ⊂ intKm+1,

m ∈ N и
∞⋃

m=1
Km = Ω.

Определим весовое пространство F(ϕ) следующим образом.
Пусть ϕ = {ϕm}∞m=1 — семейство выпуклых функций ϕm : C

n −→ R,
удовлетворяющих для всех m ∈ N требованиям:

i1) lim
z→∞

ϕm(z)
‖z‖ = +∞;

i2) ϕm(z) > ϕm+1(z), z ∈ C
n;

i3) lim
z→∞

(ϕm(z)− ϕm+1(z)) = +∞.

Для каждого m ∈ N положим

Fm =
{
f ∈ H(Cn), f : Cn −→ C : pm(f) = sup

z∈Cn

(|f(z)|e−ϕm(z)) < ∞
}
.
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Очевидно, при любом m ∈ N Fm — банахово пространство. Положим

F(ϕ) =
∞⋂

m=1

Fm. Отметим, что с операциями сложения элементов и их умно­

жения на комплексные числа F(ϕ) образует линейное пространство. Наделим
F(ϕ) топологией проективного предела пространств Fm, m ∈ N. Поскольку
F(ϕ) — проективный предел компактной последовательности, составленной из
банаховых пространств Fm, то F(ϕ) является пространством Фреше–Шварца.

Определим весовое пространство E(ϕ) следующим образом.
Пусть ϕ = {ϕm}∞m=1 — семейство непрерывных вещественнозначных функ­

ций ϕm : Rn −→ R, удовлетворяющих для всех m ∈ N требованиям:

α) lim
x→∞

ϕm(x)

‖x‖ = +∞;

β) lim
x→∞

(ϕm(x)− ϕm+1(x)) = +∞.

Для произвольного m ∈ N определим

E(ϕm) =
{
f ∈ Cm(Rn), f : Rn −→ C : pm(f) = sup

x∈Rn,
α∈Zn

+: |α|≤m

|(Dα
xf)(x)|

exp(ϕm(x))
< ∞

}
.

Теперь положим E(ϕ) =
∞⋂

m=1

E(ϕm). С операциями сложения элементов и умно­

жения на комплексные числа E(ϕ) образует линейное пространство. Наделим
E(ϕ) топологией проективного предела пространств E(ϕm), m ∈ N. Очевидно,
E(ϕ) — пространство Фреше и оно инвариантно относительно дифференци­
рования, а операторы частного дифференцирования в нем непрерывны. Как
показано в работе И.Х. Мусина, С.В. Попенова 2010 г., пространство E(ϕ) сепа­
рабельно.

Обозначим через X топологическое векторное пространство. Орбитой
элемента x оператора T : X → X называется множество

Orb(T, x) =
{
T nx

}∞
n=0

.

Линейный непрерывный оператор T : X → X называется гиперциклическим

в X , если существует элемент x ∈ X, имеющий плотную орбиту в X. Этот
элемент x ∈ X называется гиперциклическим вектором оператора T в X.

Основы теории гиперциклических операторов были заложены
Дж.Д. Биркхофом и Дж.Р. Маклейном в пространстве целых функций H(C).
В 1929 году Дж.Д. Биркхоф доказал, что существует целая функция f , для
которой множество, состоящее из функций f(z), f(z + 1), f(z + 2), . . ., плот­
но в H(C). Это утверждение означает гиперцикличность оператора сдвига T
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в H(C), действующего по правилу (Tf)(z) = f(z + 1). В 1952 году
Дж.Р. Маклейн доказал существование функции f ∈ H(C) такой, что мно­
жество, состоящее из функций f, f ′, f ′′, . . ., плотно в H(C). Данный факт пока­
зывает, что оператор дифференцирования T = d

dz
гиперциклический в H(C).

В работах К.-Г. Гроссе-Эрдманна и Г. Петерсона сделан широкий обзор
гиперциклических операторов для различных пространств. Вопросы гиперцик­
личности в произвольных линейных топологических пространствах рассмат­
ривались Р.М. Гетнером и Дж.Х. Шапиро, Ж. Годфруа и Дж.Х. Шапиро,
С. Ролевичем, К. Китаи. Основными результатами статей Р.М. Гетнера,
Дж.Х. Шапиро и Ж. Годфруа, Дж.Х. Шапиро являются критерии гиперцик­
личности операторов в сепарабельных пространствах Фреше. Также в работе
Р.М. Гетнера, Дж.Х. Шапиро доказаны теоремы о гиперцикличности
операторов дифференцирования и сдвига, определенных в публикациях
Дж.Д. Биркгофа и Дж.Р. Маклейна. А в статье Ж. Годфруа, Дж.Х. Шапиро
приведено доказательство утверждения о гиперцикличности вH(C) любого опе­
ратора свертки, характеристическая функция которого не тождественна посто­
янной.

В дальнейшем свойство гиперцикличности было изучено для многих важ­
ных в приложениях классов операторов в пространствах целых функций следу­
ющими учеными: М.Дж. Бельтран, Ж. Боне, А. Бонилья, В.Э. Ким,
А.А. Лишанский. В статьях Р. Арона и Д. Маркозе рассмотрены многие гипер­
циклические операторы вH(C). Они также привели подробный обзор литерату­
ры по этой теме. В данной области еще можно отметить работы
Дж. Бэса, А. Пэриса и Дж.Дж. Бетанкура, Дж.Д. Бетанкура, которые посвя­
щены гиперцикличности в H(C) различных операторов и операторов свертки,
ассоциированных с оператором Данкла. Также гиперциклическими оператора­
ми занимались следующие авторы: С.И. Ансари, М. Ансари, Ф. Байяр,
С. Гриво, К.Ч. Чан, Р. Сандерс, Х.Н. Салас, З. Ксю, З. Жоу.

Периодической точкой оператора T называется элемент x ∈ X, для
которого имеется натуральное число n ≥ 2 такое, что T nx = x. Непрерывный
оператор Φ : Y → Y в метрическом пространстве (Y, d) называется
хаотическим (по Девани), если выполнены следующие условия:

(A) оператор Φ обладает существенной зависимостью от начальных условий:
существует число δ > 0 такое, что для любого элемента x ∈ Y и его
произвольной окрестности U найдутся точка y ∈ U и номер n ∈ N,
удовлетворяющие условию d(Φnx,Φny) > δ;

(B) оператор Φ является топологически транзитивным: для любой пары непу­
стых открытых множеств A, B ⊂ X найдется число n ∈ N, для которого
Φn(A) ∩B 6= ∅;

(C) множество периодических точек оператора Φ плотно в пространстве Y .
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Основы теории хаотических операторов были заложены в 1989 г.
Р.Л. Девани. Далее в 1992 г. Дж. Бэнкс, Дж. Брукс и другие авторы показали,
что требование существенной зависимости оператора от начальных условий вы­
текает из его топологической транзитивности и наличия плотного множества
периодических точек, поэтому при проверке хаотичности оператора это требова­
ние можно пропустить. В работе Ж. Годфруа и Дж.Х. Шапиро 1991 г. доказана
хаотичность в H(C) любого оператора свертки, характеристическая функция
которого отлична от постоянной. В статье А. Гулисашвили, К.Р. Макклуэра
1996 г. приведено утверждение о хаотичности оператора уничтожения
a = 1√

2
(z + d

dz
) в пространстве L2(−∞,+∞).

В 2000 г. Р.М. Кроновер написал обширную работу с подробными сведени­
ями по хаотическим операторам в динамических системах. В книге М.В. Хирша,
С. Смэйла, Р.Л. Девани 2013 г. собраны основные положения теории динами­
ческих систем, в том числе понятия цикличности, гиперцикличности, хаотич­
ности и часто-гиперцикличности. В 2002 г. Ф. Мартинез-Гименез, А. Пэрис
изучили свойство хаотичности операторов обратного сдвига в пространстве l2.
Дж.Дж. Бетанкур, М. Сифи, К. Тримехе в 2005 г. показали, что операторы
свертки, ассоциированные с оператором Данкла, гиперциклические и хаотиче­
ские в пространстве H(C).

В.Э. Ким в работах 2008 г. и 2009 г. показал, что все операторы обобщен­
ной свертки, не тождественные умножению на константу и порожденные опе­
раторами обобщенного сдвига и операторами обобщенного дифференцирования
Гельфонда–Леонтьева, гиперциклические и хаотические в H(C). В его статье
2011 г. приведена теорема о том, что операторы уничтожения, действующие в
обобщенных пространствах Фока–Баргмана F , обладают свойством хаотичнос­
ти, причем в частном случае операторами уничтожения являются операторы
обобщенного дифференцирования Гельфонда–Леонтьева.

При изучении гиперциклических операторов возникло понятие
часто-гиперцикличности. Класс операторов с этим свойством удовлетворяет
более сильным требованиям, чем гиперциклические операторы.

Нижняя плотность densA множества A ⊂ N определяется по формуле

densA = lim inf
N→∞

#{n ∈ A : n ≤ N}
N

.

Линейный непрерывный оператор T : X → X в топологическом вектор­
ном пространстве X называется часто-гиперциклическим, если найдется
элемент x ∈ X, который для любого непустого открытого подмножества U ⊂ X

удовлетворяет условию dens
{
n ∈ N : T nx ∈ U

}
> 0. Этот элемент x ∈ X

называется часто-гиперциклическим вектором оператора T в X.
Понятие часто-гиперциклического оператора ввели Ф. Байяр и С. Гриво

в 2006 г. для пространства H(C). В 2007 г. А. Бонилья и К.-Г. Гроссе-Эрдманн
рассмотрели примеры таких операторов и векторов в H(C). В книгах
Ф. Байяра, Э. Матерона и К.-Г. Гроссе-Эрдманна, А. Пэриса приведены подроб­
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ные сведения по динамике линейных операторов, в том числе по хаотическим
и часто-гиперциклическим операторам.

А. Бонилья и К.-Г. Гроссе-Эрдманн в 2006 г. доказали, что непрерывные
операторы, коммутирующие со сдвигом, часто-гиперциклические в простран­
стве H(Cn). В 2010 г. Л. Бернал-Гонзалез, А. Бонилья изучили свойства
композиций часто-гиперциклических операторов в весовых пространствах
Дирихле. В книгах М.В. Хирша, С. Смэйла, Р.Л. Девани 2013 г. и С. Гриво,
Э. Матерона, К. Мене 2016 г. изложена обширная теория по хаотическим и
часто-гиперциклическим операторам. В 2009 г. Ж. Боне показал гиперциклич­
ность и часто-гиперцикличность дифференциального оператора в весовом
пространстве целых функций в C. В статье С. Гриво рассмотрены различные
примеры часто-гиперциклических операторов в H(C).

В.Э. Ким в работе 2014 г. для линейного непрерывного оператора T ,
удовлетворяющего соотношению [T,A] = I , а в более общем случае коммутаци­
онному соотношению, порождающему алгебру su(1,1), показал, что он
является хаотическим и часто-гиперциклическим. В статьях А.А. Лишанского и
А.Д. Баранова 2015 г. и 2016 г. изучена динамика линейных операторов,
а именно операторов Теплица и унитарных операторов, в пространствах Харди
функций, аналитических в круге.

И.Ф.З. Бенсайд, М. Гонзалес, Ф. Леон-Сааведра и М.П. Ромеро
де ла Роса изучили, в каких случаях в пространстве Фреше X линейный непре­
рывный оператор T , λ-коммутирующий с дифференцированием по формуле
TD = λDT при некотором значении λ ∈ C, λ 6= 0, является гиперциклическим.
Ф. Леон-Сааведра и М.П. Ромеро де ла Роса рассмотрели все случаи, когда в
пространстве Фреше X линейный непрерывный оператор T , λ-коммутирующий
с дифференцированием по формуле TD = λDT при некотором значении
λ ∈ C, λ 6= 0, является часто-гиперциклическим.

В работе Т. Калмеса 2019 г. эти свойства изучены для весовых операторов
композиции в пространстве функций, определенном локальными свойствами.
В статье Ж. Боне, Т. Калмеса, А. Пэриса 2021 г. рассматривается динами­
ка операторов сдвига на неметризуемых пространствах последовательностей.
Изучению динамических свойств различных операторов посвящены работы
следующих ученых: К. Агнисенс, Ф. Байяр, И.З. Ружа, Дж.Дж. Бетанкур,
М. Сифи, Д. Бонжиорно, У.Б. Даржи, Л. ди Пиацца, Б. Пирс, М.П. Ромеро
де ла Роса, Л. Фрерик, С. Гриво, А. Пэрис, Х. Эмамирад, Г.С. Хешмати,
К.-Г. Гроссе-Эрдманн, С. Чарпентир, К. Мене, А. Нейштадт и других.

Оператор Данкла был введен в работах Ч.Ф. Данкла 1989 г. и 1991 г.,
а также изучался в статьях М. Реслер 1998 г. и 2002 г., М.Ф.Э. Де Джеу 1993 г.
В.Э. Ким, В.В. Напалков в 2008 г. определили обобщение оператора Данкла
в виде дифференциально-разностного оператора в H(C) и привели различные
утверждения о его свойствах. В работе В.В. Напалкова, В.В. Напалкова (мл.)
2008 г. оператор Данкла представлен через действие функционала на функцию
в пространстве целых функций в C и доказано, что оператор Данкла можно
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выразить через оператор свертки.
А.В. Братищев в 2009 г. показал, что в пространстве H(G) оператор

Данкла является оператором обобщенного дифференцирования Гельфонда–
Леонтьева, и установил гиперцикличность и хаотичность операторов, комму­
тирующих с оператором Данкла. В.И. Иванов в статье 2021 г. в весовом про­
странстве R

d привел различные неравенства для оператора Данкла в случае
радиальных кусочно-степенных весов. Этим операторам и задачам, связанным
с ними, посвящены работы следующих авторов: А.В. Братищев, К.Р. Забирова,
В.И. Иванов, И.И. Карамов, В.Э. Ким, В.В. Напалков, В.В. Напалков,
В.В. Напалков (мл.), М. Эль Хамма, А. Ламими, Х. Эль Харрак, К.-Дж. Янг
и других.

В диссертации изучаются различные динамические характеристики
классических операторов в весовых пространствах целых и бесконечно диффе­
ренцируемых функций, пространствах функций, голоморфных в области и на
всей комплексной плоскости. Задачи, поставленные в диссертации, являются
актуальными, поскольку они не изучались в опубликованных ранее работах
отечественных и зарубежных ученых.

Цели и задачи диссертационной работы. Основной целью диссерта­
ции является изучение в пространстве функций, аналитических в области, а
также в весовых пространствах бесконечно дифференцируемых и целых функ­
ций таких динамических характеристик, как гиперцикличность, хаотичность
и часто-гиперцикличность, для классических операторов: операторы сдвига,
дифференцирования, конечные суммы операторов сдвига, дифференцирования
и их композиций, ряды из таких операторов, оператор свертки.

Методология и методы исследования. В данной работе используются
классические методы теории функций комплексных переменных и функцио­
нального анализа. Также применяются некоторые методы дифференциальных
уравнений.

Научная новизна. Все результаты, выносимые на защиту, являются
новыми. В опубликованных ранее статьях и книгах отечественных и зарубеж­
ных ученых задачи, поставленные в диссертации, в рассматриваемых в данной
работе пространствах не изучались.

Теоретическая и практическая значимость. Результаты диссерта­
ции имеют теоретический характер. В работе рассмотрены понятия гиперцик­
личности, хаотичности и часто-гиперцикличности операторов. Эти динамиче­
ские свойства изучены для классических операторов в пространстве функций,
аналитических в области, а также в весовых пространствах бесконечно
дифференцируемых функций и целых функций. Приведены доказательства
гиперцикличности, хаотичности и часто-гиперцикличности обобщенного
оператора Данкла в данных пространствах.
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Положения, выносимые на защиту. В диссертации получены
следующие результаты:

1. Показано, что линейный непрерывный оператор в пространстве H(Ω),
коммутирующий с оператором дифференцирования и не являющийся
скалярным кратным тождественному отображению, является гиперцикли­
ческим (теорема 2.6). Также он хаотический (теорема 3.5) и часто-гипер­
циклический (теорема 3.6) в H(Ω).

2. Изучены свойства плотности полиномов, полноты системы экспонент в
пространстве F(ϕ), доказана гиперцикличность операторов дифференци­
рования, сдвига, свертки и их различных композиций в F(ϕ). Линейный
непрерывный оператор в F(ϕ), коммутирующий с операторами частно­
го дифференцирования и не совпадающий со скалярным кратным тожде­
ственному отображению, является гиперциклическим в этом пространстве
(теорема 5.5). Доказано, что рассматриваемый оператор обладает свой­
ствами хаотичности (теорема 6.1) и часто-гиперцикличности (теорема 6.2)
в F(ϕ).

3. В пространстве E(ϕ) рассмотрено свойство гиперцикличности операто­
ров дифференцирования, сдвига, свертки и их различных композиций
в E(ϕ). Показано, что линейный непрерывный оператор в E(ϕ), коммути­
рующий с операторами частного дифференцирования и не являющийся
скалярным кратным тождественному отображению, является гиперцик­
лическим в этом пространстве (теорема 9.1). Приведены теоремы о хао­
тичности и часто-гиперцикличности оператора дифференцирования (тео­
рема 10.2) и оператора композиции дифференцирования и сдвига (теоре­
ма 10.3) в E(ϕ).

4. Изучены некоторые свойства обобщенного оператора Данкла в простран­
стве H(C) целых функций с топологией равномерной сходимости на
компактах, а именно приведен вид функции, получаемой при действии
этого оператора на функцию из H(C), показано, что действие обобщен­
ного оператора Данкла на целую функцию равносильно действию на нее
функционала определенного вида. Доказаны утверждения, что обобщен­
ный оператор Данкла является гиперциклическим (теорема 11.3), а также
хаотическим и часто-гиперциклическим (теорема 11.4) в H(C). Показано,
что обобщенный оператор Данкла обладает свойствами гиперцикличности
(теорема 12.2), хаотичности и часто-гиперцикличности (теорема 12.3) в
пространстве F(ϕ,C).

Степень достоверности и апробация результатов. Достоверность
результатов диссертации гарантируется строгостью доказательств утверждений
и обсуждением полученных теорем на конференциях и семинарах [1–16].

Автор выступал с основными результатами на следующих научных кон­
ференциях и семинарах: Международная научно-практическая конференция
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«Современная математика и ее приложения» (Уфа, 2017 г.); XXV международ­
ная школа-конференция студентов, аспирантов и молодых ученых «Ломоносов»
(Москва, 2018 г.); Международная научная конференция «Комплексный ана­
лиз и теория аппроксимаций» (Уфа, 2019 г.); Международная научная кон­
ференция «Теория функций, теория операторов и квантовая теория информа­
ции» (Уфа, 2020 г.); Международная научная конференция «Уфимская осенняя
математическая школа» (Уфа, 2020 г.); XI международная школа-конференция
студентов, аспирантов и молодых ученых «Фундаментальная математика и ее
приложения в естествознании» (Уфа, 2020 г.); Международная научная кон­
ференция «Теория функций, теория операторов и квантовая теория информа­
ции» (Уфа, 2021 г.); Международная научная конференция «Уфимская осен­
няя математическая школа» (Уфа, 2022 г.); XIII международная школа-конфе­
ренция студентов, аспирантов и молодых ученых «Фундаментальная матема­
тика и ее приложения в естествознании» (Уфа, 2022 г.); XIV международная
школа-конференция студентов, аспирантов и молодых ученых «Фундаменталь­
ная математика и ее приложения в естествознании» (Уфа, 2023 г.); Всерос­
сийская школа-конференция «Лобачевские чтения — 2023» (Казань, 2023 г.);
Семинар «Комплексный и гармонический анализ» отдела теории функций и
функционального анализа Института математики с вычислительным центром
УФИЦ РАН (Уфа, 2024 г.); Международная научная конференция «Комплекс­
ный анализ и его приложения» (Уфа, 2024 г.); XV международная школа-кон­
ференция студентов, аспирантов и молодых ученых «Фундаментальная матема­
тика и ее приложения в естествознании» (Уфа, 2024 г.); Международная кон­
ференция Воронежская зимняя математическая школа «Современные методы
теории функций и смежные проблемы» (Воронеж, 2025 г.); Международная
молодежная школа-конференция «Современные проблемы математики и
ее приложений» (Екатеринбург, 2025 г.).

Публикации. По теме диссертации имеются 6 статей [1–6], из них ста­
тьи [1–3] изданы в журналах из Перечня ВАК, работы [4–6] опубликованы в
журналах, которые входят в международные реферативные базы данных Web
of Science и Scopus, приравненных к изданиям из Перечня ВАК.

Личный вклад автора. Основные результаты диссертации опубликова­
ны в работах автора [1–6]. В совместных публикациях [1, 2] В.В. Напалкову
принадлежат постановки задач, а также в статье [1] — теорема 1, в работе [2] —
теорема 1, а диссертанту — остальные утверждения и их доказательства. Все
основные результаты диссертации получены автором самостоятельно.

Автор выражает огромную благодарность своему научному руководи­
телю, доктору физико-математических наук И.Х. Мусину за предложенную
тему исследований, постоянное внимание, неоценимую помощь и всестороннюю
поддержку в процессе работы над диссертацией. Автор очень признателен
члену-корреспонденту РАН, профессору В.В. Напалкову за внимательное
обсуждение поставленных задач и плодотворную совместную работу.
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Объем и структура диссертации. Диссертация состоит из введения,
четырех глав, заключения и списка литературы, содержащего 116 публикаций.
Объем работы составляет 132 страницы.

Краткое содержание работы.

Во введении обоснована актуальность темы диссертации, изучена исто­
рия вопроса, определена цель и поставлены задачи исследования, отражены
научная новизна и теоретическая значимость полученных результатов.

Пусть X — топологическое векторное пространство. Рассмотрим линей­
ный непрерывный оператор T : X → X. Орбитой элемента x оператора
T : X → X называется множество Orb(T, x) =

{
T nx

}∞
n=0

. Периодической точ­

кой оператора T называется элемент x ∈ X, для которого имеется натуральное
число n ≥ 2 такое, что T nx = x.

Линейный непрерывный оператор T : X → X называется гиперцикличес­
ким в пространстве X , если существует элемент x ∈ X, орбита которого плотна
в X. Этот элемент x ∈ X — гиперциклический вектор оператора T в X .

Непрерывный оператор Φ : Y → Y в метрическом пространстве (Y, d)
называется хаотическим (по Девани), если выполнены следующие условия:

(A) оператор Φ имеет существенную зависимость от начальных условий:
существует число δ > 0 такое, что для любой точки x ∈ Y и его про­
извольной окрестности U найдутся элемент y ∈ U и номер n ∈ N, удовле­
творяющие условию d(Φnx,Φny) > δ;

(B) оператор Φ топологически транзитивный: для любой пары непустых
открытых множеств A, B ⊂ X найдется число n ∈ N, для которого
Φn(A) ∩B 6= ∅;

(C) множество периодических точек оператора Φ плотно в пространстве Y .

Нижняя плотность densA множества A ⊂ N определяется по формуле

densA = lim inf
N→∞

#{n ∈ A : n ≤ N}
N

.

Линейный непрерывный оператор T : X → X в топологическом вектор­
ном пространстве X называется часто-гиперциклическим, если существует
элемент x ∈ X такой, что для любого непустого открытого подмножества
U ⊂ X выполняется условие dens

{
n ∈ N : T nx ∈ U

}
> 0. Этот элемент

x ∈ X — часто-гиперциклический вектор оператора T в X. Отметим, что
множество часто-гиперциклических операторов содержится в классе гиперцик­
лических операторов.

В первой главе в параграфе 1 изложены основные понятия о гипер­
циклических, хаотических и часто-гиперциклических операторах, приведены
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примеры операторов, которые не обладают данными характеристиками.
В параграфе 2 рассматривается пространство H(Ω) функций, аналитических
в односвязной области Ω ⊂ C, наделенное топологией равномерной сходимости
на компактах из Ω, задаваемой системой норм

pm(f) = sup
z∈Km

|f(z)|, m = 1, 2, . . . ,

где Km — компакты в Ω с непустой внутренностью такие, что Km ⊂ intKm+1,

m ∈ N и
∞⋃

m=1
Km = Ω. По аппроксимационной теореме Рунге система полиномов

плотна в H(Ω), значит, пространство H(Ω) сепарабельно. Хорошо известно,
что H(Ω) является пространством Фреше. Отметим, что H(Ω) инвариантно
относительно дифференцирования.

Пусть Ωσ = {z ∈ C : |Im z| < σ} — горизонтальная полоса на плоскости
C, где σ > 0. Определим оператор сдвига Taf(z) = f(z + a), где a ∈ R \ {0},
f ∈ H(Ωσ). Пространство H(Ωσ) инвариантно относительно дифференцирова­
ния и сдвига. Показано, что оператор сдвига гиперциклический в H(Ωσ) (теоре­
ма 2.2), а также оператор дифференцирования гиперциклический в H(Ω) (тео­
рема 2.3). Далее доказана теорема о гиперцикличности линейных непрерывных
операторов, коммутирующих с дифференцированием и не являющихся скаляр­
ным кратным тождественному отображению, вH(Ω) (теорема 2.6) и приведены
некоторые ее следствия.

Теорема 2.6.Пусть линейный непрерывный оператор T в пространстве

H(Ω) коммутирует с оператором дифференцирования и не является скаляр­

ным кратным тождественному отображению. Тогда оператор T гиперцик­

лический в H(Ω).
Основные утверждения параграфа 3 состоят в том, что операторы со

свойствами, определенными в теореме 2.6, хаотические (теорема 3.5) и часто­
гиперциклические (теорема 3.6) в H(Ω). Из этих теорем вытекают следствия
о хаотичности и часто-гиперцикличности дифференциальных операторов ко­
нечного порядка в H(Ω), конечной суммы операторов сдвига, конечной суммы
композиций дифференцирования и сдвига в H(Ωσ).

Теорема 3.5.Пусть линейный непрерывный оператор T в пространстве

H(Ω) коммутирует с оператором дифференцирования и не является скаляр­

ным кратным тождественному отображению. Тогда T — хаотический опе­

ратор в H(Ω).
Теорема 3.6.Пусть линейный непрерывный оператор T в пространстве

H(Ω) коммутирует с оператором дифференцирования и не является скаляр­

ным кратным тождественному отображению. Тогда T — часто-гиперцикли­

ческий оператор в H(Ω).
Вторая глава посвящена изучению динамических свойств классических

операторов — операторов дифференцирования, сдвига, их композиций и сверт­
ки в весовых счетно-нормированных пространствах целых функций.
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В параграфе 4 рассматривается весовое пространство F(ϕ) целых функций
в C

n, инвариантное при дополнительных условиях относительно дифференци­
рования и сдвига. Определим весовое пространство F(ϕ) следующим образом.

Пусть ϕ = {ϕm}∞m=1 — семейство выпуклых функций ϕm : C
n −→ R,

удовлетворяющих для всех m ∈ N требованиям:

i1) lim
z→∞

ϕm(z)
‖z‖ = +∞;

i2) ϕm(z) > ϕm+1(z), z ∈ C
n;

i3) lim
z→∞

(ϕm(z)− ϕm+1(z)) = +∞.

Для каждого m ∈ N положим

Fm =
{
f ∈ H(Cn), f : Cn −→ C : pm(f) = sup

z∈Cn

(|f(z)|e−ϕm(z)) < ∞
}
.

Очевидно, при любом m ∈ N Fm — банахово пространство. Ввиду условия
i2) вложения Fm+1 ⊂ Fm непрерывны для всех m ∈ N, а в силу условия i3)

они вполне непрерывны. Положим F(ϕ) =
∞⋂

m=1

Fm. Отметим, что с операция­

ми сложения элементов и их умножения на комплексные числа F(ϕ) образует
линейное пространство. Наделим F(ϕ) топологией проективного предела про­
странств Fm, m ∈ N. ПосколькуF(ϕ)— проективный предел компактной после­
довательности, составленной из банаховых пространств Fm, то F(ϕ) является
пространством Фреше–Шварца.

Также по мере необходимости на семейство ϕ будем накладывать допол­
нительные условия для любого m ∈ N:

i4) найдутся постоянные am > 0 и bm > 0 такие, что ϕm+1(z+t) ≤ ϕm(z)+bm,
где z ∈ C

n и t ∈ C
n : ‖t‖ ≤ am;

или более жесткое условие:

i5) при любом R > 0 найдется постоянная bm(R,m) > 0 такая, что
ϕm+1(z + t) ≤ ϕm(z) + bm, где z ∈ C

n и t ∈ C
n : ‖t‖ ≤ R;

или в отдельных случаях другое условие:

i6) при фиксированном λ ∈ C \ {0} для любых R > 0 существует постоянная
bm = bm(R) > 0, удовлетворяющая условию
ϕm+1(z̃ + t) ≤ ϕm(z) + bm, где z ∈ C

n, t ∈ C
n : ‖t‖ ≤ R и

z̃ = (z1, . . . , zj−1, λzj, zj+1, . . . , zn), j ∈ (1;n).
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Отметим, что при выполнении условия i4) пространство F(ϕ) инвариант­
но относительно дифференцирования (лемма 5.1). В случае справедливости
требования i5) F(ϕ) является инвариантным относительно как дифференци­
рования, так и сдвига (теорема 5.4). Пространства такого вида встречались в
работах следующих математиков: Л. Эренпрайс, В.П. Паламодов, Б.А. Тейлор,
Ф. Хаслингер, А.В. Абанин, Т.И. Абанина, Ф.Ч. Тиен, С.В. Попенов,
Н.Т. Ахтямов, И.Х. Мусин.

В параграфе 5 показана гиперцикличность операторов частного диф­
ференцирования, дифференциальных операторов бесконечного порядка, харак­
теристическая функция которых является целой функцией экспоненциального
типа, оператора сдвига в F(ϕ). Далее доказана теорема о гиперцикличности
оператора, коммутирующего с операторами частного дифференцирования и не
совпадающего со скалярным кратным тождественному отображению, в F(ϕ)
(теорема 5.5), а также проверено утверждение для оператора свертки (теоре­
ма 5.8).

Теорема 5.5. Пусть семейство ϕ удовлетворяет условию i4) и задан

линейный непрерывный оператор T в F(ϕ), коммутирующий с операторами

частного дифференцирования и не тождественный оператору умножения на

константу. Тогда оператор T гиперциклический в F(ϕ).
Из этой теоремы получены следствия о том, что конечная сумма сдвигов,

конечная сумма композиций дифференцирования и сдвига, ряд из сдвигов при
определенных условиях на коэффициенты, операторы свертки гиперцикличе­
ские в F(ϕ). Приведен пример гиперциклического оператора, не являющегося
оператором свертки.

Теорема 5.8. Пусть семейство ϕ удовлетворяет условиям i5) и допол­

нительному условию

∀m, k ∈ N ∃ l = lm,k ∈ N, r = rm,k > 0 :

∀ z, t ∈ C
n ϕl(z + t) ≤ ϕm(z) + ϕk(t) + r,

S — линейный непрерывный функционал на F(ϕ), преобразование Лапласа ко­

торого Ŝ(z) = Sξ(e
〈ξ,z〉) не тождественно постоянной. Тогда оператор сверт­

ки MS[f ](z) = St(f(z + t)) гиперцикличен в F(ϕ).
Основные утверждения параграфа 6 состоят в том, что линейный непре­

рывный оператор, коммутирующий с дифференцированием и не тождествен­
ный умножению на скаляр, хаотический (теорема 6.1) и часто-гиперцикличе­
ский (теорема 6.2) в F(ϕ).

Теорема 6.1. Пусть семейство ϕ удовлетворяет условию i4), задан ли­

нейный непрерывный оператор T в F(ϕ), который коммутирует с оператора­

ми частного дифференцирования и не кратный тождественному оператору.

Тогда оператор T хаотический в F(ϕ).
Теорема 6.2. Пусть для семейства ϕ выполнено условие i4), задан ли­

нейный непрерывный оператор T в F(ϕ), который коммутирует с оператора­
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ми частного дифференцирования и не кратный тождественному оператору.

Тогда оператор T часто-гиперциклический в F(ϕ).
Из этих утверждений вытекают следствия о хаотичности и часто-гипер­

цикличности дифференциальных операторов конечного порядка, конечной сум­
мы сдвигов, конечной суммы композиций дифференцирования и сдвига, диффе­
ренциальных операторов бесконечного порядка, характеристическая функция
которых является целой функцией экспоненциального типа, ряда из сдвигов
при определенных условиях на коэффициенты, операторов свертки в F(ϕ).
Параграф 7 посвящен изучению свойств хаотичности и часто-гиперциклич­
ности операторов дифференцирования и сдвига, конечной суммы композиций
дифференцирования и сдвига в F(ϕ). Приведен пример хаотического и часто­
гиперциклического оператора, не являющегося оператором свертки.

В третьей главе изучается гиперцикличность классических линейных
операторов в весовых пространствах бесконечно дифференцируемых функций
в R

n, инвариантных относительно дифференцирования или сдвига. Такие про­
странства рассматривались в работах Н.Т. Ахтямова, И.Х. Мусина,
а в статье И.Х. Мусина 2010 г. доказано, что дифференциальные операторы
конечного порядка с постоянными коэффициентами гиперциклические в весо­
вом пространстве Фреше E(ϕ) бесконечно дифференцируемых функций в R

n.
В параграфе 8 рассматривается весовое пространство E(ϕ) бесконечно диффе­
ренцируемых функций в R

n, инвариантное относительно дифференцирования
и при дополнительных условиях относительно сдвига. Определим весовое про­
странство E(ϕ) следующим образом.

Пусть ϕ = {ϕm}∞m=1 — семейство непрерывных вещественнозначных функ­
ций ϕm : Rn −→ R, удовлетворяющих для всех m ∈ N требованиям:

α) lim
x→∞

ϕm(x)

‖x‖ = +∞;

β) lim
x→∞

(ϕm(x)− ϕm+1(x)) = +∞.

Для произвольного m ∈ N определим

E(ϕm) =
{
f ∈ Cm(Rn), f : Rn −→ C : pm(f) = sup

x∈Rn,
α∈Zn

+: |α|≤m

|(Dα
xf)(x)|

exp(ϕm(x))
< ∞

}
.

Теперь положим E(ϕ) =
∞⋂

m=1

E(ϕm). Снабдим E(ϕ) операциями сложения эле­

ментов и умножения на комплексные числа. Тогда E(ϕ) образует линейное про­
странство. Наделим его топологией проективного предела пространств
E(ϕm), m ∈ N. В силу условия β) вложения E(ϕm+1) ⊂ E(ϕm) вполне непрерыв­
ны для всех m ∈ N. Очевидно, E(ϕ) — пространство Фреше и оно инвариантно

15



относительно дифференцирования, а операторы частного дифференцирования
в нем непрерывны. Как показано в работе И.Х. Мусина, С.В. Попенова 2010 г.,
пространство E(ϕ) сепарабельно.

Отметим, что E(ϕ) не обязательно инвариантно относительно сдвига. Да­
лее на семейство функций ϕ в зависимости от задачи будем накладывать одно
из дополнительных условий, гарантирующих инвариантность E(ϕ) относитель­
но сдвига для любого m ∈ N:

γ1) найдутся постоянные am > 0 и bm > 0 такие, что
ϕm+1(x+ η) ≤ ϕm(x) + bm, где x ∈ R

n и η ∈ R
n : ‖η‖ ≤ am;

или более жесткое условие

γ2) при любом R > 0 найдется постоянная bm = bm(R) > 0 такая, что
ϕm+1(x+ η) ≤ ϕm(x) + bm, где x ∈ R

n и η ∈ R
n : ‖η‖ ≤ R;

или другое условие

γ3) для любого k ∈ N существуют числа l = lm,k ∈ N и r = rm,k > 0 такие,
что при произвольных x, y ∈ R

n ϕl(x+ y) ≤ ϕm(x) + ϕk(y) + r;

или в отдельных случаях условие

γ4) при фиксированном λ ∈ R\{0} для любого R > 0 существует постоянная
bm = bm(R) > 0, удовлетворяющая условию ϕm+1(x̃+ t) ≤ ϕm(x) + bm,
где x = (x1, . . . , xn) ∈ R

n, t = (t1, . . . , tn) ∈ R
n : |t| ≤ R и

x̃ = (x1, . . . , xj−1, λxj, xj+1, . . . , xn), j ∈ (1;n).

В параграфе 9 доказана теорема о гиперцикличности в E(ϕ) линейного
непрерывного оператора, коммутирующего с дифференцированием и не явля­
ющегося скалярным кратным тождественному отображению (теорема 9.1).

Теорема 9.1. Пусть семейство ϕ удовлетворяет условию γ1). Тогда
если линейный непрерывный оператор T в E(ϕ) коммутирует с операторами

частного дифференцирования и не тождественен умножению на скаляр, то

он гиперциклический в E(ϕ).
Далее приведены ее следствия о гиперцикличности дифференциально­

го оператора конечного порядка, оператора сдвига, конечной суммы сдвигов,
конечной суммы композиций дифференцирования и сдвига, ряда из сдвигов
при определенных условиях на коэффициенты, операторов свертки в E(ϕ).
В параграфе 10 получены утверждения о хаотичности и часто-гиперциклич­
ности оператора дифференцирования (теорема 10.2) и оператора композиции
дифференцирования и сдвига (теорема 10.3) в E(ϕ).

Теорема 10.2.Пусть для семейства ϕ выполнено условие γ1). Тогда диф­
ференциальный оператор Tf(x) = Dα

xf(x) для любых α ∈ Z
n
+, α 6= (0, 0, . . . , 0),

где f ∈ E(ϕ), хаотический и часто-гиперциклический в E(ϕ).
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Теорема 10.3. Пусть семейство ϕ удовлетворяет условию γ1). Тогда
оператор Tf(x) = Dα

xf(x + b) для любых α ∈ Z
n
+, α 6= (0, 0, . . . , 0),

b ∈ R
n \ {(0, 0, . . . , 0)}, где f ∈ E(ϕ), хаотический и часто-гиперциклический

в E(ϕ).
Четвертая глава посвящена изучению динамических свойств обобщен­

ного оператора Данкла. В параграфе 11 приведены основные свойства данно­
го оператора в H(C). Рассмотрим пространство H(C) целых функций с топо­
логией равномерной сходимости на компактах.

Обобщенный оператор Данкла для любых функций f из пространства
H(C) определяется по формуле:

Λf(z) =
d

dz
f(z) +

c

z

m−1∑

j=0

αjf(αjz), z ∈ C,

где число c ∈ R+ и параметр m ∈ N, m ≥ 2 — некоторые заданные вели­

чины, а его коэффициенты имеют вид αj = e
2πij

m , j ∈ (0;m − 1). Очевидно,
обобщенный оператор Данкла в пространстве H(C) линейный и непрерывный.
Доказаны теоремы о гиперцикличности (теорема 11.3), а также хаотичности и
часто-гиперцикличности (теорема 11.4) оператора Λ в H(C).

Теорема 11.3. Обобщенный оператор Данкла Λ является гиперцикли­

ческим в H(C).
Теорема 11.4. Обобщенный оператор Данкла Λ хаотический и часто­

гиперциклический в H(C).
В параграфе 12 изучены свойства обобщенного оператора Данкла в

F(ϕ,C), которое является пространством F(ϕ) при n = 1 с условиями i1)–i4)
на семейство ϕ и для всех m ∈ N ϕm(z) = ϕm(|z|), где z ∈ C. Приведены
утверждения о гиперцикличности (теорема 12.2), а также хаотичности и часто­
гиперцикличности (теорема 12.3) оператора Λ в F(ϕ,C).

Теорема 12.2. Обобщенный оператор Данкла Λ является гиперцикли­

ческим в F(ϕ,C).
Теорема 12.3. Обобщенный оператор Данкла Λ хаотический и часто­

гиперциклический в F(ϕ,C).
В заключении кратко резюмируются результаты работы.

Заключение.

В работе изучены свойства гиперцикличности, хаотичности и часто-гипер­
цикличности классических линейных непрерывных операторов в следующих
пространствах:
пространство H(Ω) аналитических в Ω функций;
весовое пространство F(ϕ) целых в C

n функций;
весовое пространство E(ϕ) бесконечно дифференцируемых в R

n функций.
В диссертации получены следующие результаты:
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1. Показано, что линейный непрерывный оператор в пространстве H(Ω),
коммутирующий с оператором дифференцирования и не являющийся
скалярным кратным тождественному отображению, является гиперцикли­
ческим (теорема 2.6). Также он хаотический (теорема 3.5) и часто-гипер­
циклический (теорема 3.6) в H(Ω).

2. Изучены свойства плотности полиномов, полноты системы экспонент в
пространстве F(ϕ), доказана гиперцикличность операторов дифференци­
рования, сдвига, свертки и их различных композиций в F(ϕ). Линейный
непрерывный оператор в F(ϕ), коммутирующий с операторами частно­
го дифференцирования и не совпадающий со скалярным кратным тожде­
ственному отображению, является гиперциклическим в этом пространстве
(теорема 5.5). Доказано, что рассматриваемый оператор обладает свой­
ствами хаотичности (теорема 6.1) и часто-гиперцикличности (теорема 6.2)
в F(ϕ).

3. В пространстве E(ϕ) рассмотрено свойство гиперцикличности операто­
ров дифференцирования, сдвига, свертки и их различных композиций
в E(ϕ). Показано, что линейный непрерывный оператор в E(ϕ), коммути­
рующий с операторами частного дифференцирования и не являющийся
скалярным кратным тождественному отображению, является гиперцик­
лическим в этом пространстве (теорема 9.1). Приведены теоремы о хао­
тичности и часто-гиперцикличности оператора дифференцирования (тео­
рема 10.2) и оператора композиции дифференцирования и сдвига (теоре­
ма 10.3) в E(ϕ).

4. Изучены некоторые свойства обобщенного оператора Данкла в простран­
стве H(C) целых функций с топологией равномерной сходимости на
компактах, а именно приведен вид функции, получаемой при действии
этого оператора на функцию из H(C), показано, что действие обобщен­
ного оператора Данкла на целую функцию равносильно действию на нее
функционала определенного вида. Доказаны утверждения, что обобщен­
ный оператор Данкла является гиперциклическим (теорема 11.3), а также
хаотическим и часто-гиперциклическим (теорема 11.4) в H(C). Показано,
что обобщенный оператор Данкла обладает свойствами гиперцикличности
(теорема 12.2), хаотичности и часто-гиперцикличности (теорема 12.3) в
пространстве F(ϕ,C).
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