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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы. Одним из активно разви-

вающихся направлений теории усреднения является изучение краевых задач в пер-

форированных областях. Опишем постановку таких задач. Рассматриваются много-

мерные области, необязательно ограниченные, в которых устраивается перфорация

малыми отверстиями. Размеры отверстий и расстояния между ними контролируют-

ся одним или несколькими малыми параметрами. При уменьшении этих параметров

отверстия располагаются гуще, уменьшаются размеры отверстий и расстояния меж-

ду ними. Такая перфорация может устраиваться по всей рассматриваемой области

или на некоторой её части. В такой перфорированной области рассматриваются кра-

евые задачи для эллиптических уравнений. На границах отверстий ставится одно из

классических граничных условий. Основной целью исследований является описание

поведения решений рассматриваемых задач при измельчении перфорации.

Краевые задачи в перфорированных областях исследовались многими учеными.

Не имея возможности их всех перечислить, для примера упомянем лишь некоторых:

В. А. Марченко, Е. Я. Хруслов, В. В. Жиков, О. А. Олейник, Т. А. Шапошникова,

F. Murat, D. Cioranescu и многие другие. Основные классические результаты, полу-

ченные для краевых задач в перфорированных областях, — доказательство сходи-

мости решений рассматриваемых задач к решениям некоторых усредненных задач.

Для каждой фиксированной правой части уравнения решение возмущенной задачи

сходилось к решению усредненной в L2 или W 1
2 в сильном или слабом смысле.

В настоящей диссертации рассматриваются краевые задачи в областях, перфори-

рованных вдоль заданного многообразия. Подобные задачи также исследовались мно-

гими учеными, например, А. Г. Беляев, О. А. Олейник, А. Л. Пятницкий, Г. А. Чеч-

кин, Т. А. Чечкина, Т. А. Шапошникова, Y. Amirat, O. Bodart, J. I. Diaz, D. Gomez,

D. Gomez-Castro, A. Meidell, M. Lobo, L. E. Persson, M. E. Perez и другие.

На языке спектральной теории неограниченных операторов упомянутые выше

классические результаты о сходимости решений означают наличие сильной или сла-

бой резольвентной сходимости. В последние 20 лет в теории усреднения развивается

новое направление исследований: появились работы, в которых для возмущенных за-
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дач была доказана более сильная, равномерная резольвентная сходимость и были

установлены операторные оценки. Суть таких оценок заключались в том, что L2-

или W 1
2 -норма разности решений возмущенной и усредненной задач оценивалась че-

рез L2-норму правой части уравнения, умноженной на малую величину. Подобного

сорта оценки для операторов с быстро осциллирующими коэффициентами были по-

лучены в работах М.Ш. Бирмана, В. В. Жикова, С. Е. Пастуховой, Т. А. Суслиной,

Н. Н. Сеника, G. Griso, C. E. Kenig, F. Lin, Z. Shen. Для задач теории гранично-

го усреднения вопросы равномерной резольвентной сходимости изучались в работах

Д. И. Борисова.

Цели и задачи исследования. В диссертации рассматривается краевая зада-

ча для эллиптического уравнения второго порядка с переменными коэффициентами

в многомерной области, перфорированной вдоль заданного многообразия. Размер-

ность области не меньше трёх, при этом область может быть как ограниченной, так

и неограниченной. Предполагается, что перфорация имеет существенно непериодиче-

скую структуру. На границах полостей ставятся условия Дирихле или Неймана, либо

третье нелинейное краевое условие.

Основная цель — описать усредненные задачи для двух типичных случаев пер-

форации и заданных граничных условий на границах полостей, доказать сходимость

решений, установив подходящую операторную оценку. В случае периодической пер-

форации целью является построение полной асимптотики решений.

Методология и методы исследования. Методика исследования основана на

использовании теорем о повышении гладкости для эллиптических краевых задач,

методе монотонных операторов, позволяющих доказать разрешимость краевых за-

дач с нелинейным третьим краевым условием. Также используются интегральные

тождества, соответсвующие возмущенной и усредненной задачам. На их основе для

разности решений возмущенной и усредненной задач выписывается подходящее ин-

тегральное тождество с правой частью. При этом нередко используются специальные

корректоры, чтобы удовлетворить краевым условиям Дирихле на границах полостей.

Для оценки правых частей в интегральных тождествах используется серия локаль-

ных оценок для функций из пространств Соболева. Данные оценки минимально ис-

пользуют форму полостей, а также совсем не используют никакой информации об их
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расположении. Это и дает возможность рассмотреть непериодическую перфорацию.

В случае периодической перфорации асимптотические разложения решений стро-

ятся в два этапа. Вначале проводится формальное построение асимптотик, затем

формальные асимптотики обосновываются. Формальное построение проводится на

основе метода согласования асимптотических разложений, метода пограничного слоя

и метода многих масштабов.

Положения, выносимые на защиту. Основные результаты диссертационной

работы состоят в следующем:

1. Рассмотрена краевая задача для эллиптического уравнения второго порядка в

многомерной области с произвольной непериодической перфорацией вдоль заданного

многообразия; на границах полостей произвольно ставятся условие Дирихле и третье

нелинейное краевое условие. Найдены достаточно слабые условия на формы всех по-

лостей и распределение полостей с краевым условием Дирихле, гарантирующие, что

при усреднении полости пропадают, а на многообразии возникает условие Дирихле.

Доказана сходимость решения возмущенной задачи к решению усредненной в норме

пространстваW 1
2 равномерно по L2–норме правой части уравнения и получена оценка

скорости сходимости.

2. Рассмотрена краевая задача для эллиптического уравнения второго порядка

в многомерной области с произвольной непериодической перфорацией вдоль задан-

ного многообразия; на границах полостей ставятся третье нелинейное краевое усло-

вие. Найдены достаточно слабые условия на формы всех полостей и распределение

полостей, гарантирующие, что при усреднении полости пропадают, а на многообра-

зии возникает условие Неймана либо третье нелинейное краевое условие. В случае

усредненного третьего краевого условия явно найдена нелинейная функция в этом

условии. Во обоих случаях доказана сходимость решения возмущенной задачи к ре-

шению усредненной в норме пространства W 1
2 равномерно по L2–норме правой части

уравнения и получены соответствующие оценки скорости сходимости.

3. В условиях двух предыдущих пунктов отдельно рассмотрен случай, когда пер-

форация строго периодическая и производится вдоль гиперплоскости. В таком пред-

положении построена строится полное асимптотическое разложение решения как для

случая усредненного условия Дирихле, так и для случаев усредненных условий Ней-
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мана или нелинейного третьего краевого условия.

Научная новизна. Основные научные результаты диссертации являются новы-

ми.

Теоретическая и практическая ценность. Результаты диссертации носят тео-

ретический характер и могут быть использованы при изучении задач математической

физики. Методика исследования, применявшаяся в диссертации, может быть исполь-

зована при изучении других краевых задач в теории усреднения.

Апробация работы. Основные результаты диссертации докладывались на кон-

ференциях: Международная математическая конференция по теории функций (Уфа,

2017 г.), Международная конференция “Комплексный анализ, математическая физи-

ка и нелинейные уравнения” (оз. Яктыкуль (Банное) 2018 г., 2019 г. и 2021 г.), Между-

народная конференция “Спектральная теория и смежные вопросы” (Уфа, 2018 г.), IX

Международная школа–конференция “Фундаментальная математика и её приложе-

ния в естествознании” (Уфа, 2020 г.), XXVII и XXVIII Международная научная кон-

ференция студентов, аспирантов и молодых ученых “Ломоносов–2020” и “Ломоносов–

2021” (Москва, 2020 г. и 2021 г.), Международная конференция “Дифференциальные

уравнения, математическое моделирование и вычислительные алгоритмы” (Белгород,

2021 г.), Конференция И. Г. Петровского “Дифференциальные уравнения и смежные

вопросы” (Москва, 2021 г.), 14–ая Санкт–Петербургская конференция по спектраль-

ной теории, посвящённая памяти М.Ш. Бирмана (Санкт–Петербург, 2023 г.).

Публикации. Основные результаты диссертации опубликованы в работах [1], [2],

[3], [4], [5].

Личный вклад автора. В статье [1] Борисову Д.И. принадлежит постановка за-

дачи и утверждение в основных теоремах о точности по порядку доказанных опера-

торных оценок. Диссертанту принадлежат результаты об операторных W 1
2 –оценках.

В статье [2] Борисову Д.И. принадлежит постановка задачи и доказательство вспо-

могательных лемм 3.1, 4.4. Остальная часть результатов работы [2] принадлежит

диссертанту. В статье [3] Борисову Д.И. принадлежит постановка задачи и доказа-

тельство вспомогательной леммы 7.4. Остальная часть результатов работы [3] при-

надлежит диссертанту. В статье [4] Д.И. Борисову принадлежит постановка задачи

6



и доказательство L2–операторных оценок. Остальная часть результатов работы [4]

принадлежит диссертанту.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав,

разбитых в совокупности на 18 параграфов и списка литературы, содержащего 75

наименований. Общий объем диссертации – 195 страниц.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Пусть x = (x1, . . . , xn) — декартовы координаты в Rn, Ω ⊂ Rn — область с гра-

ницей класса C2. Область Ω может быть как ограниченной, так и неограниченной.

Обозначим через S ⊂ Ω ориентируемое многообразие без края класса C3 коразмер-

ности 1 без самопересечений, которое либо замкнуто, либо бесконечно. Пусть ε —

малый положительный параметр, η = η(ε) — некоторая функция, удовлетворяющая

неравенству 0 < η(ε) 6 1.

В окрестности многообразия S произвольно выберем точки M ε
k , k ∈ Mε, где мно-

жество индексов Mε не более, чем счётно, а для самих точек выполнено условие

dist(M ε
k , S) 6 R0ε, (1)

с положительной константой R0, не зависящей от k и ε. Пусть ωk,ε ⊂ Rn, k ∈ Mε —

ограниченные области с границами класса C2; допускается зависимость этих областей

от ε. Обозначим:

ωεk :=
{
x : (x−M ε

k)ε−1η−1(ε) ∈ ωk,ε
}
, θε :=

⋃
k∈Mε

ωεk.

Из области Ω вырежем полости ωεk, k ∈ Mε и такую область обозначим через Ωε, то

есть, Ωε := Ω \ θε. Пример перфорированной области приведен на рис. 1.

Введённая область Ωε содержит перфорацию малыми полостями ωεk, расположен-

ными вдоль многообразия S. На размеры, форму и расположение этих полостей в

диссертации налагается несколько естественных условий общего характера. Точные

формулировки этих условий мы приведём позднее, пока лишь отметим, что все поло-

сти ωεk мы считаем попарно непересекающимися с минимальным расстоянием между

ними порядка O(ε). Перейдём к постановке рассматриваемой задачи.
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Через Aij = Aij(x), Ai = Ai(x), A0 = A0(x) обозначим функции, заданные в Ω и

удовлетворяющие условиям

Aij ∈ W 1
∞(Ω), Aj, A0 ∈ L∞(Ω),

Aij = Aji, i, j = 1, . . . , n,
n∑

i,j=1

Aij(x)zizj > c0|z|2, x ∈ Ω, z = (z1 . . . , zn) ∈ Cn,

(2)

где c0 > 0 — некоторая константа, не зависящая от x и z. Функции Aij считаем

вещественнозначными, а функции Aj, A0 — комплекснозначными. Пусть a = a(x, u)

— комплекснозначная функция, заданная для u ∈ C и x ∈ Σ := {x : dist(x, S) 6 τ0},
где τ0 > 0 — некоторое фиксированное число. Будем считать, что функция a кусочно–

непрерывна по (x, u) ∈ Σ× C и удовлетворяет условиям

|a(x, u1)− a(x, u2)| 6 a0|u1 − u2|, a(x, 0) = 0, (3)

где a0 — некоторая константа, не зависящая от x ∈ Σ и u1, u2 ∈ C. Пусть f — произ-

вольная функция из L2(Ω), а λ — вещественное число.

Разобъем все полости произвольным образом на два типа:

θε = θεD ∪ θεR, θε\ =
⋃
k∈Mε

\

ωεk, \ ∈ {D,R},

где Mε
D ∩ Mε

R = ∅, Mε
D ∪ Mε

R = Mε, то есть, Mε
D и Mε

R — некоторое произвольное

разбиение множества Mε.

Основной объект исследования настоящей диссертации — краевая задача

(Ĥ − λ)uε = f в Ωε, uε = 0 на ∂Ω,

uε = 0 на ∂θεD,
∂uε
∂n

+ a( · , uε) = 0 на ∂θεR,
(4)

где дифференциальное выражение и производная по конормали заданы формулами

Ĥ := −
n∑

i,j=1

∂

∂xi
Aij

∂

∂xj
+

n∑
j=1

Aj
∂

∂xj
+ A0,

∂

∂n
=

n∑
i,j=1

Aijνi
∂

∂xj
,

(5)
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νi — i–ая компонента единичной нормали ν к ∂θε, направленная внутрь множества

θε.

Целью диссертации является изучение асимптотического поведения решения за-

дачи (4) при ε→ 0. Такое поведение существенно зависит от геометрии перфорации

и соотношения между размерами полостей и расстояний между ними, а именно, оно

определяется распределением точек M ε
k , формами областей ωk,ε и поведением функ-

ции η(ε) при малых ε. В диссертации мы рассмотрим два типичных случаях перфо-

рации и для каждого из них опишем асимптотическое поведение решения. Каждый

из случаев описывается определенными ограничениями на перфорацию, которые мы

сформулируем ниже.

Начнем с общих, достаточно естественных геометрических ограничений на пер-

форацию, которые будут предполагаться выполненнными всюду в работе. На мно-

гообразии S зафиксируем сторону и соответствующее непрерывное поле нормалей.

Через τ обозначим расстояние от точки до S, измеренное вдоль нормали, а через s

— какие–нибудь локальные переменные на многообразии S. При таком определении

переменная τ положительна для точек, расположенных со стороны многообразия S,

определяемой выбранным полем нормалей.

Наше первое условие описывает регулярность многообразия S.

A1. Переменные (τ, s) корректно определены по крайней мере в области Σ. В этой

же области равномерно ограничены якобианы перехода от переменных x к пе-

ременным (τ, s) и обратно, а также производные x по (τ, s) и производные (τ, s)

по x вплоть до второго порядка.

Пусть Br(M) — открытый шар в Rn с центром в точке M радиуса r. На размеры

и взаимное расположение полостей ωεk наложим следующее условие.

A2. Существуют точкиMk,ε ∈ ωk,ε, k ∈Mε, и числа 0 < R1 < R2, b > 1, не зависящие

от ε, такие что для достаточно малых ε выполнено:

BR1(Mk,ε) ⊂ ωk,ε ⊂ BR2(0), k ∈Mε,

BbR2ε(M
ε
k) ∩BbR2ε(M

ε
i ) = ∅, i, k ∈Mε, i 6= k.

(6)

Для всех k и ε множества BR2(0) \ ωk,ε связны.

9



В окрестности границ областей ωk,ε введём локальную переменную ρ — расстояние

от точки до границы ∂ωk,ε, измеренное в направлении внешней нормали. Следующее

условие касается форм областей ∂ωk,ε.

A3. Существуют фиксированные константы ρ0 > 0 и локальные переменные ς на

∂ωk,ε такие, что переменные (ρ, ς) корректно определены по крайней мере на

множествах

{x : dist(x, ∂ωk,ε) 6 ρ0} \ ωk,ε ⊆ Bb∗R2(0), b∗ :=
b+ 1

2
,

одновременно для всех k ∈Mε, и на данных множествах равномерно ограничены

якобианы перехода от переменных x к переменным (ρ, ς) и обратно, а также

производные x по (ρ, ς) и производные (ρ, ς) по x.

Решение краевой задачи (4) будем понимать в обобщенном смысле. Обобщенным

решением задачи (4) называется функция uε ∈ W 1
2 (Ωε), удовлетворяющая интеграль-

ному тождеству

ha(uε, v)− λ(uε, v)L2(Ωε) = (f, v)L2(Ωε)

для любых v ∈ W̊ 1
2 (Ωε, ∂Ω ∪ ∂θεD), где

ha(uε, v) := h0(uε, v) + (a( · , uε), v)L2(∂θε), (7)

h0(uε, v) :=
n∑

i,j=1

(
Aij

∂uε
∂xj

,
∂v

∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aj
∂uε
∂xj

, v

)
L2(Ωε)

+ (A0uε, v)L2(Ωε)

и W̊ 1
2 (Ωε, ∂Ω ∪ ∂θεD) — подпространство функций из W 1

2 (Ω), обращающихся в нуль

на ∂Ω и ∂θεD. Интеграл по границе ∂θεR понимается в смысле следов. Далее будет

показано, что благодаря условиям A1, A2, A3 такой след определён корректно.

Опишем первый случай. Здесь предполагаем, что ε и η связаны следующим соот-

ношением:
ε

ηn−2(ε)
→ +0, ε→ +0. (8)

На распределение полостей из множества θεD наложим следующее условие.
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A4. Существует число R3 > bR2 такое, что

Ξε ⊂
⋃
k∈Mε

D

BR3ε(M
ε
k), Ξε := {x : |τ | < bR2ε}.

Введем еще одну краевую задачу:

(Ĥ − λ)u0 = f в Ω \ S, u0 = 0 на ∂Ω ∪ S. (9)

Далее мы покажем, что она является усреднённой для задачи (4) при выполнении

условий A4 и (8). Её решение также понимаем в обобщенном смысле. А именно, это

функция u0 ∈ W̊ 1
2 (Ω, ∂Ω ∪ S), удовлетворяющая интегральному тождеству

h0(u0, v)− λ(u0, v)L2(Ω) = (f, v)L2(Ω)

для любых v ∈ W̊ 1
2 (Ω, ∂Ω ∪ S).

Основным результатом диссертации об усреднении в первом случае является сле-

дующая теорема.

Теорема 1. Пусть выполнены предположения A1, A2, A3, A4 и условие (8). Тогда

существует λ0, не зависящее от ε, η и f , такое, что при λ < λ0 задачи (4), (9)

однозначно разрешимы для всех f ∈ L2(Ω) и верно неравенство

‖uε − u0‖W 1
2 (Ωε) 6 C

(
ε

ηn−2(ε)

) 1
2

‖f‖L2(Ω), (10)

где константа C не зависит от ε, η и f , но зависит от λ.

Переходим ко второму случаю. Здесь предполагаем, что Mε
D = ∅. Также считаем,

что функция a удовлетворяет более жёстким условиям∣∣∣∣ ∂a

∂ Reu
(x, u)

∣∣∣∣+

∣∣∣∣ ∂a

∂ Imu
(x, u)

∣∣∣∣ 6 a0,

a(x, 0) = 0, |∇xa(x, u)| 6 a1|u|,
(11)

где a0 и a1 — некоторые константы, не зависящие от x и u.

Пусть ζ = ζ(t), t ∈ [0, 1] — бесконечно дифференцируемая срезающая функция,

принимающая значения из отрезка [0, 1], равная нулю при |t| > 1 и удовлетворяющая

условию ∫
Rn−1

ζ(|t|) dt = 1. (12)
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Через M ε
k,⊥ обозначим проекции точек M ε

k на поверхность S. На поверхности S опре-

делим функцию

αε(x) =


ηn−1(ε)|∂ωk,ε|

Rn−1
2

ζ

( |x−M ε
k,⊥|

εR2

)
при |x−M ε

k,⊥| < εR2, k ∈Mε,

0 в остальных точках S.

(13)

Обозначим: $ :=
{
x ∈ Rn : 0 < τ < τ0

2

}
. Пусть Φ — произвольная функция, заданная

на S и являющаяся следом некоторой функции из W 1
2 ($), то есть, Φ ∈ W

1
2

2 (S). Ясно,

что следующие две задачи однозначно разрешимы в W 1
2 ($):

−∆UN
Φ + UN

Φ = 0 в $,

∂UN
Φ

∂τ
= −Φ на S,

∂UN
Φ

∂ν
= 0 на ∂$ \ S,

(14)

и

−∆UD
Φ + UD

Φ = 0 в $,

UD
Φ = Φ на S,

∂UD
Φ

∂ν
= 0 на ∂$ \ S,

(15)

где ν — единичная нормаль к поверхности ∂$ \S, внешняя к области $. Далее будет

показано (см. лемму ??), что следующая норма определена корректно по крайней

мере на пространстве L∞(S):

‖α‖2
S := sup

Φ∈W
1
2
2 (S)

Φ6=0

‖UN
αΦ‖2

W 1
2 ($)

‖UD
Φ ‖2

W 1
2 ($)

, (16)

где α — произвольная функция из L∞(S).

На функцию αε, определённую в (13), наложим следующее условие.

A5. Существуют ограниченная измеримая функция α0, заданная на S и принадле-

жащая W 1
∞(S), и функция κ = κ(ε) → +0 при ε → +0 такие, что для всех

достаточно малых ε верна оценка

‖αε − α0‖S 6 κ(ε).

Если выполнены условия A1, A2, A3 и одно из условий a ≡ 0 или η(ε) → 0, ε →
0, то при усреднении полости пропадают вместе с многообразием S, и усреднённая
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задача для (4) имеет вид:

(Ĥ − λ)u0 = f в Ω, u0 = 0 на ∂Ω. (17)

Если же η не стремится к нулю, а функция a произвольна, то при выполнении

условий A1, A2, A3, A5 усреднённая задача для (4) имеет вид

(Ĥ − λ)u0 = f в Ω, u0 = 0 на ∂Ω, (18)

[u0]S = 0,

[
∂u0

∂n

]
S

− αa( · , u0)
∣∣
S

= 0, (19)

где [u]S := u|τ=+0 − u|τ=−0 — скачок функции u на S. Производная по конормали

здесь задается формулой из (5), в которой в качестве ν берется упомянутое выше

поле нормалей на S. Отметим, что граничное условие (19) описывает нелинейное

дельта–взаимодействие на поверхности S.

Решения задач (17) и (18), (19) также будем понимать в обобщенном смысле.

Обобщенным решением краевой задачи (17) называется функция u0 ∈ W̊ 1
2 (Ω, ∂Ω),

удовлетворяющая интегральному тождеству

h0(u0, v)− λ(u0, v)L2(Ω) = (f, v)L2(Ω)

для любых v ∈ W̊ 1
2 (Ω, ∂Ω). Обобщенным решением краевой задачи (18), (19) называ-

ется функция u0 ∈ W̊ 1
2 (Ω, ∂Ω), удовлетворяющая интегральному тождеству

h0(u0, v)− λ(u0, v)L2(Ω) + (αa( · , u0), v)L2(S) = (f, v)L2(Ω),

для любых v ∈ W̊ 1
2 (Ω, ∂Ω).

Основные результаты диссертации об усреднении во втором случае сформулиро-

ваны в следующих двух теоремах. Первая из них описывает ситуацию, когда при

усреднении возникает задача (17).

Теорема 2. Пусть выполнены предположения A1, A2, A3. Тогда существует λ0, не

зависящее от ε, такое, что при λ < λ0 задачи (4) и (17) однозначно разрешимы для

всех f ∈ L2(Ω). Если дополнительно выполнено одно из условий

a ≡ 0 или η(ε)→ 0, ε→ 0, (20)
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то справедливы неравенства

‖uε − u0‖W 1
2 (Ωε) 6 C

(
εη(ε) + ε

1
2η

n
2 (ε)

)
‖f‖L2(Ω), (21)

если a ≡ 0, и

‖uε − u0‖W 1
2 (Ωε) 6 C

(
εη(ε) + ηn−1(ε)

)
‖f‖L2(Ω), (22)

если η(ε)→ 0, ε→ 0, где константы C не зависят от ε и f , но зависят от λ.

Во второй теореме описывается ситуация, когда усреднение приводит к задаче

(18), (19).

Теорема 3. Пусть выполнены предположения A1, A2, A3, A5. Тогда существует

λ0, не зависящее от ε, η и f , такое, что при λ < λ0 задачи (4) и (18), (19) однозначно

разрешимы для всех f ∈ L2(Ω) и имеет место неравенство:

‖uε − u0‖W 1
2 (Ωε) 6 C

(
ε

1
2 + κ(ε)

)
‖f‖L2(Ω), (23)

где константа C не зависит от ε и f , но зависит от λ.

Вторая часть результатов диссертации посвящена построению асимптотического

разложения решения задачи (4) в случае периодической перфорации. Пусть Ω —

неограниченная область. Будем считать, что в окрестности гиперплоскости xn = 0

эта область совпадает со слоем, а именно, существует τ0 > 0 такое, что

Ω ∩ {x : |xn| 6 τ0} = {x : |xn| 6 τ0}.

В качестве многообразия S возьмем гиперплоскость {x : xn = 0}. Пусть MD, MR —

некоторые фиксированные точки, ωD, ωR — некоторые фиксированные ограниченные

множества с границей гладкости C(2+ϑ) для некоторого фиксированного ϑ ∈ (0, 1).

Обозначим:

Π := �×R, � :=
{
x : −bi

2
< xi <

bi
2
, i = 1, . . . , n− 1

}
,

где bi > 0 — некоторые числа. Множества Mε
D, Mε

R выберем следующим образом:

Mε
[ :=

{
ε(Mk +M[), k ∈ Zn−1

}
, [ ∈ {R, D},
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Рис. 1: Схематичный вид части области Ωε с периодической перфорацией.

Mk := (b1k1, . . . , bn−1kn−1, 0), k := (k1, . . . , kn−1).

Точки M ε
k из множества Mε

D пересчитываются мульти–индексом k ∈ Zn−1 и имеют

вид M ε
k = ε(Mk + MD) и аналогичные соотношения верны для точек из множества

Mε
R. Точкам M ε

k ∈ Mε
D сопоставим множества ωk,η := ωD, а точкам M ε

k ∈ Mε
R —

множества ωk,η := ωR. Определим затем соответствующие множества θεD и θεR. Пример

перфорированной области приведен на рис. 1.1.

Пусть

f ∈ L2(Ω) ∩W q
2 (Ω+

τ0
) ∩W q

2 (Ω−τ0), Ω±b := {x : 0 < ±xn < b}, (24)

для всех q ∈ N. Предполагаем, что Aij = 1, Aj = 0, A0 = 0 при |xn| 6 τ0.

Через χ = χ(xn) обозначим бесконечно дифференцируемую срезающую функцию,

равную нулю при |xn| < 1 и единице при |xn| > 2, и положим:

χε(xn) =

χ
(
xnε

− 1
2

)
, |xn| > τ0

0, |xn| 6 τ0.

Отметим, что для введенной периодической перфорации выполнены условия A1,

A2, A3, A4, A5. А именно, в качестве локальных переменных из условия A1 можно вы-

брать τ = xn, s = x′ и тогда условие A1 оказывается выполненным с произвольным τ0.

Так как все полости имеют одинаковые размеры, формы и их распределение вдоль S
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периодические, то условия A2, A3, A4 также выполняются для рассматриваемого слу-

чая. В §1.3 будет показано, что условие A5 выполняется для локально–периодической

перфорации. Если в рассматриваемом периодическом случае на границах полостей

ставится только третье нелинейное граничное условие, то условие A5 выполняется,

так как описанный выше случай строго периодического распределения полостей яв-

ляется частным случаем локально–периодической перфорации.

Асимптотика решения задачи (4) строится для двух описанных выше случаев

перфорации. Опишем первый случай. Будем считать, что функция a не зависит от x,

то есть, a = a(u), и кроме того, эта функция является бесконечно дифференцируемой

и удовлетворяет условию (3). Предположим, что для всех η ∈ (0, 1] выполнено:

ωη[ ⊂ Π, dist(ωηD, ω
η
R) > R4 > 0,

ωη[ :=
{
x : η−1(x−M[) ∈ ω[

}
,

(25)

где R4 — некоторая фиксированная константа, не зависящая от η.

Рассмотрим систему краевых задач

(L − λ)um = 0 в Ω \ S, um = 0 на ∂Ω, m ∈ N,

um(x′,+0, η) = ϕ+
m(x′, η), x′ ∈ Rn−1,

um(x′,−0, η) = ϕ−m(x′, η), x′ ∈ Rn−1,

(26)

−∆ξv1 = 0 в Rn \ ω̆η, v1 = 0 на ∂ωηD,

∂v1

∂νξ
= 0 на ∂ω̆ηR,

(27)

−∆ξvm = fm в Rn \ ω̆η, vm = 0 на ∂ω̆ηD,

∂vm
∂νξ

= −
n−1∑
i=1

∂vm−1

∂xi
νi − Lm−1(v1, . . . , vm−1) на ∂ω̆ηR,

(28)

vm(ξ, x′, η) =
m∑
j=1

1

j!

∂jum−j

∂xjn
(x′,±0, η)ξjn + ϕ±m(x′, η) + o(1), ξn → ±∞, (29)

fm :=
ξm−2
n

(m− 2)!

∂m−2f

∂xm−2
n

(x′, 0) + 2
n−1∑
i=1

∂2vm−1

∂ξi∂xi
+ (∆x′ + λ)vm−2, (30)

где m > 2, v0 := 0,

ω̆η[ =
⋃

k∈Zn−1

{
ξ : η−1(ξ −Mk −M[) ∈ ω[

}
, [ ∈ {R,D},
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ω̆η := ω̆ηD ∪ ω̆
η
R, νξ — единичная нормаль к ∂ωηR, направленная внутрь ωηR, νi — ком-

поненты вектора νξ. Здесь Lm — некоторые фиксированные полиномы такие, что

для каждого монома вида Cvp11 v
p2
2 . . . vpmm выполнено p1 + 2p2 + . . . + mpm = m. Эти

полиномы определяются как коэффициенты в формальном асимптотическом ряде

a(uinε ) =
∞∑
m=1

εmLm(v1, . . . , vm), (31)

В частности,

L1(v1) = a′(0)v1, L2(v1, v2) = a′(0)v2 +
a′′(0)

2
v2

1.

Следующая лемма будет доказана в §4.3.

Лемма 1. Существуют единственные решения рекуррентной системы задач (26),

(27), (28), (29). Данные решения имеют вид

vm(ξ, x′, η) =
Nm∑
j=1

ϕmj(x
′)vmj(ξ, η),

um(x, η) =
2Nm∑
j=1

umj(x)Amj(η),

(32)

где Nm — некоторые числа, ϕmj, vmj, umj, Amj — некоторые функции со следующими

свойствами. При |ξn| > R6 функции vmj представляются в виде

vmj(ξ, η) =K±mj(ξn) + A±mj(η)

+
∑

k∈Zn−1

Q±mjk(ξn, η)e−Zk|ξn|e2πi k
b
·ξ′ , ±ξn > R6,

(33)

где K±mj — некоторые полиномы степени не выше m, причём K±mj(0) = 0, а Q±mjk

— некоторые полиномы по ξn степени не выше (m − 1) с коэффициентами, A±mj —

некоторые функции. Справедливы оценки

|Amj|+ ‖vmj‖H + ‖vmj‖C1(Πη) + ηϑ〈∇vmj〉(ϑ)
Πη 6 Cη−m(n−2), (34)

где константа C не зависит от η и j. Функции ϕmj принадлежат пространствам

W q
2 (Rn−1) для всех q ∈ N, бесконечно дифференцируемы, и каждая их производная

ограничена равномерно по x′ ∈ Rn−1. Верны равенства

ϕ±m(x′, η) =
2Nm∑
j=1

A±mj(η)ϕmj(x
′) (35)
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Функции umj есть решения задачи (26) с краевыми условиями:

umj(x
′,+0) = ϕmj(x

′), umj(x
′,−0) = 0, x′ ∈ Rn−1, (36)

при j = 1, . . . , Nm, и

umj(x
′,+0) = 0, umj(x

′,−0) = ϕmj−Nm(x′), x′ ∈ Rn−1, (37)

при j = Nm + 1, . . . , 2Nm. Функции umj принадлежат

W q
2 (Ω+

τ0−δ) ∩W
q
2 (Ω−τ0−δ) ∩W

1
2 (Ω)

для всех q ∈ N и всех δ > 0, бесконечно дифференцируемы в Ω±τ0 и для каждого δ > 0

все их производные равномерно ограничены в каждой из областей Ω±τ0−δ.

Основным результатом о построении асимптотик в первом случае является сле-

дующая теорема.

Теорема 4. Пусть выполнено условие (8), тогда асимптотика решения задачи (4)

норме W 1
2 (Ωε) имеет вид

uε(x, η) =χε(xn)
N∑
m=0

εmum(x, η)

+ (1− χε(xn))
N∑
m=1

εmvm(xε−1, x′, η)

+O
(
ε−

1
4

(
(εη−n+2)N+1 + ε

N+1
2

))
.

(38)

Здесь N — произвольное натуральное число, функция u0 — решение соответствую-

щей усреднённой задачи (9), оставшиеся функции um — решения задач (26), функции

vm — решения задач (27), (28), (29), со свойствами, описанными в лемме 1. Верны

соотношения:∥∥εm(χεum + (1− χε)vm)
∥∥
W 1

2 (Ωε)
6 Cε−

1
4

(
(εη−n+2)m + ε

m
2

))
, (39)

где константа C не зависит от ε и η, но зависит от m.
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Опишем второй случай. Предполагаем, что функция a является бесконечно диф-

ференцируемой функцией и удовлетворяет условиям

a(u, 0) = 0,

∣∣∣∣ ∂a

∂ Reu
(x, u)

∣∣∣∣+

∣∣∣∣ ∂a

∂ Imu
(x, u)

∣∣∣∣ 6 a1, (40)∣∣∣∣∂|β|a∂xβ
(x, u)

∣∣∣∣ 6 aβ,0|u|,
∣∣∣∣ ∂|β|+γ1+γ2a

∂xβ∂(Reu)γ1∂(Imu)γ2
(x, u)

∣∣∣∣ 6 aβ,γ, (41)

где β ∈ Zn+, γ := (γ1, γ2) ∈ Z2
+ \ {0}, а символы a1, aβ,γ обозначают некоторые кон-

станты, не зависящие от x и u. Рассмотрим систему краевых задач

−∆ξvm = fm в Rn \ θη,
∂vm
∂νξ

= ψm на ∂θη, (42)

f0 = 0, ψ0 = 0, θη =
⋃

k∈Zn−1

{
ξ : η−1(ξ −Mk) ∈ ω

}
,

fm :=
ξm−2
n

(m− 2)!

∂m−2f

∂xm−2
n

(x′, 0) + 2
n−1∑
i=1

∂2vm−1

∂ξi∂xi
+ (∆x′ + λ)vm−2,

ψm := −
n−1∑
i=1

∂vm−1

∂xi
νi − Tm,

где νξ — единичная нормаль к θη, направленная внутрь θη, νi — компоненты вектора

νξ, а функции Tm = Tm(x′, ξn, v0, ..., vm) возникают как коэффициенты в следующем

асимптотическом равенстве:

a

(
x′, εξn,

∞∑
m=0

εjvm

)
= T0(x′ξn, v0) +

∞∑
m=1

εmTm(x′, ξn, v1, ..., vm) (43)

и T0(x′, ξn, v0) = a(x′, 0, v0).

Для произвольного положительного числа R обозначим ΠR := �× (−R,R).

Теорема 5. Пусть выполнено условие (20). Асимптотика решения задачи (4) в

норме W 1
2 (Ωε) имеет вид

uε(x) =χε(xn)
N∑
m=0

εmum(x, η)

+ (1− χε(xn))
N∑
m=0

εmvm(xε−1, x′, η) +O(ε
N+1

2 ),

(44)
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где N — произвольное натуральное число. Функции vm являются �–периодическими

по ξ′ решениями задач (42) с асимптотиками

vm(ξ, x′, η) =
m∑
j=2

1

j!

∂jum−j

∂xjn
(x′,±0, η)ξjn

+ U±m,1(x′, η)ξn + U±m,0(x′, η) +O(e−c|ξn|),

при ξn → ±∞, где c > 0 — некоторая фиксированная константа, не зависящая от

ξ′, x′, η, а U±m,i, i = 1, 2 — некоторые функции из W p
2 (S) для всех p ∈ N, бесконечно

дифференцируемые по η ∈ (0, 1] и равномерно ограниченные по η ∈ [0, 1] в нормах

указанных пространств. Для функций vm справедливы представления

vm(ξ, x′, η) =
Nm∑
j=1

ϕmj(x
′, η)vmj(ξ, η) + v(0)

m (x′, η), (45)

где Nm — некоторые числа, v(0)
m , ϕmj, vmj — некоторые функции. Функции v(0)

m , ϕmj
принадлежат пространствам W p

2 (S) для всех p ∈ N, бесконечно дифференцируе-

мы по η ∈ (0, 1] и равномерно ограничены по η ∈ [0, 1] в нормах указанных про-

странств. Функции vmj являются �–периодическими по ξ′, бесконечно дифферен-

цируемы в Π \ ωη для каждого η ∈ (0, 1] и равномерно ограничены по η ∈ [0, 1] в

нормах C1(ΠR \ θη) для каждого R > 0. Функции vmj бесконечно дифференцируе-

мы по η ∈ (0, 1] в следующем смысле: для каждой точки η0 ∈ (0, 1] существует

фиксированная окрестность B множества ωη0, так что функции vmj бесконечно

дифференцируемы по (ξ, η), где η — из малой окрестности точки η0, а ξ ∈ Π \ ωη0.
Одновременно функции vmj(ξ̃ηη−1

0 , η) бесконечно дифференцируемы по (ξ̃, η), где η —

из малой окрестности точки η0, а ξ̃ ∈ B \ ωη0.
Функция u0 является решением задачи (18), (19) с α = ηn−1, а функции um —

решения задач

(L − λ)um = 0 в Ω \ S, um = 0 на ∂Ω, m > 1, (46)

с краевыми условиями

[um]0 = U+
m,0 − U−m,0,

[
∂um
∂xn

]
0

= U+
m,1 − U−m,1 на S.
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Верна оценка ∥∥εm(χεum + (1− χε)vm)
∥∥
W 1

2 (Ωε)
6 Cε

m
2 , (47)

где константа C не зависит от ε и η, но зависит от m.

ЗАКЛЮЧЕНИЕ

В диссертации рассмотрена эллиптическая краевая задача общего вида в мно-

гомерной области с мелкой перфорацией вдоль заданного многообразия. Основная

особенность перфорации — ее существенная непериодичность, а именно, полости мо-

гут иметь произвольную форму и распределены произвольным образом. На полости

и их распределение налагаются минимальные естественные геометрические условия.

На границах полостей ставятся условия Дирихле или третье нелинейное краевое усло-

вие, причем на разных полостях можно ставить разные условия. Выписаны дополни-

тельные, весьма слабые условия, которые гарантируют, что при усреднении полости

пропадают, а на многообразии, вдоль которого они расположены, возникает условие

Дирихле или третье нелинейное краевое условие. Показано, что решения возмущен-

ных задач сходятся к решениям усредненных в W 1
2 –норме равномерно по L2–норме

правой части уравнения и выписана соответствующая операторная оценка. Это явля-

ется основным достижением диссертации по сравнению с известными результатами

— удалось исследовать широкие классы существенно непериодических перфораций

и одновременно доказать наилучшую возможную равномерную сходимость и соот-

ветствующие операторные оценки. Основа исследования — весьма точные локальные

оценки в окрестности полостей различных норм, равномерные по форме и располо-

жению полостей.

Отдельно рассмотрен случай строго периодической перфорации; здесь удалось

построить полные асимптотические разложения решений возмущенных задач. По-

строение асимптотик проводилось на основе комбинации метода пограничного слоя,

метода многих масштабов и метода согласования асимптотических разложений.

Полученные результаты являются существенным вкладом в современную теорию

граничного усреднения, а разработанные методики можно применять при исследова-

нии похожих задач.

21



Литература

[1] Борисов Д.И., Мухаметрахимова А.И. О равномерной резольвентной сходимости

для эллиптических операторов в многомерных областях с малыми отверстиями

// Пробл. мат. анал. — 2018. — T.92. — C. 69–81.

[2] Борисов Д.И., Мухаметрахимова А.И. Равномерная сходимость и асимптотики

для задач в областях с мелкой перфорацией вдоль заданного многообразия в

случае усредненного условия Дирихле // Мат. сб. – 2021. – T.212. № 8.– C. 33–88.

[3] Борисов Д.И., Мухаметрахимова А.И. Асимптотики для задач в перфорирован-

ных областях с третьим нелинейным краевым условием на границах полостей //

Мат. сб. — 2022. — T.213. № 10. — C. 3–59.

[4] Борисов Д.И., Мухаметрахимова А.И. Равномерная сходимость для задач с пер-

форацией вдоль заданного многообразия и третьим нелинейным краевым усло-

вием на границах полостей // Алгебра анал. — 2023. — T.35. — C. 20–78.

[5] Мухаметрахимова А.И. Операторные оценки для непериодической перфорации

вдоль границы: усредненное условие Дирихле // Уфимский мат. ж. — 2024. —

T.16. — C. 84–94.

22


