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Введение

Одним из активно развивающихся направлений теории усреднения яв-
ляется изучение краевых задач в перфорированных областях. Опишем
постановку таких задач. Рассматривается многомерная область, которая
может быть как ограниченной, так и неограниченной, с достаточно глад-
кой границей. В такой области устраивается перфорация малыми поло-
стями. Размеры полостей и расстояния между ними описываются одним
или несколькими малыми параметрами. При стремлении этих парамет-
ров к нулю размеры полостей и расстояния между ними уменьшаются,
то есть, полости становятся меньше, а располагаются они чаще. Такая
перфорация может устраиваться по всей рассматриваемой области или
на некоторой её части. В описанной перфорированной области рассмат-
риваются краевые задачи для эллиптических уравнений. На границах
полостей ставится одно из классических граничных условий. Основная
цель исследований — описание поведения решений рассматриваемых за-
дач при стремлении малых параметров к нулю.

Изучению краевых задач в перфорированных областях посвящено огром-
ное количество работ. Не имея возможности их всех перечислить, для
примера упомянем лишь монографии [29], [69], [20], [59]. Краевые зада-
чи в перфорированных областях можно разделить на две группы: зада-
чи с перфорацией во всей области и задачи с перфорацией вдоль неко-
торого многообразия. В большинстве работ рассматривались перфора-
ции периодической или локально–периодической структуры. Основные
классические результаты, полученные для таких задач, заключались в
доказательстве сходимости решений рассматриваемых задач к решени-
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ям некоторых усредненных задач. Сходимость решения была доказана в
следующем смысле: для каждой фиксированной правой части решение
возмущенной задачи сходилось к решению усредненной в L2 или W 1

2 в
сильном или слабом смысле.

В настоящей диссертации рассматриваются краевые задачи в обла-
стях, перфорированных вдоль заданного многообразия. Пример такой
области приведен на рис. 1. Исследованию подобных задач также по-
священо огромное количество работ, для примера упомянем статьи [1],
[56], [57], [68], [28], [61], [62], [45], [19], [58], [60]. В перечисленных рабо-
тах перфорация описывалась малыми полостями, расположенными вдоль
заданного многообразия или вдоль границы области. В задачах выде-
лялись два малых параметра — размеры полостей и расстояния между
ними. При стремлении этих параметров к нулю полости пропадали, а
на многообразии возникало усредненное краевое условие. Вид краевого
условия зависел от геометрии перфорации и структуры краевого усло-
вия на многообразии. Основные полученные результаты работ [1], [56],
[57], [68], [28], [61], [62], [45], [19], [58], [60] — доказательство сходимости
решений рассматриваемых задач к решениям усредненных задач в нор-
мах пространств L2 и W 1

2 . Для того, чтобы дать общее представление о
возможных постановках задач с перфорацией вдоль заданного многооб-
разия, кратко опишем формулировки задач в перечисленных работах.

В [1] было исследовано уравнение Пуассона в двумерной ограничен-
ной области, периодически перфорированной вдоль границы. На границе
исходной области ставилось третье краевое условие, на границах поло-
стей — условие Дирихле. Предполагалось, что размеры полостей намно-
го меньше, чем расстояния между ними. Рассматривался случай, когда
при усреднении возникает третье граничное условие, в котором имеется
дополнительный коэффициент, порождаемый геометрией перфорации. В
[56] изучалось уравнение Пуассона в области, непериодически перфори-
рованной вдоль границы. На внешней границе задавалось условие Ней-
мана, на границах полостей — условие Дирихле. Размеры полостей и
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Рис. 1: Пример области, перфорированной вдоль многообразия

расстояния между ними были одного порядка. Рассмотрен случай, ко-
гда усреднение приводило к краевому условию Дирихле на границе об-
ласти. В [57] было исследовано уравнение Лапласа в двумерной ограни-
ченной области, случайно перфорированной вдоль границы. На границе
исходной области ставилось условие Неймана, на границах полостей —
условие Дирихле. Рассматривался случай, когда при усреднении возни-
кало условие Дирихле. В [68], [28], [61] были изучены задачи для урав-
нения Пуассона в многомерных областях, периодически перфорирован-
ных вдоль многообразий. В [68] на границах полостей ставилось одно
из классических граничных условий: условие Дирихле, условие Неймана
или третье граничное условие. Рассматривался случай, когда перфора-
ция в пределе не дает вклад в задачу, то есть, при усреднении полости
пропадают вместе с многообразием, вдоль которого они расположены. В
[62] исследовалось вариационное неравенство для оператора Лапласа в
произвольной области, перфорированной вдоль заданного многообразия.
В [28], [61], [62] на границах полостей ставилось третье нелинейное гра-
ничное условие. В этих работах были рассмотрены различные варианты
соотношений размеров полостей и расстояний между ними. При усредне-
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нии менялся характер нелинейности задачи или возникало усреднённое
условие Дирихле на многообразии. В работах [45], [19] рассматривалась
модель, называемая ситом Стеклова. Речь шла о задачах в областях, со-
единённых тонкой прослойкой с большим числом периодически и часто
расположенных тонких каналов. На внутренней поверхности этих кана-
лов задавалось спектральное граничное условие Стеклова, на остальных
частях границы — классические краевые условия. В [45] была проведена
классификация усреднённых задач в зависимости от размеров каналов и
прослойки и доказаны соответствующие теоремы сходимости. В [19] для
двумерного случая были построены первые члены асимптотических раз-
ложений собственных значений в предположении, что каналы и прослой-
ка имеют одинаковый порядок малости. В [58] рассматривались двух– и
трёхмерные задачи в ограниченных областях с периодической частой пер-
форацией малыми полостями вдоль части границы. На границе полостей
ставилось краевое условие Дирихле, а на части границы области, вдоль
которой эти полости располагались — спектральное граничное условие
Стеклова. Были описаны усреднённые задачи в зависимости от размеров
полостей и доказаны соответствующие теоремы сходимости. В [60] рас-
сматривалась задача для уравнения Пуассона в многомерном области,
часто и периодически перфорированной малыми полостями. На границах
полостей выставлялось третье краевое условие с коэффициентом, расту-
щим по малому параметру; сам коэффициент мог быстро осциллировать
по малому параметру. В работе были приведены различные возможные
усреднённые краевые задачи, вид которых зависел от структуры перфо-
рации и краевого условия на границе полостей. Были доказаны теоремы
сходимости, а также описано поведение спектров соответствующих спек-
тральных задач.

В монографиях [29] и [59] рассматривались разнообразные задачи об
усреднении в областях с перфорацией вдоль заданного многообразия. В
[29] изучались краевые задачи для эллиптических уравнений в областях,
граница которых состоит из большого числа мелких непересекающихся
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компонент. В [59] рассматривались различные краевые задачи для эл-
липтических и параболических уравнений в перфорированных областях.
В [29] и [59] были получены аналогичные описанным выше результаты
о сходимости. Списки литературы этих монографий содержат большое
число ссылок на дальнейшие работы по усреднению задач в перфориро-
ванных областях.

На языке спектральной теории неограниченных операторов упомяну-
тые выше классические результаты о сходимости решений означают на-
личие сильной или слабой резольвентной сходимости. В последние 20
лет в теории усреднения развивается новое направление исследований:
появились работы, в которых для возмущенных задач была доказана бо-
лее сильная, равномерная резольвентная сходимость и были установлены
операторные оценки. Суть таких оценок заключались в том, что L2– или
W 1

2 –норма разности решений возмущенной и усредненной задач оцени-
валась через L2–норму правой части уравнения, умноженной на малую
величину, вид которой зависел от типа возмущения и его структуры. По-
добного сорта оценки для операторов с быстро осциллирующими коэф-
фициентами были получены в работах [2], [3], [4], [5], [6], [7], [37], [38],
[39], [40], [41], [42], [74], [73], [21], [22], [23], [24], [33], [34], [36], [32], [35],
[71], [72], [63], [64], [65], см.также списки литературы в цитированных ра-
ботах и другие работы этих авторов. В этих работах была установлена
равномерная резольвентная сходимость возмущенного оператора к усред-
ненному в различных операторных нормах и получены оценки скорости
сходимости. Во всех этих работах быстрая осцилляция коэффициентов
всегда была периодической или локально периодической.

Упомянутые выше работы стимулировали схожие исследования для
других задач теории усреднения. Для задач теории граничного усредне-
ния вопросы равномерной резольвентной сходимости изучались в рабо-
тах [48], [49], [10], [50], [51], [52], [53], [43], [9], [44]. В работах [48], [49], [10],
[50], [51], [52] исследованы эллиптические операторы в плоской бесконеч-
ной полосе с частой периодической и непериодической сменой граничных
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условий. В [43], [9], [44] рассмотрен эллиптический оператор в произволь-
ной многомерной области с частым непериодическим чередованием гра-
ничных условий. В [53] изучен общий эллиптический самосопряженный
оператор в полосе с быстро осциллирующей границей. Результаты работ
[48], [49], [10], [50], [51], [52], [53], [43], [9], [44] утверждают наличие равно-
мерной резольвентной сходимости возмущённых операторов к некоторым
усреднённым и дают оценки скорости сходимости.

Похожие результаты для задач в перфорированных областях были по-
лучены в работах [11], [54], [55], [67], [66], [70], [75]. В [11] рассматривался
оператор Лапласа в плоской бесконечной полосе, из которой симметрич-
ным образом вырезана пара малых полостей. На границах полостей ста-
вилось условие Неймана. В [54] исследован эллиптический оператор вто-
рого порядка с переменными коэффициентами в плоской полосе, перфо-
рированной вдоль заданной кривой. На границах полостей выставлялось
одно из классических краевых условий, при этом на границах отверстий
ставились разные граничные условия. В [55] рассмотрен эллиптический
оператор второго порядка с переменными коэффициентами в многомер-
ной области с малыми полостями. На границах полостей ставилось одно
из классических краевых условий. В [67], [66], [70], [75] исследовались
краевые задачи в периодически перфорированных областях.

В настоящей диссертации рассматривается краевая задача для эллип-
тического уравнения второго порядка с переменными коэффициентами
в многомерной области, перфорированной вдоль заданного многообра-
зия. Размерность области не меньше трёх, при этом область может быть
как ограниченной, так и неограниченной. Предполагается, что размеры
всех полостей одного порядка, а их форма и распределение вдоль мно-
гообразия могут быть произвольными. На границах полостей ставятся
различные граничные условия: первое граничное условие, второе гра-
ничное условие, третье нелинейное граничное условие. При измельчении
перфорации решения рассматриваемых задач сходятся к решениям неко-
торых усредненных задач. Вид усредненных задач существенно зависит
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от распределения полостей вдоль многообразия, соотношения размеров
полостей и расстояний между ними и от задаваемых граничных условий.

В диссертации описываются усредненные задачи для двух типичных
случаев перфорации. В первой главе рассматривается случай, когда все
полости поделены на два множества. На границах полостей первого мно-
жества ставится условие Дирихле, на границах полостей второго множе-
ства — третье нелинейное граничное условие. При усреднении полости
пропадают, а на многообразии возникает условие Дирихле. Во второй
главе рассматривается краевая задача с третьим нелинейным граничным
условием на границах полостей. В зависимости от соотношений между
размерами полостей и расстояний между ними при усреднении возника-
ют два разных случая. В первом случае при усреднении полости пропада-
ют вместе с многообразием, вдоль которого они расположены. Во втором
случае при усреднении на многообразии возникает граничное условие, ко-
торое можно интерпретировать как нелинейное дельта–взаимодействие.
Для каждого случая доказывается сходимость решения возмущённой за-
дачи к решению усреднённой задачи в нормеW 1

2 равномерно по L2–норме
правой части уравнения и получены оценки скорости сходимости. Также
для каждого описанного случая строится и строго обосновывается пол-
ная асимптотика решений возмущенных задач. При построении асимпто-
тик предполагается, что область является неограниченной, перфорация
производится вдоль гиперплоскости и имеет периодическую структуру.



Глава 1

Задачи и основные результаты

Пусть x = (x1, . . . , xn) — декартовы координаты в Rn, Ω ⊂ Rn — область
с границей класса C2. Область Ω может быть как ограниченной, так и
неограниченной. Обозначим через S ⊂ Ω ориентируемое многообразие
без края класса C3 коразмерности 1 без самопересечений, которое либо
замкнуто, либо бесконечно. Пусть ε — малый положительный параметр,
η = η(ε) — некоторая функция, удовлетворяющая неравенству 0 < η(ε) 6

1.
В окрестности многообразия S произвольно выберем точки M ε

k , k ∈
Mε, где множество индексов Mε не более, чем счётно, а для самих точек
выполнено условие

dist(M ε
k , S) 6 R0ε, (1.0.1)

с положительной константой R0, не зависящей от k и ε. Пусть ωk,ε ⊂ Rn,
k ∈ Mε — ограниченные области с границами класса C2; допускается
зависимость этих областей от ε. Обозначим:

ωεk :=
{
x : (x−M ε

k)ε−1η−1(ε) ∈ ωk,ε
}
, θε :=

⋃
k∈Mε

ωεk.

Из области Ω вырежем полости ωεk, k ∈ Mε и такую область обозначим че-
рез Ωε, то есть, Ωε := Ω \ θε. Пример перфорированной области приведен
на рис. 1.

Введённая область Ωε содержит перфорацию малыми полостями ωεk,
расположенными вдоль многообразия S. На размеры, форму и распо-

12
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ложение этих полостей в диссертации налагается несколько естествен-
ных условий общего характера. Точные формулировки этих условий мы
приведём позднее, пока лишь отметим, что все полости ωεk мы считаем
попарно непересекающимися с минимальным расстоянием между ними
порядка O(ε). Перейдём к постановке рассматриваемой задачи.

Через Aij = Aij(x), Ai = Ai(x), A0 = A0(x) обозначим функции,
заданные в Ω и удовлетворяющие условиям

Aij ∈ W 1
∞(Ω), Aj, A0 ∈ L∞(Ω),

Aij = Aji, i, j = 1, . . . , n,
n∑

i,j=1

Aij(x)zizj > c0|z|2, x ∈ Ω, z = (z1 . . . , zn) ∈ Cn,
(1.0.2)

где c0 > 0 — некоторая константа, не зависящая от x и z. Функции
Aij считаем вещественнозначными, а функции Aj, A0 — комплекснознач-
ными. Пусть a = a(x, u) — комплекснозначная функция, заданная для
u ∈ C и x ∈ Σ := {x : dist(x, S) 6 τ0}, где τ0 > 0 — некоторое фикси-
рованное число. Будем считать, что функция a кусочно–непрерывна по
(x, u) ∈ Σ× C и удовлетворяет условиям

|a(x, u1)− a(x, u2)| 6 a0|u1 − u2|, a(x, 0) = 0, (1.0.3)

где a0 — некоторая константа, не зависящая от x ∈ Σ и u1, u2 ∈ C. Пусть
f — произвольная функция из L2(Ω), а λ — вещественное число.

Разобъем все полости произвольным образом на два типа:

θε = θεD ∪ θεR, θε\ =
⋃
k∈Mε

\

ωεk, \ ∈ {D,R},

где Mε
D ∩Mε

R = ∅, Mε
D ∪Mε

R = Mε, то есть, Mε
D и Mε

R — некоторое произ-
вольное разбиение множества Mε.

Основной объект исследования настоящей диссертации — краевая за-
дача

(Ĥ − λ)uε = f в Ωε, uε = 0 на ∂Ω,

uε = 0 на ∂θεD,
∂uε
∂n

+ a( · , uε) = 0 на ∂θεR,
(1.0.4)
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где дифференциальное выражение и производная по конормали заданы
формулами

Ĥ := −
n∑

i,j=1

∂

∂xi
Aij

∂

∂xj
+

n∑
j=1

Aj
∂

∂xj
+ A0,

∂

∂n
=

n∑
i,j=1

Aijνi
∂

∂xj
,

(1.0.5)

νi — i–ая компонента единичной нормали ν к ∂θε, направленная внутрь
множества θε.

Целью диссертации является изучение асимптотического поведения
решения задачи (1.0.4) при ε→ 0. Такое поведение существенно зависит
от геометрии перфорации и соотношения между размерами полостей и
расстояний между ними, а именно, оно определяется распределением то-
чекM ε

k , формами областей ωk,ε и поведением функции η(ε) при малых ε.
В диссертации мы рассмотрим два типичных случаях перфорации и для
каждого из них опишем асимптотическое поведение решения. Каждый
из случаев описывается определенными ограничениями на перфорацию,
которые мы сформулируем ниже.

Начнем с общих, достаточно естественных геометрических ограниче-
ний на перфорацию, которые будут предполагаться выполненнными всю-
ду в работе. На многообразии S зафиксируем сторону и соответствую-
щее непрерывное поле нормалей. Через τ обозначим расстояние от точки
до S, измеренное вдоль нормали, а через s — какие–нибудь локальные
переменные на многообразии S. При таком определении переменная τ

положительна для точек, расположенных со стороны многообразия S,
определяемой выбранным полем нормалей.

Наше первое условие описывает регулярность многообразия S.

A1. Переменные (τ, s) корректно определены по крайней мере в области
Σ. В этой же области равномерно ограничены якобианы перехода от
переменных x к переменным (τ, s) и обратно, а также производные
x по (τ, s) и производные (τ, s) по x вплоть до второго порядка.
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Пусть Br(M) — открытый шар в Rn с центром в точке M радиуса r.
На размеры и взаимное расположение полостей ωεk наложим следующее
условие.

A2. Существуют точки Mk,ε ∈ ωk,ε, k ∈ Mε, и числа 0 < R1 < R2, b > 1,
не зависящие от ε, такие что для достаточно малых ε выполнено:

BR1
(Mk,ε) ⊂ ωk,ε ⊂ BR2

(0), k ∈ Mε,

BbR2ε(M
ε
k) ∩BbR2ε(M

ε
i ) = ∅, i, k ∈ Mε, i 6= k.

(1.0.6)

Для всех k и ε множества BR2
(0) \ ωk,ε связны.

В окрестности границ областей ωk,ε введём локальную переменную ρ —
расстояние от точки до границы ∂ωk,ε, измеренное в направлении внеш-
ней нормали. Следующее условие касается форм областей ∂ωk,ε.

A3. Существуют фиксированные константы ρ0 > 0 и локальные перемен-
ные ς на ∂ωk,ε такие, что переменные (ρ, ς) корректно определены по
крайней мере на множествах

{x : dist(x, ∂ωk,ε) 6 ρ0} \ ωk,ε ⊆ Bb∗R2
(0), b∗ :=

b+ 1

2
,

одновременно для всех k ∈ Mε, и на данных множествах равномерно
ограничены якобианы перехода от переменных x к переменным (ρ, ς)

и обратно, а также производные x по (ρ, ς) и производные (ρ, ς) по
x.

Решение краевой задачи (1.0.4) будем понимать в обобщенном смысле.
Обобщенным решением задачи (1.0.4) называется функция uε ∈ W 1

2 (Ωε),
удовлетворяющая интегральному тождеству

ha(uε, v)− λ(uε, v)L2(Ωε) = (f, v)L2(Ωε)

для любых v ∈ W̊ 1
2 (Ωε, ∂Ω ∪ ∂θεD), где

ha(uε, v) := h0(uε, v) + (a( · , uε), v)L2(∂θε), (1.0.7)
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h0(uε, v) :=
n∑

i,j=1

(
Aij

∂uε
∂xj

,
∂v

∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aj
∂uε
∂xj

, v

)
L2(Ωε)

+ (A0uε, v)L2(Ωε)

и W̊ 1
2 (Ωε, ∂Ω∪∂θεD) — подпространство функций изW 1

2 (Ω), обращающих-
ся в нуль на ∂Ω и ∂θεD. Интеграл по границе ∂θεR понимается в смысле
следов. Далее будет показано, что благодаря условиям A1, A2, A3 такой
след определён корректно.

Опишем первый случай. Здесь предполагаем, что ε и η связаны сле-
дующим соотношением:

ε

ηn−2(ε)
→ +0, ε→ +0. (1.0.8)

На распределение полостей из множества θεD наложим следующее усло-
вие.

A4. Существует число R3 > bR2 такое, что

Ξε ⊂
⋃
k∈Mε

D

BR3ε(M
ε
k), Ξε := {x : |τ | < bR2ε}.

Введем еще одну краевую задачу:

(Ĥ − λ)u0 = f в Ω \ S, u0 = 0 на ∂Ω ∪ S. (1.0.9)

Далее мы покажем, что она является усреднённой для задачи (1.0.4) при
выполнении условий A4 и (1.0.8). Её решение также понимаем в обобщен-
ном смысле. А именно, это функция u0 ∈ W̊ 1

2 (Ω, ∂Ω ∪ S), удовлетворяю-
щая интегральному тождеству

h0(u0, v)− λ(u0, v)L2(Ω) = (f, v)L2(Ω)

для любых v ∈ W̊ 1
2 (Ω, ∂Ω ∪ S).

Основным результатом диссертации об усреднении в первом случае
является следующая теорема.
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Теорема 1.0.1. Пусть выполнены предположения A1, A2, A3, A4 и
условие (1.0.8). Тогда существует λ0, не зависящее от ε, η и f , та-
кое, что при λ < λ0 задачи (1.0.4), (1.0.9) однозначно разрешимы для
всех f ∈ L2(Ω) и верно неравенство

‖uε − u0‖W 1
2 (Ωε) 6 C

(
ε

ηn−2(ε)

) 1
2

‖f‖L2(Ω), (1.0.10)

где константа C не зависит от ε, η и f , но зависит от λ.

Переходим ко второму случаю. Здесь предполагаем, что Mε
D = ∅. Так-

же считаем, что функция a удовлетворяет более жёстким условиям∣∣∣∣ ∂a

∂ Reu
(x, u)

∣∣∣∣+

∣∣∣∣ ∂a

∂ Imu
(x, u)

∣∣∣∣ 6 a0,

a(x, 0) = 0, |∇xa(x, u)| 6 a1|u|,
(1.0.11)

где a0 и a1 — некоторые константы, не зависящие от x и u.
Пусть ζ = ζ(t), t ∈ [0, 1] — бесконечно дифференцируемая срезающая

функция, принимающая значения из отрезка [0, 1], равная нулю при |t| >
1 и удовлетворяющая условию∫

Rn−1

ζ(|t|) dt = 1. (1.0.12)

Через M ε
k,⊥ обозначим проекции точек M ε

k на поверхность S. На поверх-
ности S определим функцию

αε(x) =


ηn−1(ε)|∂ωk,ε|

Rn−1
2

ζ

(
|x−M ε

k,⊥|
εR2

)
при |x−M ε

k,⊥| < εR2, k ∈ Mε,

0 в остальных точках S.

(1.0.13)
Обозначим: $ :=

{
x ∈ Rn : 0 < τ < τ0

2

}
. Пусть Φ — произвольная

функция, заданная на S и являющаяся следом некоторой функции из
W 1

2 ($), то есть, Φ ∈ W
1
2

2 (S). Ясно, что следующие две задачи однозначно



18

разрешимы в W 1
2 ($):

−∆UN
Φ + UN

Φ = 0 в $,

∂UN
Φ

∂τ
= −Φ на S,

∂UN
Φ

∂ν
= 0 на ∂$ \ S,

(1.0.14)

и

−∆UD
Φ + UD

Φ = 0 в $,

UD
Φ = Φ на S,

∂UD
Φ

∂ν
= 0 на ∂$ \ S,

(1.0.15)

где ν — единичная нормаль к поверхности ∂$ \S, внешняя к области $.
Далее будет показано (см. лемму 3.1.3), что следующая норма определена
корректно по крайней мере на пространстве L∞(S):

‖α‖2
S := sup

Φ∈W
1
2
2 (S)

Φ 6=0

‖UN
αΦ‖2

W 1
2 ($)

‖UD
Φ ‖2

W 1
2 ($)

, (1.0.16)

где α — произвольная функция из L∞(S).
На функцию αε, определённую в (1.0.13), наложим следующее условие.

A5. Существуют ограниченная измеримая функция α0, заданная на S
и принадлежащая W 1

∞(S), и функция κ = κ(ε) → +0 при ε → +0

такие, что для всех достаточно малых ε верна оценка

‖αε − α0‖S 6 κ(ε).

Если выполнены условия A1, A2, A3 и одно из условий a ≡ 0 или
η(ε) → 0, ε → 0, то при усреднении полости пропадают вместе с много-
образием S, и усреднённая задача для (1.0.4) имеет вид:

(Ĥ − λ)u0 = f в Ω, u0 = 0 на ∂Ω. (1.0.17)

Если же η не стремится к нулю, а функция a произвольна, то при
выполнении условий A1, A2, A3, A5 усреднённая задача для (1.0.4) имеет
вид

(Ĥ − λ)u0 = f в Ω, u0 = 0 на ∂Ω, (1.0.18)
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[u0]S = 0,

[
∂u0

∂n

]
S

− αa( · , u0)
∣∣
S

= 0, (1.0.19)

где [u]S := u|τ=+0 − u|τ=−0 — скачок функции u на S. Производная по
конормали здесь задается формулой из (1.0.5), в которой в качестве ν
берется упомянутое выше поле нормалей на S. Отметим, что граничное
условие (1.0.19) описывает нелинейное дельта–взаимодействие на поверх-
ности S.

Решения задач (1.0.17) и (1.0.18), (1.0.19) также будем понимать в
обобщенном смысле. Обобщенным решением краевой задачи (1.0.17) на-
зывается функция u0 ∈ W̊ 1

2 (Ω, ∂Ω), удовлетворяющая интегральному
тождеству

h0(u0, v)− λ(u0, v)L2(Ω) = (f, v)L2(Ω)

для любых v ∈ W̊ 1
2 (Ω, ∂Ω). Обобщенным решением краевой задачи (1.0.18),

(1.0.19) называется функция u0 ∈ W̊ 1
2 (Ω, ∂Ω), удовлетворяющая инте-

гральному тождеству

h0(u0, v)− λ(u0, v)L2(Ω) + (αa( · , u0), v)L2(S) = (f, v)L2(Ω),

для любых v ∈ W̊ 1
2 (Ω, ∂Ω).

Основные результаты диссертации об усреднении во втором случае
сформулированы в следующих двух теоремах. Первая из них описывает
ситуацию, когда при усреднении возникает задача (1.0.17).

Теорема 1.0.2. Пусть выполнены предположения A1, A2, A3. Тогда су-
ществует λ0, не зависящее от ε, такое, что при λ < λ0 задачи (1.0.4) и
(1.0.17) однозначно разрешимы для всех f ∈ L2(Ω). Если дополнительно
выполнено одно из условий

a ≡ 0 или η(ε)→ 0, ε→ 0, (1.0.20)

то справедливы неравенства

‖uε − u0‖W 1
2 (Ωε) 6 C

(
εη(ε) + ε

1
2η

n
2 (ε)

)
‖f‖L2(Ω), (1.0.21)
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если a ≡ 0, и

‖uε − u0‖W 1
2 (Ωε) 6 C

(
εη(ε) + ηn−1(ε)

)
‖f‖L2(Ω), (1.0.22)

если η(ε)→ 0, ε→ 0, где константы C не зависят от ε и f , но зависят
от λ.

Во второй теореме описывается ситуация, когда усреднение приводит
к задаче (1.0.18), (1.0.19).

Теорема 1.0.3. Пусть выполнены предположения A1, A2, A3, A5. Тогда
существует λ0, не зависящее от ε, η и f , такое, что при λ < λ0 задачи
(1.0.4) и (1.0.18), (1.0.19) однозначно разрешимы для всех f ∈ L2(Ω) и
имеет место неравенство:

‖uε − u0‖W 1
2 (Ωε) 6 C

(
ε

1
2 + κ(ε)

)
‖f‖L2(Ω), (1.0.23)

где константа C не зависит от ε и f , но зависит от λ.

Вторая часть результатов диссертации посвящена построению асимп-
тотического разложения решения задачи (1.0.4) в случае периодической
перфорации. Пусть Ω — неограниченная область. Будем считать, что в
окрестности гиперплоскости xn = 0 эта область совпадает со слоем, а
именно, существует τ0 > 0 такое, что

Ω ∩ {x : |xn| 6 τ0} = {x : |xn| 6 τ0}.

В качестве многообразия S возьмем гиперплоскость {x : xn = 0}. Пусть
MD, MR — некоторые фиксированные точки, ωD, ωR — некоторые фик-
сированные ограниченные множества с границей гладкости C(2+ϑ) для
некоторого фиксированного ϑ ∈ (0, 1). Обозначим:

Π := �×R, � :=
{
x : −bi

2
< xi <

bi
2
, i = 1, . . . , n− 1

}
,

где bi > 0 — некоторые числа. Множества Mε
D, Mε

R выберем следующим
образом:

Mε
[ :=

{
ε(Mk +M[), k ∈ Zn−1

}
, [ ∈ {R, D},
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Рис. 1.1: Схематичный вид части области Ωε с периодической перфорацией.

Mk := (b1k1, . . . , bn−1kn−1, 0), k := (k1, . . . , kn−1).

ТочкиM ε
k из множестваMε

D пересчитываются мульти–индексом k ∈ Zn−1

и имеют вид M ε
k = ε(Mk + MD) и аналогичные соотношения верны

для точек из множества Mε
R. Точкам M ε

k ∈ Mε
D сопоставим множества

ωk,η := ωD, а точкамM ε
k ∈ Mε

R — множества ωk,η := ωR. Определим затем
соответствующие множества θεD и θεR. Пример перфорированной области
приведен на рис. 1.1.

Пусть

f ∈ L2(Ω) ∩W q
2 (Ω+

τ0
) ∩W q

2 (Ω−τ0), Ω±b := {x : 0 < ±xn < b}, (1.0.24)

для всех q ∈ N. Предполагаем, что Aij = 1, Aj = 0, A0 = 0 при |xn| 6 τ0.
Через χ = χ(xn) обозначим бесконечно дифференцируемую срезаю-

щую функцию, равную нулю при |xn| < 1 и единице при |xn| > 2, и
положим:

χε(xn) =

χ
(
xnε

− 1
2

)
, |xn| > τ0

0, |xn| 6 τ0.

Отметим, что для введенной периодической перфорации выполнены
условия A1, A2, A3, A4, A5. А именно, в качестве локальных перемен-
ных из условия A1 можно выбрать τ = xn, s = x′ и тогда условие A1
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оказывается выполненным с произвольным τ0. Так как все полости име-
ют одинаковые размеры, формы и их распределение вдоль S периоди-
ческие, то условия A2, A3, A4 также выполняются для рассматривае-
мого случая. В §1.3 будет показано, что условие A5 выполняется для
локально–периодической перфорации. Если в рассматриваемом периоди-
ческом случае на границах полостей ставится только третье нелинейное
граничное условие, то условие A5 выполняется, так как описанный выше
случай строго периодического распределения полостей является частным
случаем локально–периодической перфорации.

Асимптотика решения задачи (1.0.4) строится для двух описанных
выше случаев перфорации. Опишем первый случай. Будем считать, что
функция a не зависит от x, то есть, a = a(u), и кроме того, эта функ-
ция является бесконечно дифференцируемой и удовлетворяет условию
(1.0.3). Предположим, что для всех η ∈ (0, 1] выполнено:

ωη[ ⊂ Π, dist(ωηD, ω
η
R) > R4 > 0,

ωη[ :=
{
x : η−1(x−M[) ∈ ω[

}
,

(1.0.25)

где R4 — некоторая фиксированная константа, не зависящая от η.
Рассмотрим систему краевых задач

(L − λ)um = 0 в Ω \ S, um = 0 на ∂Ω, m ∈ N,
um(x′,+0, η) = ϕ+

m(x′, η), x′ ∈ Rn−1,

um(x′,−0, η) = ϕ−m(x′, η), x′ ∈ Rn−1,

(1.0.26)

−∆ξv1 = 0 в Rn \ ω̆η, v1 = 0 на ∂ωηD,

∂v1

∂νξ
= 0 на ∂ω̆ηR,

(1.0.27)

−∆ξvm = fm в Rn \ ω̆η, vm = 0 на ∂ω̆ηD,

∂vm
∂νξ

= −
n−1∑
i=1

∂vm−1

∂xi
νi − Lm−1(v1, . . . , vm−1) на ∂ω̆ηR,

(1.0.28)
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vm(ξ, x′, η) =
m∑
j=1

1

j!

∂jum−j

∂xjn
(x′,±0, η)ξjn + ϕ±m(x′, η) + o(1), ξn → ±∞,

(1.0.29)

fm :=
ξm−2
n

(m− 2)!

∂m−2f

∂xm−2
n

(x′, 0) + 2
n−1∑
i=1

∂2vm−1

∂ξi∂xi
+ (∆x′ + λ)vm−2, (1.0.30)

где m > 2, v0 := 0,

ω̆η[ =
⋃

k∈Zn−1

{
ξ : η−1(ξ −Mk −M[) ∈ ω[

}
, [ ∈ {R,D},

ω̆η := ω̆ηD ∪ ω̆
η
R, νξ — единичная нормаль к ∂ωηR, направленная внутрь

ωηR, νi — компоненты вектора νξ. Здесь Lm — некоторые фиксированные
полиномы такие, что для каждого монома вида Cvp11 v

p2
2 . . . vpmm выполнено

p1+2p2+. . .+mpm = m. Эти полиномы определяются как коэффициенты
в формальном асимптотическом ряде

a(uinε ) =
∞∑
m=1

εmLm(v1, . . . , vm), (1.0.31)

В частности,

L1(v1) = a′(0)v1, L2(v1, v2) = a′(0)v2 +
a′′(0)

2
v2

1.

Следующая лемма будет доказана в §4.3.

Лемма 1.0.1. Существуют единственные решения рекуррентной си-
стемы задач (1.0.26), (1.0.27), (1.0.28), (1.0.29). Данные решения име-
ют вид

vm(ξ, x′, η) =
Nm∑
j=1

ϕmj(x
′)vmj(ξ, η),

um(x, η) =
2Nm∑
j=1

umj(x)Amj(η),

(1.0.32)
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где Nm — некоторые числа, ϕmj, vmj, umj, Amj — некоторые функции со
следующими свойствами. При |ξn| > R6 функции vmj представляются
в виде

vmj(ξ, η) =K±mj(ξn) + A±mj(η)

+
∑

k∈Zn−1
Q±mjk(ξn, η)e−Zk|ξn|e2πikb ·ξ

′
, ±ξn > R6,

(1.0.33)

где K±mj — некоторые полиномы степени не выше m, причём K±mj(0) =

0, а Q±mjk — некоторые полиномы по ξn степени не выше (m − 1) с
коэффициентами, A±mj — некоторые функции. Справедливы оценки

|Amj|+ ‖vmj‖H + ‖vmj‖C1(Πη) + ηϑ〈∇vmj〉(ϑ)
Πη 6 Cη−m(n−2), (1.0.34)

где константа C не зависит от η и j. Функции ϕmj принадлежат про-
странствам W q

2 (Rn−1) для всех q ∈ N, бесконечно дифференцируемы,
и каждая их производная ограничена равномерно по x′ ∈ Rn−1. Верны
равенства

ϕ±m(x′, η) =
2Nm∑
j=1

A±mj(η)ϕmj(x
′) (1.0.35)

Функции umj есть решения задачи (1.0.26) с краевыми условиями:

umj(x
′,+0) = ϕmj(x

′), umj(x
′,−0) = 0, x′ ∈ Rn−1, (1.0.36)

при j = 1, . . . , Nm, и

umj(x
′,+0) = 0, umj(x

′,−0) = ϕmj−Nm(x′), x′ ∈ Rn−1, (1.0.37)

при j = Nm + 1, . . . , 2Nm. Функции umj принадлежат

W q
2 (Ω+

τ0−δ) ∩W
q
2 (Ω−τ0−δ) ∩W

1
2 (Ω)

для всех q ∈ N и всех δ > 0, бесконечно дифференцируемы в Ω±τ0 и для
каждого δ > 0 все их производные равномерно ограничены в каждой из
областей Ω±τ0−δ.
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Основным результатом о построении асимптотик в первом случае яв-
ляется следующая теорема.

Теорема 1.0.4. Пусть выполнено условие (1.0.8), тогда асимптотика
решения задачи (1.0.4) норме W 1

2 (Ωε) имеет вид

uε(x, η) =χε(xn)
N∑
m=0

εmum(x, η)

+ (1− χε(xn))
N∑
m=1

εmvm(xε−1, x′, η)

+O
(
ε−

1
4

(
(εη−n+2)N+1 + ε

N+1
2

))
.

(1.0.38)

Здесь N — произвольное натуральное число, функция u0 — решение со-
ответствующей усреднённой задачи (1.0.9), оставшиеся функции um —
решения задач (1.0.26), функции vm — решения задач (1.0.27), (1.0.28),
(1.0.29), со свойствами, описанными в лемме 1.0.1. Верны соотноше-
ния:∥∥εm(χεum + (1− χε)vm)

∥∥
W 1

2 (Ωε)
6 Cε−

1
4

(
(εη−n+2)m + ε

m
2

))
, (1.0.39)

где константа C не зависит от ε и η, но зависит от m.

Опишем второй случай. Предполагаем, что функция a является бес-
конечно дифференцируемой функцией и удовлетворяет условиям

a(u, 0) = 0,

∣∣∣∣ ∂a

∂ Reu
(x, u)

∣∣∣∣+

∣∣∣∣ ∂a

∂ Imu
(x, u)

∣∣∣∣ 6 a1, (1.0.40)∣∣∣∣∣∂|β|a∂xβ
(x, u)

∣∣∣∣∣ 6 aβ,0|u|,
∣∣∣∣∣ ∂|β|+γ1+γ2a

∂xβ∂(Reu)γ1∂(Imu)γ2
(x, u)

∣∣∣∣∣ 6 aβ,γ, (1.0.41)

где β ∈ Zn+, γ := (γ1, γ2) ∈ Z2
+ \ {0}, а символы a1, aβ,γ обозначают неко-

торые константы, не зависящие от x и u. Рассмотрим систему краевых
задач

−∆ξvm = fm в Rn \ θη,
∂vm
∂νξ

= ψm на ∂θη, (1.0.42)
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f0 = 0, ψ0 = 0, θη =
⋃

k∈Zn−1

{
ξ : η−1(ξ −Mk) ∈ ω

}
,

fm :=
ξm−2
n

(m− 2)!

∂m−2f

∂xm−2
n

(x′, 0) + 2
n−1∑
i=1

∂2vm−1

∂ξi∂xi
+ (∆x′ + λ)vm−2,

ψm := −
n−1∑
i=1

∂vm−1

∂xi
νi − Tm,

где νξ — единичная нормаль к θη, направленная внутрь θη, νi — компо-
ненты вектора νξ, а функции Tm = Tm(x′, ξn, v0, ..., vm) возникают как
коэффициенты в следующем асимптотическом равенстве:

a

(
x′, εξn,

∞∑
m=0

εjvm

)
= T0(x

′ξn, v0) +
∞∑
m=1

εmTm(x′, ξn, v1, ..., vm) (1.0.43)

и T0(x
′, ξn, v0) = a(x′, 0, v0).

Для произвольного положительного числа R обозначим ΠR := � ×
(−R,R).

Теорема 1.0.5. Пусть выполнено условие (1.0.20). Асимптотика ре-
шения задачи (1.0.4) в норме W 1

2 (Ωε) имеет вид

uε(x) =χε(xn)
N∑
m=0

εmum(x, η)

+ (1− χε(xn))
N∑
m=0

εmvm(xε−1, x′, η) +O(ε
N+1
2 ),

(1.0.44)

где N — произвольное натуральное число. Функции vm являются �–
периодическими по ξ′ решениями задач (1.0.42) с асимптотиками

vm(ξ, x′, η) =
m∑
j=2

1

j!

∂jum−j

∂xjn
(x′,±0, η)ξjn

+ U±m,1(x
′, η)ξn + U±m,0(x

′, η) +O(e−c|ξn|),

при ξn → ±∞, где c > 0 — некоторая фиксированная константа, не
зависящая от ξ′, x′, η, а U±m,i, i = 1, 2 — некоторые функции из W p

2 (S)
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для всех p ∈ N, бесконечно дифференцируемые по η ∈ (0, 1] и равномер-
но ограниченные по η ∈ [0, 1] в нормах указанных пространств. Для
функций vm справедливы представления

vm(ξ, x′, η) =
Nm∑
j=1

ϕmj(x
′, η)vmj(ξ, η) + v(0)

m (x′, η), (1.0.45)

где Nm — некоторые числа, v(0)
m , ϕmj, vmj — некоторые функции. Функ-

ции v
(0)
m , ϕmj принадлежат пространствам W p

2 (S) для всех p ∈ N,
бесконечно дифференцируемы по η ∈ (0, 1] и равномерно ограничены по
η ∈ [0, 1] в нормах указанных пространств. Функции vmj являются �–
периодическими по ξ′, бесконечно дифференцируемы в Π\ωη для каждого
η ∈ (0, 1] и равномерно ограничены по η ∈ [0, 1] в нормах C1(ΠR \ θη) для
каждого R > 0. Функции vmj бесконечно дифференцируемы по η ∈ (0, 1]

в следующем смысле: для каждой точки η0 ∈ (0, 1] существует фикси-
рованная окрестность B множества ωη0, так что функции vmj беско-
нечно дифференцируемы по (ξ, η), где η — из малой окрестности точ-
ки η0, а ξ ∈ Π \ ωη0. Одновременно функции vmj(ξ̃ηη

−1
0 , η) бесконечно

дифференцируемы по (ξ̃, η), где η — из малой окрестности точки η0, а
ξ̃ ∈ B \ ωη0.

Функция u0 является решением задачи (1.0.18), (1.0.19) с α = ηn−1,
а функции um — решения задач

(L − λ)um = 0 в Ω \ S, um = 0 на ∂Ω, m > 1, (1.0.46)

с краевыми условиями

[um]0 = U+
m,0 − U−m,0,

[
∂um
∂xn

]
0

= U+
m,1 − U−m,1 на S.

Верна оценка ∥∥εm(χεum + (1− χε)vm)
∥∥
W 1

2 (Ωε)
6 Cε

m
2 , (1.0.47)

где константа C не зависит от ε и η, но зависит от m.
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Обсудим полученные результаты. Начнём с предположений о геомет-
рии перфорации. Условие A1 налагается на многообразие, вдоль которо-
го располагаются полости. Это условие означает, что поверхность S не
слишком сильно осциллирует — наличие сильных осцилляций уменьшает
размер области, в которой корректно определены локальные переменные
(τ, s). Схематическим примером, демонстрирующим возможное наличие
таких осцилляций и нарушение условия A1, является многообразие в R3,
определяемое уравнением x3 = sin(x2

1 + x2
2), (x1, x2) ∈ R2. При больших

(x1, x2) это многообразие начинает сильно осциллировать, и тем самым не
удается ввести локальные переменные (τ, s) равномерно вдоль многообра-
зия. Вместе с тем подчеркнём, что условие A1 необходимо в том смысле,
что попытка определить перфорацию вдоль многообразий с нарастаю-
щими осцилляциями существенно изменяет саму постановку задачи, так
как здесь полости могут располагаться слишком часто и могут начать
пересекаться. Это означает качественное изменение постановки исходной
задачи и, возможно, качественное изменение вида усреднённой задачи.
Отметим ещё, что условие A1 важно в случае неограниченной поверхно-
сти S и автоматически выполняется, если поверхность S ограничена; в
последнем случае достаточно предполагаемой гладкости C2.

Условие A2 означает, что все полости имеют размеры одного поряд-
ка, они не пересекаются, и между ними имеется минимальное расстоя-
ние порядка O(ε). Размеры полостей порядка O(εη(ε)). На форму поло-
стей никаких ограничений не накладывается, полости могут достаточно
произвольно зависеть от малого параметра. Эти условия являются есте-
ственными для всех задач о перфорации, налагая минимальные разум-
ные требования на формы полостей и их распределение. Предположение
о связности множеств BR2

(0)\ωk,η также весьма естественно, так как ина-
че внутри области Ωε возникали бы изолированные компоненты малого
размера, не связанные с основной частью области, и фактически речь
шла о независимых задачах на таких малых областях. Подчеркнём, что
каждое из полостей ωk,η не обязательно односвязно и число компонент
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связности полости ωk,η может зависеть от k.
Условие A3 означает определённую равномерность геометрии областей

ωk,η по параметрам k и η. Как и первое условие A1, оно сформулировано
в терминах локальных переменных возле границы — требуется наличие
полосы достаточно малой, но фиксированной ширины вдоль границ обла-
стей ωk,η, в которых были бы корректно определены локальные перемен-
ные ρ одновременно для всех k ∈ Mε

R и всех η. Как и в случае поверхности
S, это также означает отсутствие нарастающих осцилляций у границ об-
ластей ωk,η. Это условие далее используется для того, что обеспечить на-
личие следа функций из W̊ 1

2 (Ωε, ∂Ω) на границах полостей ∂ωk,η. Наличие
следа необходимо для формулировки определения обобщённых решений
рассматриваемой возмущённой задачи. Если не налагать условие A3, а
ограничиться лишь условием A2, то тогда не исключаются полости, удо-
влетворяющие вложениям в (1.0.6), но с возрастающей по k или по η

мерой границ |∂ωk,η|, что возможно за счёт возрастающих осцилляций
этих границ. На таких границах соответствующая константа в оценках
L2–норм следов на границах черезW 1

2 –нормы в области Ωε будет расти с
ростом k. В этом легко убедиться, если взять функцию, локально равную
константе в окрестности таких полостей — сама функция не изменяет-
ся, а мера границы возрастает, увеличивая тем самым L2–норму следа.
Поэтому условие A3 является по меньшей мере близким к необходимому
для обеспечения наличия следа.

Условие A4 требует, чтобы полости с первым граничным условием бы-
ли расположены достаточно часто, так что шары с центрами в этих поло-
стях радиусами R3ε покрывают слой вдоль многообразия шириной 2bR2ε.
Последнее требование фактически налагает единственное дополнитель-
ное и весьма слабое условие на распределение полостей с краевым усло-
вием Дирихле на границе. Геометрический смысл этого условия состоит
в том, что полости с условием Дирихле должны быть расположены до-
статочно часто вдоль многообразия S. На положение полостей с третьим
нелинейным краевым условием никаких условий не налагается, поэтому
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они могут располагаться как часто, так и редко. Например, расстояния
между этими полостями могут быть и конечными, не обязательно малы-
ми, число таких полостей может быть конечным, либо они вовсе могут
отсутствовать.

При выполнении условий A1, A2, A3, A4 и (1.0.8) усреднённая задача
для (1.0.4) имеет вид (1.0.9). При усреднении полости пропадают, а на
многообразии S возникает условие Дирихле. Теорема 1.0.1 устанавлива-
ет сходимость решения задачи (1.0.4) к решению задачи (1.0.9) в норме
W 1

2 (Ωε) равномерно по правой части уравнения. Более того, теорема 1.0.1
дает оценку скорости сходимости, см. неравенство (1.0.10). Правая часть
этого неравенства стремится к нулю в силу условия (1.0.8).

При выполнении условий A1, A2, A3 и одного из условий (1.0.20)
усреднённая задача для (1.0.4) имеет вид (1.0.17). В этом случае полости
пропадают вместе с многобразием S, вдоль которого они расположены
и усреднённая задача (1.0.17) никак не зависит от выбора многообразия
S. При выполнении условий A1, A2, A3 и дополнительного условия A5
усреднённая задача для (1.0.4) имеет вид (1.0.18), (1.0.19). Теперь усред-
нённая задача зависит от выбора многообразия S, на котором возникает
граничное условие, которое уместно трактовать как нелинейное дельта–
взаимодействие. Коэффициент в этом условии определяется геометрией
и распределением полостей. А именно, функция αε зависит от распре-
деления проекций точек M ε

k,⊥ на поверхности S и от площадей границ
полостей ∂ωk,ε. При малых ε эта функция должна оказываться близкой
к некоторой функции α0 в смысле нормы ‖ · ‖S, то есть, условие A5 утвер-
ждает возможность усреднения функции αε в смысле нормы ‖ · ‖S, и это
налагает определенные ограничения на степень непериодичности распре-
деления точек M ε

k и произвол в выборе полостей ωk,ε. При этом следует
подчеркнуть, что форма полостей оказывается неважной, а роль игра-
ют лишь площади их границ, так как именно они входят в определение
функции αε.

Теорема 1.0.2 утверждает сходимость решения задачи (1.0.4) к реше-
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нию задачи (1.0.17) в W 1
2 равномерно по правой части уравнения. Тео-

рема 1.0.3 утверждает аналогичную сходимость решения задачи (1.0.4)
к решению задачи (1.0.18), (1.0.19). Помимо сходимости, теоремы 1.0.2 и
1.0.3 дают оценки скорости сходимости, см. неравенства (1.0.21), (1.0.22),
(1.0.23).

Вторая часть результатов посвящена построению асимптотического
разложения решения задачи (1.0.4). Для возможности построения асимп-
тотики приходится налагать дополнительные ограничения на полости,
а именно, теперь полости образуют периодическое множество, располо-
женное вдоль гиперплоскости xn = 0. Сами полости задаём как сжатие
в ε−1η−1 раз некоторых фиксированных ограниченных множеств. Также
требуем, чтобы функции f и a были бесконечно дифференцируемыми и
предполагаем, что функция a не зависит от x. Выполнение этих условий
позволяет нам построить полное асимптотическое разложение решения
задачи (1.0.4). Решение строится методом согласования асимптотических
разложений в виде комбинации внешнего разложения с коэффициентами
um и внутреннего разложения с коэффициентами vm.

Асимптотика (1.0.38) является двупараметрической и зависит от двух
параметров ε и η. Структура асимптотики степенная, коэффициенты за-
висят от η как от параметра. Оставаясь ограниченными для конечных η,
они имеют особенности при η → +0, несмотря на которые, ряд (1.0.38)
сохраняет свойство асимптотичности благодаря условию (1.0.8).

При выполнении условия (1.0.20) предельной оказывается уже задача
(1.0.18), (1.0.19), и асимпотика решения задачи (1.0.4) теперь имеет вид
(1.0.44). Эта асимптотика внешне похожа на асимптотику (1.0.38) для
случая усредненной задачи Дирихле, однако на самом деле она качествен-
но отличается. Основное отличие состоит в зависимости коэффициентов
от параметра η — данная зависимость теперь бесконечно дифференци-
руемая. Это утверждение доказано как для коэффициентов внешнего
разложения, так и для коэффициентов внутреннего разложения. При-
чем последние заданы в модельной области с полостью, зависящей от



32

η, и уточняется, что понимается по бесконечной дифференцируемости в
окрестности такой полости.

Результаты диссертации опубликованы в статьях [12], [13], [14], [15],
[31]. В статье [12] Борисову Д.И. принадлежит постановка задачи и утвер-
ждение в основных теоремах о точности по порядку доказанных опера-
торных оценок. Диссертанту принадлежат результаты об операторных
W 1

2 –оценках. В статье [13] Борисову Д.И. принадлежит постановка за-
дачи и доказательство вспомогательных лемм 3.1, 4.4. Остальная часть
результатов работы [13] принадлежит диссертанту. В статье [14] Борисову
Д.И. принадлежит постановка задачи и доказательство вспомогательной
леммы 7.4. Остальная часть результатов работы [14] принадлежит дис-
сертанту. В статье [15] Д.И. Борисову принадлежит постановка задачи
и доказательство L2–операторных оценок. Остальная часть результатов
работы [15] принадлежит диссертанту. Из результатов совместных ра-
бот в диссертацию автором включены только результаты, полученные
им лично.

В следующих главах приводится основное содержание диссертации и
доказательство основных результатов. В каждой из глав вводятся и ис-
пользуются свои обозначения, которые, как правило, имеют силу лишь в
рамках главы. В диссертации допускается использование одного и того
же символа для обозначения разных объектов в разных главах.



Глава 2

Сходимость в случае усредненного
краевого условия Дирихле

2.1 Существование и оценка следов на ∂θεR

Настоящий параграф посвящён изучению свойств следов функций из
W 1

2 (Ωε) на множестве ∂θεR. Наша основная цель — доказать, что усло-
вия A1, A2, A3 обеспечивают существование такого следа в пространстве
L2(θ

ε
R), а также оценить норму такого следа равномерно по ε и η.

Первая лемма — один из ключевых шагов как при дальнейшей оценке
следов, так и в доказательстве теоремы 1.0.1 в следующем параграфе.
Она была доказана в статье [55], см. лемму 3.2 в этой работе.

Лемма 2.1.1. Пусть выполнено условие A2. Тогда для всех функций
u ∈ W̊ 1

2 (Bb∗R2
(0) \ ωk,η, ∂Bb∗R2

(0)) верны оценки:

‖u‖L2(Bb∗R2
(0)\ωk,η) 6 C‖∇u‖L2(Bb∗R2

(0)\ωk,η)

где C — некоторая фиксированная константа, не зависящая от u, k, η
и формы полостей ωk,η.

Пусть χ1 = χ1(t) — бесконечно дифференцируемая срезающая функ-
ция, равная единице при t < 1 и нулю при t > 2. Следующие два вспо-
могательных утверждения выглядят следующим образом.

33
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Лемма 2.1.2. При выполнении условий A2, A3 для всех k ∈ Mε
R и всех

u ∈ W̊ 1
2

(
Bb∗R2

(0) \ ωk,η, ∂Bb∗R2
(0)
)
справедлива оценка

‖u‖2
L2(∂ωk,η) 6 C‖∇u‖2

L2(Bb∗R2
(0)\ωk,η),

где C — положительная константа, не зависящая от параметров k,
ε, η и функции u.

Доказательство. Пусть k ∈ Mε
R и u ∈ W̊ 1

2

(
Bb∗R2

(0) \ ωk,η, ∂Bb∗R2
(0)
)
.

Тогда в силу условия A3 функция χ1

(
3ρ
ρ0

)
u(x) определена корректно,

обращается в нуль вне области {x : 0 6 ρ < ρ0} ∪ ωk,η, и выполнено
равенство

|u(x)|2
∣∣
∂ωk,η

=

0∫
ρ0

∂

∂ρ
χ1

(
3ρ

ρ0

)
|u(x)|2 dρ.

Интегрируя последнее соотношение по границе области ωk,η и применяя
неравенство Коши–Буняковского, получаем оценку для нормы следа

‖u‖2
L2(∂ωk,η) 6 C‖u‖2

W 1
2 (Bb∗R2

(0)\ωk,η),

где константа C не зависит от k, u, η и ε. Утверждение леммы теперь
вытекает из последней оценки и леммы 2.1.1. Лемма доказана.

Обозначим: b† := (3b+ 1)/4.

Лемма 2.1.3. При выполнении условий A2, A3 для всех k ∈ Mε
R и всех

u ∈ W 1
2

(
BbR2ε(M

ε
k) \ ωεk

)
справедлива оценка

‖u‖2
L2(∂ωεk) 6 C

(
εη‖∇u‖2

L2(BbR2ε
(Mε

k)\ωεk)

+ ε−1ηn−1‖u‖2
L2(BbR2ε

(Mε
k)\Bb†R2ε

(Mε
k))

)
,

(2.1.1)

где C — положительная константа, не зависящая от параметров k,
ε, η и функции u.

Доказательство. Пусть k ∈ Mε
R и u ∈ W̊ 1

2

(
BbR2ε(M

ε
k) \ ωεk, ∂BbR2ε(M

ε
k)
)
.

Всюду в доказательстве через C обозначаем различные несущественные
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константы, не зависящие от ε, η, k, u и всех рассматриваемых простран-
ственных переменных. Обозначим:

ũ(y) := u(M ε
k + εηy)χ1

(
2|y|+ (b− 3)R2

(b− 1)R2

)
.

Эта функция принадлежит пространству W̊ 1
2 (Bb∗R2

(0) \ ωk,η, ∂Bb∗R2
(0)),

причём ũ(y) = u(M ε
k + εηy) на ∂ωk,η. Поэтому в силу леммы 2.1.2 верна

оценка

‖u‖2
L2(∂ωεk) =(εη)n−1‖ũ‖2

L2(∂ωk,η) 6 C(εη)n−1‖∇yũ‖2
L2(Bb∗R2

(0)\ωk,η)

6C
(
εη‖∇u‖2

L2(Bb∗R2εη
(Mε

k)\ωεk)

+ (εη)−1‖u‖2
L2(Bb∗R2εη

(Mε
k)\BR2εη

(Mε
k))

)
.

(2.1.2)

При R2εη 6 |x−M ε
k | 6 b∗R2εη выполнено равенство

u(x) =

|x−Mε
k |∫

bR2ε

∂

∂t
u(x)χ1(y) dt, y :=

4t− 2(b+ 1)R2ε

(b− 1)R2ε
,

где t — радиус в полярных координатах с центром в точке M ε
k , соответ-

ствующих x. Отсюда в силу неравенства Коши–Буняковского вытекает

|u(x)|2 6
bR2ε∫

|x−Mε
k |

dt

tn−1

R2ε∫
R2εη

|∇u|2tn−1 dt

+ Cε−2

bR2ε∫
b†R2ε

(χ′1(y))2

tn−1
dt

bR2ε∫
b†R2ε

|u(x)|2tn−1 dt

6C

(εη)−n+2

bR2ε∫
R2εη

|∇u|2tn−1 dt+ ε−n
bR2ε∫

b†R2ε

|u(x)|2tn−1 dt

 .

Интегрируя полученную оценку по Bb∗R2εη(M
ε
k) \BR2εη(M

ε
k), выводим

‖u‖2
L2(Bb∗R2εη

(Mε
k)\BR2εη

(Mε
k)) 6 C

(
ε2η2‖∇u‖2

L2(BbR2ε
(Mε

k)\BR2ε
(Mε

k))
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+ ηn‖u‖2
L2(BbR2ε

(Mε
k)\Bb†R2ε

(Mε
k))

)
.

Подставляя эту оценку в (2.1.2), приходим к утверждению леммы. Лемма
доказана.

Доказанные леммы позволяют установить существование следа на ∂θεR
и оценить его норму.

Лемма 2.1.4. При выполнении условий A1, A2, A3 для любой функции
u ∈ W̊ 1

2 (Ωε, ∂θεD) верна оценка

‖u‖2
L2(∂θεR) 6 (Cεη + δηn−1)‖∇u‖2

L2(Ωε) + C(δ)ηn−1‖u‖2
L2(Ωε),

где δ > 0 — произвольная константа, а константы C и C(δ) не зависят
от параметров ε, η, функции u, а также от формы и расположения
полостей ωεk, k ∈ Mε.

Доказательство. Всюду в доказательстве через C обозначаем различ-
ные несущественные константы, не зависящие от k ∈ Mε

R, ε, η, u, про-
странственных переменных и формы полостей ωεk.

Пусть u ∈ W̊ 1
2 (Ωε, ∂θεD). Продолжим её нулём внутрь полостей θεD и

сохраним для продолжения прежнее обозначение. Такое продолжение не
изменяет различные нормы этой функции, которые будут использованы
далее в доказательстве.

Для |τ | 6 τ0 верно

|u(x)|2 =

τ∫
τ0

∂

∂τ
|u(x)|2χ1

(
3τ

τ0

)
dτ, ±τ > 0,

при условии, что путь интегрирования в указанном интеграле не пересе-
кает полости из множества θεR. В силу условия A1 и неравенства Коши–
Буняковского при том же условии отсутствия пересечения из приведён-
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ных равенств следует

|u(x)|2 =

τ0∫
τ

χ1

(
3τ

τ0

)
∂

∂τ
|∇u(x)|2 dτ +

2τ0
3∫

τ0
3

3

τ0
χ′1

(
3τ

τ0

)
|u(x)|2 dτ

6

τ0∫
τ

∣∣∣∣χ1

(
3τ

τ0

)∣∣∣∣ (δ|∇u(x)|2 + C(δ)|u(x)|2
)
dτ

+

2τ0
3∫

τ0
3

3

τ0

∣∣∣∣χ′1(3τ

τ0

)∣∣∣∣ |u(x)|2 dτ, ±τ > 0,

(2.1.3)

где δ > 0 — произвольная константа, C(δ) — некоторая константа, не
зависящая от переменных x и функции u.

Обозначим через Γεk множества точек x, отстоящих от поверхности S
на расстояние, не превосходящее τ0, таких что перпендикуляр, опущен-
ный из x на S, пересекает шар Bb∗R2ε(M

ε
k). В силу условия A1 множества

Γεk попарно не пересекаются. Проинтегрируем теперь оценки (2.1.3) по
областям

Bb∗R2ε(M
ε
k) \BR2ε(M

ε
k) ∩ {x : ±τ > 0},

тогда получим

‖u‖2
L2(Bb∗R2ε

(Mε
k)\BR2ε

(Mε
k)) 6 ε

(
δ‖∇u‖2

L2(Γεk) + C(δ)‖u‖2
L2(Γεk)

)
,

где δ > 0 — произвольная константа, C(δ) — некоторая константа, не за-
висящая от переменных x и функции u. Подставим полученную оценку в
(2.1.1) и просуммируем результат по k ∈ Mε

R. Это приводит к утвержде-
нию леммы. Лемма доказана.

Лемма 2.1.5. Для произвольной функции u ∈ W̊ 1
2 (Ω, ∂Ω) функция a(x, u(x))

имеет след на θεR, который является элементом L2(∂θ
ε
R).

Доказательство. Так как u ∈ W 1
2 (Ω), то существует последовательность

функций un ∈ C∞(Ω), n = 1, 2, 3 . . ., сходящаяся в норме W 1
2 (Ω) к функ-
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ции u. Верна оценка

‖un − um‖L2(S) 6 C‖un − um‖W 1
2 (Ω), (2.1.4)

где константа C не зависит от n и m. Из условия (1.0.3) следуют нера-
венства

|a(x, un)| 6 C|un|, |a(x, un)− a(x, um)|2 6 C|un − um|2, (2.1.5)

где константа C не зависит от n и m. Так как функция un является ин-
тегрируемой на S, то из первого неравенства в (2.1.5) и кусочной непре-
рывности a(x, u)) следует, что функция a(x, un(x)) также является инте-
грируемой и принадлежит L2(S). Интегрируя вторую оценку в (2.1.5) по
S и учитывая неравенство (2.1.4), получим

‖a( · , un)− a( · , um)‖2
L2(S) 6 C‖un − um‖2

W 1
2 (Ω),

где константа C не зависит от n и m. Правая часть последнего неравен-
ства стремится к нулю. Это означает, что последовательность a(x, un(x))

является фундаментальной в L2(S). Так как пространство L2(S) полное,
то последовательность a(x, un(x)) сходится в L2(S) к некоторому преде-
лу. Стандартным образом, см. §5 п.1 в [30], показывается, что этот предел
не зависит от выбора последовательности un и именно этот предел и на-
зывается следом функции a(x, u(x)) на S. Лемма доказана.

2.2 Вспомогательные локальные оценки

В настоящем параграфе мы доказываем серию локальных оценок L2–
норм функций в окрестности поверхности S. Данные оценки далее будут
использованы в доказательствах теорем 1.0.1, 1.0.4.

Первое вспомогательное утверждение доказывается аналогично лем-
ме 4.1 в [54].

Лемма 2.2.1. При выполнении условия A1 для любой функции u ∈
W 2

2 (Ω) и |τ | 6 τ0
3 верны оценки

|u|2 6 Cτ 2‖u‖2
W 2

2 (− τ02 ,
τ0
2 ), |∇u|2 6 C‖∇u‖2

W 1
2 (− τ02 ,

τ0
2 ).
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Следующая лемма описывает свойства покрытия слоя Ξε шарами с
центрами в точках M ε

k , k ∈ Mε
D.

Лемма 2.2.2. При выполнении условий A2, A4 для каждой точки x

из Ξε число шаров BR5ε(M
ε
k), R5 := R3 + (b + 1)R2, содержащих эту

точку, не превосходит некоторой абсолютной величины, не зависящей
от выбора точки x и параметра ε.

Доказательство. Для произвольной точки x ∈ Ξε число шаровBR5ε(M
ε
k),

содержащих эту точку, очевидно равно числу точек M ε
k , k ∈ Mε

D, отсто-
ящих от x на расстояние, не превосходящее R5ε. Это число оценивает-
ся максимальным числом точек M ε

k , k ∈ Mε
D, которые могут распола-

гаться в шаре радиуса 2R5ε. Согласно условию A2, попарные расстояние
между точками M ε

k не меньше 2bR2ε. Поэтому сопоставляя каждой та-
кой точке n–мерный куб со стороной 2bR2ε, немедленно заключаем, что
шар радиуса 2R3ε может содержать не более, чем |B2R5ε(0)|/(2bR2ε)

n =

|B2R5
(0)|/(2bR2)

n таких кубов, и соответственно, точекM ε
k , k ∈ Mε

D. Ука-
занное отношение n–мерных объемов очевидно не зависит от ε и выбора
точки x. Лемма доказана.

Далее наша основная цель — для произвольной функции u из про-
странстваW 1

2 (Ωε), обращающейся в нуль на θεD, оценить её норму в L2(Ξ
ε\

θε) через норму её градиента в L2(Ω
ε).

Лемма 2.2.3. При выполнении условий A1, A2, A4 для любой функции
u ∈ W̊ 1

2 (Ωε, ∂Ω ∪ θεD) верна оценка

‖u‖2
L2(Ξε\θε) 6 Cε

2η−n+2‖∇u‖2
L2(Ωε),

где константа С не зависит от функции u, параметров ε и η, формы
и расположения полостей ωεk, k ∈ Mε.

Доказательство. Всюду в доказательстве через C обозначаем различ-
ные несущественные константы, не зависящие от u, ε, η, формы и рас-
положения полостей ωεk. Функцию u доопределим нулём внутри полостей
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θεD. Через Mε
k обозначим множество индексов j ∈ Mε

R таких, что

BR3ε(M
ε
k) ∩BR2

(M ε
j ) 6= ∅.

В работе [55, §3.2] было показано, что при выполнении условий A1 и A2
функцию u можно продолжить внутрь полостей θεR, причем верны оценки

‖u‖2
L2(ωk,ε)

6 C‖u‖2
L2(BR3εη

(Mε
k)\ωk,ε),

‖∇u‖2
L2(ωk,ε)

6 C‖∇u‖2
L2(BR3εη

(Mε
k)\ωk,ε),

(2.2.1)

где C — некоторая константа, не зависящая от u, ε, η и k.
Из условия A4 следует, что BR3ε(Mk), k ∈ Mε

D, покрывают слой Ξε. В
силу леммы 2.2.2 каждая точка слоя Ξε попадает лишь в конечное число
множеств BR3ε(Mk), и это число ограничено некоторой абсолютной кон-
стантой равномерно по ε, η и точкам слоя. Ещё отметим, что растяжение
введённых множеств в ε−1 раз относительно точек M ε

k даёт множества
BR3

(0). Тогда с помощью замены переменной, соответствующей такому
растяжению, получим оценку

‖u‖2
L2(BR3εη

(Mk)) 6 Cε
2η−n+2‖∇v‖2

L2(BR3εη
(Mk)).

Cуммируя полученные неравенства по всем k ∈ Mε
D и учитывая упомяну-

тые выше свойства покрытия слоя Ξε множествами BR3εη(Mk), k ∈ Mε
D,

приходим к утверждению леммы. Лемма доказана.

2.3 Сходимость решений

В данном параграфе мы доказываем теорему 1.0.1. Вначале покажем, что
задача (1.0.4) однозначно разрешима.

Лемма 2.3.1. Существует λ0 такое, что при λ < λ0 задача (1.0.4)
имеет единственное решение uε ∈ W 1

2 (Ωε) для всех ε и f ∈ L2(Ω).

Доказательство. На пространстве W̊ 1
2 (Ωε, ∂Ω ∪ ∂θεD) введём оператор,

действующий по следующему правилу: каждой функции u ∈ W̊ 1
2 (Ωε, ∂Ω∪
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∂θεD) ставится в соответствие линейный непрерывный функционал, задан-
ный наW 1

2 (Ωε) и действующий по правилу v 7→ ha(u, v), v ∈ W̊ 1
2 (Ωε, ∂Ω∪

∂θεD), где, напомним, форма ha(u, v) была определена в (1.0.7) при введе-
нии понятия обобщённого решения задачи (1.0.4).

В силу [27, Гл. 2, §2.1, Теор. 2.1; §2.2, Теор. 2.2] для однозначной раз-
решимости задачи (1.0.4) достаточно проверить выполнение условий

1. Для любых u, v, w ∈ W̊ 1
2 (Ωε, ∂Ω ∪ ∂θεD) функция λ 7→ ha(u + λv, w)

непрерывна;

2. Для любых u, v ∈ W̊ 1
2 (Ωε, ∂Ω ∪ ∂θεD) выполнено ha(u− v, u− v) > 0.

Проверим выполнение условия 1. Верно равенство

ha(u+ λv, w) = h0(u,w) + h0(λv, w) + (a(·, u+ λv), w)L2(∂θεR).

Так как в этом равенстве первые два слагаемых являются линейными
функциями, то они непрерывны по λ. Из неравенства Коши–Буняковского
и условия (1.0.3) для произвольных вещественных λ1 и λ2 вытекает

|(a(·, u+ λ1v), w)L2(∂θεR) − (a(·, u+ λ2v), w)L2(∂θεR)|
6 a0|λ1 − λ2|‖v‖L2(∂θεR)‖w‖L2(∂θεR).

Из последнего неравенства следует непрерывность (a(·, u+ λv), w)L2(∂θεR)

по λ, что доказывает условие 1.
Проверим справедливость условия 2. Поскольку скалярное произведе-

ние (a(·, u), u)L2(∂θεR) является вещественным для всех u ∈ L2(∂θ
ε
R), форма

ha(u−v, u−v) также является вещественной. В силу свойства (1.0.3) вы-
полнено неравенство

ha(u− v, u− v) > h0(u− v, u− v)− a0

∫
∂θεR

|u− v|2 ds.

Интеграл в правой части полученного неравенства оценим с помощью
леммы 2.1.4, а слагаемые в форме h0 — с помощью неравенства Коши–
Буняковского. Тогда с учётом ограниченности η для достаточно малых ε
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получим

ha(u− v, u− v) >(C0 − C1ε− δ)‖∇(u− v)‖2
L2(Ωε)

− (λ+ C2(δ))‖u− v‖2
L2(Ωε),

(2.3.1)

где δ > 0 — произвольная константа, C0, C1, C2(δ) — некоторые кон-
станты, не зависящие от параметров ε, η, λ и функций u, v. Выберем
числа ε и δ столь малыми, а число λ достаточно большим по модулю и
отрицательным по знаку так, чтобы имели место неравенства

C0 − C1ε− δ > 0, λ+ C2 < 0.

Условие 2 теперь следует из последних двух неравенств и оценки (2.3.1).
Лемма доказана.

Введем функцию

χε1(x) =

χ1

(
|τ |
R3ε

)
при |τ | < τ0,

0 вне {x : |τ | < τ0}.

Обозначим vε = uε − (1− χε1)u0. Функция vε обращается в нуль на ∂θεD и
принадлежит пространству W̊ 1

2 (Ωε, ∂Ω ∪ ∂θεD). Отметим ещё, что в силу
определения срезки χε1 выполнено равенство

vε = uε на ∂θε. (2.3.2)

Запишем интегральное тождество для краевой задачи (1.0.4), взяв vε
в качестве пробной функции

n∑
i,j=1

(
Aij

∂uε
∂xj

,
∂vε
∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aj
∂uε
∂xj

, vε

)
L2(Ωε)

+
n∑
j=1

(
uε, Aj

∂vε
∂xj

)
L2(Ωε)

+ (A0uε, vε)L2(Ωε)

− λ(uε, vε)L2(Ωε) + (a(·, uε), vε)L2(∂θεR) = (f, vε)L2(Ωε).

(2.3.3)
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В силу равенства (2.3.2), граничный член в левой части полученного ра-
венства можно переписать следующим образом:

(a(·, uε), vε)L2(∂θεR) = (a(·, vε), vε)L2(∂θεR). (2.3.4)

Функцию (1−χε1)vε доопределим нулём внутри множества θε; ясно, что
полученная функция есть элемент пространства W̊ 1

2 (Ω, ∂Ω∪S). Возьмём
её в качестве пробной функции в интегральном тождестве для задачи
(1.0.9):

n∑
i,j=1

(
Aij

∂u0

∂xj
,
∂(1− χε1)vε

∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aj
∂u0

∂xj
, (1− χε1)vε

)
L2(Ωε)

+
n∑
j=1

(
u0, Aj

∂(1− χε1)vε
∂xj

)
L2(Ωε)

+ (A0u0, (1− χε1)vε)L2(Ωε)

− λ(u0, (1− χε1)vε)L2(Ωε) = (f, (1− χε1)vε)L2(Ωε).

Последнее равенство перепишем в виде
n∑

i,j=1

(
Aij

∂(1− χε1)u0

∂xj
,
∂vε
∂xi

)
L2(Ω)

+
n∑
j=1

(
Aj
∂(1− χε1)u0

∂xj
, vε

)
L2(Ω)

+
n∑
j=1

(
(1− χε1)u0, Aj

∂vε
∂xj

)
L2(Ω)

+ (A0u0(1− χε1), vε)L2(Ω)

+ λ(u0(1− χε1), vε)L2(Ω) = (f(1− χε1), vε)L2(Ω) −Kε,

(2.3.5)

где обозначено

Kε :=−
n∑

i,j=1

(
Aij

∂u0

∂xj

∂χε1
∂xi

, vε

)
L2(Ωε)

+
n∑

i,j=1

(
Aiju0

∂χε1
∂xj

,
∂vε
∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aju0

∂χε1
∂xj

, vε

)
L2(Ωε)

−
n∑
j=1

(
u0
∂χε1
∂xj

, Ajvε

)
L2(Ωε)

.

Вычислим разность (2.3.3) и (2.3.5) и учтём равенство (2.3.4). Тогда по-
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лучим
n∑

i,j=1

(
Aij

∂vε
∂xj

,
∂vε
∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aj
∂vε
∂xj

, vε

)
L2(Ωε)

+
n∑
j=1

(
vε, Aj

∂vε
∂xj

)
L2(Ωε)

+ (A0vε, vε)L2(Ωε)

+ (a(·, vε), vε)L2(∂θεR) + λ(vε, vε)L2(Ωε) = (χε1f, vε)L2(Ωε) +Kε.

(2.3.6)

Из оценки (2.3.1) с u = vε, v = 0 немедленно следует, что
n∑

i,j=1

(
Aij

∂vε
∂xj

,
∂vε
∂xi

)
L2(Ωε)

+
n∑
j=1

(
Aj
∂vε
∂xj

, vε

)
L2(Ωε)

+
n∑
j=1

(
vε, Aj

∂vε
∂xj

)
L2(Ωε)

+ (A0vε, vε)L2(Ωε)

+ (a(·, vε), vε)L2(∂θεR) + λ(vε, vε)L2(Ωε) > C‖vε‖2
W 1

2 (Ωε),

(2.3.7)

где константа C не зависит от vε.
Оценим теперь правую часть равенства (2.3.6). Начнем с первого сла-

гаемого. Согласно лемме 2.2.3 верно

|(χε1f, vε)L2(Ωε)| 6 C
ε

η
n−2
2

‖f‖L2(Ω)‖vε‖W 1
2 (Ωε). (2.3.8)

Задача (1.0.9) однозначно разрешима в W̊ 1
2 (Ω, ∂Ω∪S) для произволь-

ной правой части f уравнения, причем данное уравнение линейно. По-
этому верна оценка

‖u0‖W 1
2 (Ω) 6 C‖f‖L2(Ω),

где константа C не зависит от f . Используя теперь стандартные теоремы
о повышении гладкости решений эллиптических краевых задач, получа-
ем оценку

‖u0‖W 2
2 (Ω) 6 C‖f‖L2(Ω), (2.3.9)
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где константа C не зависит от f . Используя леммы 2.2.1, 2.2.3 и неравен-
ство (2.3.9), оценим первое слагаемое в Kε:∣∣∣∣∣∣

n∑
i,j=1

(
Aij

∂u0

∂xj

∂χε1
∂xj

, vε

)
L2(Ωε)

∣∣∣∣∣∣ 6 C ε
1
2

η
n−2
2

‖f‖L2(Ω)‖vε‖W 1
2 (Ωε). (2.3.10)

Аналогично выводим∣∣∣∣∣∣
n∑

i,j=1

(
Aiju0

∂χε1
∂xi

,
∂vε
∂xj

)
L2(Ωε)

∣∣∣∣∣∣ 6 Cε 1
2‖f‖L2(Ω)‖vε‖W 1

2 (Ωε), (2.3.11)∣∣∣∣∣∣
n∑
j=1

(
Aju0

∂χε1
∂xj

, vε

)
L2(Ωε)

−
n∑
j=1

(
u0
∂χε1
∂xj

, Ajvε

)
L2(Ωε)

∣∣∣∣∣∣
6 C

ε
3
2

η
n−2
2

‖f‖L2(Ω)‖vε‖W 1
2 (Ωε).

(2.3.12)

Из неравенств (2.3.7), (2.3.8), (2.3.10), (2.3.11) и (2.3.12) вытекает оценка

‖vε‖W 1
2 (Ωε) 6 C

(
ε

ηn−2

) 1
2

‖f‖L2(Ω). (2.3.13)

Из равенств

uε − u0 = uε − (1− χε1)u0 + u0χ
ε
1 = vε + u0χ

ε
1

следует, что

‖uε − u0‖W 1
2 (Ωε) 6 ‖vε‖L2(Ωε) + ‖u0χ

ε
1‖L2(Ωε).

Используя лемму 2.2.1 и неравенство (2.3.9), выводим оценку

‖u0χ
ε
1‖L2(Ωε) 6 Cε

3
2‖f‖L2(Ω). (2.3.14)

Аналогично оценим норму функции ∇(u0χ
ε
1):

‖∇u0χ
ε
1‖L2(Ωε) 6 C(‖∇u0‖L2(Ωε) + ε−1‖u0‖L2(Ωε)) 6 Cε

1
2‖f‖L2(Ω). (2.3.15)

Из неравенств (2.3.13), (2.3.14) и (2.3.15) вытекает оценка (1.0.10). Теоре-
ма 1.0.1 доказана.



Глава 3

Сходимость в случае усредненного
третьего нелинейного краевого
условия

3.1 Примеры перфораций

В настоящем параграфе мы обсуждаем норму ‖ · ‖S, определенную в
(1.0.16), условие A5 и примеры выбора форм и распределений полостей
ωk,ε, которые обеспечивают выполнение данного условия.

3.1.1 Корректная определённость нормы ‖ · ‖S

В настоящем разделе мы доказываем, что соотношение (1.0.16) корректно
определяет норму ‖ · ‖S.

Лемма 3.1.1. Формула (1.0.16) определяет норму в пространстве L∞(S).
Для произвольной функции Φ ∈ W

1
2

2 (S) верны равенство и оценки

(αΦ, UN
αΦ)L2(S) = ‖UN

αΦ‖2
W 1

2 ($), (3.1.1)

‖α‖S 6 C‖α‖L∞(S),
∣∣(αu, v)L2(S)

∣∣ 6 ‖α‖S‖u‖W 1
2 ($)‖v‖W 1

2 ($), (3.1.2)

где u, v — произвольные функции из W 1
2 ($), а C — некоторая констан-

та, не зависящая от α.

Доказательство. Для проверки равенства (3.1.1) достаточно выписать

46
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определение обобщенного решения задачи (1.0.14) для функции UN
αΦ, взяв

её в качестве пробной.
Докажем, что правая часть в (1.0.16) определена корректно и явля-

ется нормой. Из равенства (3.1.1) и стандартных теорем об оценке следа
функции следует, что

‖UN
αΦ‖2

W 1
2 ($) 6‖αΦ‖L2(S)‖UN

αΦ‖L2(S) 6 C‖α‖L∞(S)‖Φ‖L2(S)‖UN
αΦ‖W 1

2 ($)

6C‖α‖L∞(S)‖UD
Φ ‖W 1

2 ($)‖UN
αΦ‖W 1

2 ($),

где C — некоторые константы, не зависящие от Φ, α, UD
Φ , UN

αΦ. Из полу-
ченной оценки вытекает, что отношение в правой части (1.0.16) ограни-
чено величиной C‖α‖2

L∞(S), и потому супремум в (1.0.16) конечен. Кроме
того, верна первая оценка в (3.1.2).

Очевидно, что ‖α‖S = 0, если и только если α = 0. Однородность нор-
мы и неравенство треугольника легко выводятся из очевидных равенств
UN
CαΦ = CUN

αΦ и UN
(α1+α2)Φ = UN

α1Φ + UN
α2Φ. Поэтому формула (1.0.16) дей-

ствительно определяет норму.
Докажем теперь вторую оценку в (3.1.2). Пусть UD

v — решение за-
дачи (1.0.15), где в качестве правой части краевого условия на S взят
след функции v на S. Тогда из определения обобщенного решения зада-
чи (1.0.15) следует, что

(UD
v , U

D
v − v)W 1

2 ($) = 0, ‖UD
v ‖2

W 1
2 ($) = (UD

v , v)W 1
2 ($).

Используя эти равенства, выводим

0 6 ‖v − UD
v ‖2

W 1
2 ($) = (v, v − UD

v )W 1
2 ($),

а потому
‖v‖2

W 1
2 ($) > (v, UD

v )W 1
2 ($) = ‖UD

v ‖2
W 1

2 ($). (3.1.3)

Из определения обобщённого решения задачи (1.0.14) с пробной функ-
цией UD

v следует равенство (αu, v)L2(S) = (UN
αu, U

D
v )W 1

2 ($). Поэтому в силу
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неравенства Коши–Буняковского, оценки (3.1.3) и определения нормы
‖α‖S получаем∣∣(αu, v)L2(S)

∣∣
‖v‖W 1

2 ($)‖u‖W 1
2 ($)

6

∣∣(UN
αu, U

D
v )W 1

2 ($)

∣∣
‖UD

v ‖W 1
2 ($)‖u‖W 1

2 ($)

6
‖UN

αu‖W 1
2 ($)

‖u‖W 1
2 ($)

6 ‖α‖S.

Отсюда уже вытекает вторая оценка в (3.1.2). Лемма доказана.

Подчеркнём, что данная лемма не утверждает, что пространство L∞(S)

полное относительно нормы ‖ · ‖S.
Пусть χ2 = χ2(t), t ∈ R — бесконечно дифференцируемая срезающая

функция, равная единице при |t| < 1 и нулю при |t| > 2.

Лемма 3.1.2. Пусть выполнено условие A3. Тогда площади |∂ωk,ε| огра-
ничены равномерно по ε и k.

Доказательство. Фиксируем произвольно k ∈ Mε. В силу условия A3 и
определения срезки χ2 функция χ2(4ρρ

−1
0 ) обращается в нуль при ρ >

ρ0/2, непрерывно дифференцируема и ограничена вместе со своими пер-
выми производными равномерно по x, k и ε. Учитывая эти факты и
очевидное равенство

|∂ωk,ε| =
∫

∂ωk,ε

dς =

∫
∂ωk,ε

dς

0∫
ρ0

∂

∂ρ
χ2(4ρρ

−1
0 ) dρ,

в силу условия A3 легко выводим равномерную ограниченность площадей
|∂ωk,ε|. Лемма доказана.

Лемма 3.1.3. Пусть условие A5 выполнено для некоторой перфорации,
удовлетворяющей условиям A1, A2, A3. Тогда для любой другой пер-
форации, удовлетворяющей тем же условиям и описываемой точками
M̃ ε

k , k ∈ Mε, и полостями ω̃k,ε, k ∈ Mε, такими, что выполнена равно-
мерная по k и ε оценка

ε−1
∣∣M̃ ε

k −M ε
k

∣∣+
∣∣|∂ωk,ε| − |∂ω̃k,ε|∣∣ 6 µ(ε),
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где µ(ε) — некоторая функция, бесконечно малая при ε → +0, усло-
вие A5 выполнено с той же функцией α0 и с заменой κ(ε) на κ(ε) +

Cµ(ε)ηn−1(ε), где C — некоторая константа, не зависящая от ε.

Доказательство. Пусть α̃ε — это функция, построенная по формуле (1.0.13)
для перфорации, описываемой точками M̃ ε

k и полостями ω̃k,ε. В силу лем-
мы Адамара выполнена оценка∣∣∣∣∣ζ

(
|x−M ε

k,⊥|
εR2

)
− ζ

(
|x− M̃ ε

k,⊥|
εR2

)∣∣∣∣∣ 6 Cε−1|M ε
k − M̃ ε

k |,

где C — некоторая константа, не зависящая от ε и k. Тогда из условия
леммы сразу получаем оценку

‖αε − α̃ε‖L∞(S) 6 Cµ(ε)ηn−1(ε),

где константа C не зависит от ε. Учитывая теперь первую оценку в (3.1.2),
легко выводим неравенство

‖α̃ε − α0‖S 6 κ(ε) + Cµ(ε)ηn−1(ε),

которое завершает доказательство леммы.

Последняя лемма существенно расширяет класс перфораций, для ко-
торых выполнено условие A5. А именно, если это условие выполнено для
какой–то перфорации, определяемой набором точек M ε

k и областей ωεk,
то оно выполнено с той же самой функцией α0 для перфораций, полу-
ченных произвольными малыми смещениями точекM ε

k и вариацией пло-
щадей |∂ωk,ε|. Подчеркнём ещё, что форма полостей не играет никакой
роли, а важна лишь площадь поверхности границы полости. Этот факт
предоставляет большой произвол в выборе областей ωk,ε.

3.1.2 Примеры редко распредёленных перфораций

В настоящем разделе мы обсуждаем два достаточно общих примера пер-
фораций, для которых условие A5 гарантированно выполняется с функ-
цией α0 = 0.
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Первый пример является прямым следствием лемм 3.1.1, 3.1.2. А имен-
но, пусть выполнены условия A1, A2, A3. Тогда из определения функции
αε и лемм 3.1.1, 3.1.2 немедленно вытекает равномерная по ε оценка

‖αε‖S 6 C‖αε‖L∞(S) 6 Cη
n−1(ε), (3.1.4)

где C — некоторые константы, не зависящие от ε. Следовательно, если
η(ε) → 0, то для любой перфорации, удовлетворяющей условиям A1,
A2, A3, условие A5 выполняется с α0 = 0. Отметим, что этот результат
частично воспроизводит утверждение теоремы 1.0.2 для случая η(ε)→ 0.

Переходим ко второму примеру. Для этого нам понадобится покрытие
поверхности S. А именно, выберем точки Lp ∈ S, p ∈ P, где P ⊆ N —
некоторое подмножество индексов, и фиксированное число R3 > 0 такие,
что

S ⊂
⋃
p∈P

BR3
(Lp),

6

5
R3 6 inf

p6=j
|Lp − Lj| 6

8

5
R3. (3.1.5)

Ясно, что такое покрытие всегда существует с некоторым R3. Также в
силу неравенства в (3.1.5) очевидно, что каждая точка поверхности S

попадает в конечное число шаров BR3
(Lk), и это число ограничено рав-

номерно по всем точкам поверхности S.
Положим

Nε := sup
p∈P

#
{
k : M ε

k,⊥ ∈ S ∩BR3
(Lp)

}
, (3.1.6)

где символ # обозначает число элементов во множестве. Отметим, что
данную величину можно интерпретировать как плотность распределения
точек M ε

k , так как она характеризует количество проекций M ε
k,⊥ этих

точек на каждом куске S ∩BR3
(Lp) поверхности.

Наш второй пример основан на следующей лемме.

Лемма 3.1.4. Справедлива оценка

‖αε‖S 6 CεNε,

где C — некоторая константа, не зависящая от ε и Nε.
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Доказательство. Произвольно фиксируем точку Lp ∈ S и выберем точ-
ку M ε

k,⊥ ∈ BR3
(Lp) ∩ S. Обозначим:

Sεk :=
{
x ∈ S : |x−M ε

k,⊥| < εR2

}
,

$p :=
{
x ∈ Ω : s ∈ B2R3

(Tp) ∩ S, 0 < τ <
τ0

2

}
.

Пусть u ∈ W 1
2 ($) — произвольная функция. Ключевым шагом в до-

казательстве леммы является проверка оценки

‖u‖L2(Sεk) 6 Cε
1
2‖u‖W 1

2 ($p). (3.1.7)

Здесь и всюду далее в доказательстве символом C обозначаем различные
несущественные константы, не зависящие от выбора функции u, парамет-
ров ε, k, p и пространственных переменных.

Докажем оценку (3.1.7). Функцию u продолжим чётным образом по пе-
ременной τ , а именно, положим u(s, τ) := u(s,−τ). Продолжение очевид-
но оказывается элементом пространства W 1

2 ($+), $+ := {x : |τ | < τ0
2 } и

верна оценка

‖u‖W 1
2 ($+

p ) 6 C‖u‖W 1
2 ($p),

$+
p :=

{
x : s ∈ B2R3

(Tp) ∩ S, |τ | <
τ0

2

}
.

(3.1.8)

Для s ∈ Sεk из очевидного равенства

u(s) =

0∫
2ε

∂

∂τ
u(x)χ2

(τ
ε

)
dτ

и неравенства Коши–Буняковского легко выводим, что

|u(s)|2 6 C
2ε∫

0

(
ε

∣∣∣∣∂u∂τ (x)

∣∣∣∣2 + ε−1|u(x)|2
)
dτ.

Интегрируя эту оценку по Sεk, с учётом условия A1 получаем:

‖u‖2
L2(Sεk) 6 C

(
ε‖∇u‖2

L2($k,ε)
+ ε−1‖u‖2

L2($k,ε)

)
, (3.1.9)
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где $k,ε := {x ∈ Ω : s ∈ Sεk, |τ | < 2ε}. Применяя теперь оценку

‖u‖L2($k,ε) 6 Cε‖u‖W 1
2 ($+

p ),

вытекающую из леммы 2.1 в [12], из (3.1.8), (3.1.9) получаем неравенство
(3.1.7).

Используя теперь оценку (3.1.7) и определение функции αε, из равен-
ства (3.1.1) и свойств покрытия поверхности S шарами B2R3

(Lp) выводим

‖UN
αεΦ‖2

W 1
2 ($) =(αεΦ, UN

αεΦ)L2(S) 6 C
∑
k∈Mε

‖Φ‖L2(Sεk)‖UN
αεΦ‖L2(Sεk)

6Cε
∑
k∈Mε

‖UD
Φ ‖W 1

2 ($p)‖U
N
αεΦ‖W 1

2 ($p),

где для каждого k параметр p выбран из условия M ε
k,⊥ ∈ BR3

(Lp) ∩ S.
С учётом такого выбора p и определения числа Nε в (3.1.6) продолжим
оценки:

‖UN
αεΦ‖2

W 1
2 ($) 6CεNε

∑
p∈P
‖UD

Φ ‖W 1
2 ($p)‖U

N
αεΦ‖W 1

2 ($p)

6CεNε‖UD
Φ ‖W 1

2 ($)‖UN
αεΦ‖W 1

2 ($).

Подставляя эту оценку в (1.0.16), приходим к утверждению леммы.

Из доказанной леммы следует, что если εNε → +0 при ε → +0, то
условие A5 выполнено с α0 = 0. Описанное условие на Nε означает, что
плотность распределения точек M ε

k достаточно мала. Подчеркнём, что
это условие не означает, что расстояния между точками M ε

k много боль-
ше, чем размеры полостей. Такую ситуацию мы описываем с помощью
параметра η(ε), предполагая, что η(ε) → +0 при ε → +0. Лемма 3.1.4
в первую очередь ориентирована на ситуации, когда в окрестности от-
дельных частей поверхности S точки M ε

k расположены друг от друга
на расстояниях того же порядка малости, что и размеры полостей, но
при этом их количество в окрестности кусков S ∩ BR3

(Lp) мало. В каче-
стве примера можно упомянуть ситуацию, когда точкиM ε

k распределены
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небольшими кластерами: точки M ε
k расположены в окрестности кусков

поверхности линейного размера порядка O(ε1−β) с β < 1
d−1 , а сами куски

находятся друг от друга на расстоянии порядка O(1).

3.1.3 Периодические и локально–периодические перфорации

Важным примером перфораций являются периодические и локально–пе-
риодические перфорации. В свете имеющихся классических результатов
о сильной и слабой сходимости решений задач в областях, перфориро-
ванных вдоль многообразий [1], [56], [57], [68], [28], [61], [62], необходимо
гарантировать выполнение основных результатов о равномерной сходи-
мости по крайней мере для периодических перфораций. Этому и посвя-
щён настоящий раздел.

Начнём с леммы, которая далее будет играть ключевую роль в иссле-
довании случаев периодических и локально–периодических перфораций.

Лемма 3.1.5. Пусть существуют вещественная функция α0 ∈ W 1
∞(S)

и комплекснозначная функция Ψε ∈ W 2
∞($) такие, что

‖Ψε‖L∞($) + ‖Ψε‖L∞(S) + ‖∆Ψε‖L∞($) +

∥∥∥∥∂Ψε

∂ν

∥∥∥∥
L∞(∂$\S)

+

∥∥∥∥∂Ψε

∂τ
− αε + α0

∥∥∥∥
L∞(S)

=: µ(ε)→ +0, ε→ +0.

(3.1.10)

Тогда существует константа C, не зависящая от ε такая, что

‖αε − α0‖S 6 Cµ
1
2 (ε). (3.1.11)

Доказательство. Положим α := αε − α0. Через Aα обозначим линей-
ный оператор в W 1

2 ($), отображающий каждую функцию u ∈ W 1
2 ($) в

решение задачи (1.0.14) с правой частью −αΦ, Φ = u
∣∣
S
, в краевом усло-

вии на S. На основе равенства (3.1.1) и второй оценки в (3.1.2) несложно
убедиться, что оператор Aα ограничен, самосопряжён и

(αu, UN
αu)L2(S) = (Aαu,Aαu)W 1

2 ($) = (A2
αu, u)W 1

2 ($). (3.1.12)
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Из этого равенства, формулы (3.1.1), определения (1.0.16) нормы ‖α‖S и
неравенства (3.1.3) следует, что

sup
u∈W 1

2 ($)
u6=0

(A2
αu, u)W 1

2 ($)

‖u‖2
W 1

2 ($)

= sup
u∈W 1

2 ($)
u6=0

(αu, UN
αu)L2(S)

‖u‖2
W 1

2 ($)

= sup
u∈W 1

2 ($)
u6=0

‖UN
αΦ‖2

W 1
2 ($)

‖u‖2
W 1

2 ($)

6 sup

Φ∈W
1
2
2 (S)

Φ 6=0

‖UN
αΦ‖2

W 1
2 ($)

‖UD
Φ ‖2

W 1
2 ($)

= ‖α‖2
S

В этих соотношениях дроби под знаком супремума совпадают при u =

UD
Φ , а потому

sup
u∈W 1

2 ($)
u6=0

(A2
αu, u)W 1

2 ($)

‖u‖2
W 1

2 ($)

= ‖α‖2
S.

Так как оператор A2
α ограничен и самосопряжён, то в силу принципа

минимакса число ‖α‖2
S — это верхняя точка спектра оператора A2

α. Эта
точка может быть точкой существенного спектра либо дискретным соб-
ственным значением. В обоих случаях существует последовательность
функций un ∈ W 1

2 ($), n ∈ N, такая, что

‖un‖W 1
2 ($) = 1, ‖fn‖W 1

2 ($) → 0, n→ +∞, (3.1.13)

где обозначено fn :=
(
A2
α − ‖α‖2

S

)
un. Положим:

vn := Aαun, wn := Aαvn = ‖α‖2
Sun + fn. (3.1.14)

Из определений оператора Aα и обобщённого решения задачи (1.0.14)
вытекает справедливость интегральных тождеств

(vn, ϕ)W 1
2 ($) = (αun, ϕ)L2(S), (wn, ϕ)W 1

2 ($) = (αvn, ϕ)L2(S) (3.1.15)

для всех ϕ ∈ W 1
2 ($). Из первого тождества с ϕ = vn, первого равенства

в (3.1.13) и второй оценки в (3.1.2) элементарно вытекает неравенство

‖vn‖W 1
2 ($) 6 ‖α‖S‖un‖W 1

2 ($) = ‖α‖S. (3.1.16)
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Отметим ещё, что из соотношений (3.1.13) и равенств (3.1.12) легко сле-
дует, что

(Aαun,Aαun)W 1
2 ($) − ‖α‖2

S‖un‖2
W 1

2 ($) = (fn, un)W 1
2 ($),

‖α‖2
S = (αun, vn)L2(S) − (fn, un)W 1

2 ($).
(3.1.17)

Проинтегрируем теперь по частям∫
$

unvn∆Ψε dx = −
∫
S

∂Ψε

∂τ
unvn ds+

∫
∂$\S

∂Ψε

∂ν
unvn ds−

∫
$

∇Ψε ·∇(unvn) dx

и перепишем полученное равенство

(un∆Ψε, vn)L2($) =−
(
∂Ψε

∂τ
un, vn

)
L2(S)

+

(
∂Ψε

∂ν
un, vn

)
L2(∂$\S)

− (un∇Ψε,∇vn)L2($) − (∇un, vn∇Ψε)L2($)

=− (αun, vn)L2(S) −
((

∂Ψε

∂τ
− α

)
un, vn

)
L2(S)

+

(
∂Ψε

∂ν
un, vn

)
L2(∂$\S)

−
(
∇(unΨ

ε),∇vn
)
L2($)

−
(
∇un,∇(vnΨε)

)
L2($)

+ 2(Ψε∇un,∇vn)L2($).

(3.1.18)
Ещё выразим функцию un из определения функции wn в (3.1.14) и вос-
пользуемся интегральным тождеством для функции wn из (3.1.15) с проб-
ной функцией vnΨε:

(∇un,∇(vnΨε))L2($) =(un, vnΨε)W 1
2 ($) − (un, vnΨε)L2($)

=‖α‖−2
S (wn − fn, vnΨε)W 1

2 ($) − (un, vnΨε)L2($)

=‖α‖−2
S (αvn, vnΨε)L2(S) − ‖α‖−2

S (fn, vnΨε)W 1
2 ($)

− (un, vnΨε)L2($).

Используя это равенство, выразим скалярное произведение (αun, vn)L2(S)

из (3.1.18) и воспользуемся затем интегральным тождеством для vn из



56

(3.1.15) с ϕ = unΨ
ε. Это даст формулу для скалярного произведения

(αun, vn)L2(S), подставив которую во второе равенство в (3.1.17), получим

‖α‖2
S =− (un∆Ψε, vn)L2($) +

(
∂Ψε

∂ν
un, vn

)
L2(∂$\S)

+ 2(Ψε∇un,∇vn)L2($) −
((

∂Ψε

∂τ
− α

)
un, vn

)
L2(S)

+ 2(unΨ
ε, vn)L2($) − ‖α‖−2

S (αvn, vnΨε)L2(S)

− (unΨ
ε, αun)L2(S) + ‖α‖−2

S (fn, vnΨε)W 1
2 ($)

− (fn, un)W 1
2 ($).

(3.1.19)

Неравенства (3.1.16), (3.1.2), определение величины µ(ε) из условия лем-
мы, нормировка функций un из (3.1.13) и очевидная оценка

‖u‖L2(S) + ‖u‖L2(∂ω\S) 6 C‖u‖W 1
2 ($), u ∈ W 1

2 ($),

с константой C, не зависящей от u, позволяют оценить левую часть в
(3.1.19). А именно, первые семь слагаемых по модулю оцениваются ве-
личиной Cµ

(
‖α‖S + ‖α‖L∞(S)

)
, а последние два слагаемых оцениваются

через C‖fn‖W 1
2 ($)

(
1+‖α‖−1

S ‖Ψε‖W 1
∞($)

)
. Финальная оценка выглядит так:

‖α‖2
S 6 Cµ(ε)

(
‖α‖S + ‖α‖L∞(S)

)
+ C‖fn‖W 1

2 ($)

(
1 + ‖α‖−1

S ‖Ψ
ε‖W 1

∞($)

)
,

(3.1.20)

где константа C не зависит от ε, n, un, vn, fn, α. Правая часть полу-
ченного неравенства содержит множитель ‖Ψε‖W 1

∞($), в который входит
L∞($)–норма градиента функции Ψε и относительно которого у нас нет
никаких предположений. Вместе с тем, от второго слагаемого в правой
части (3.1.20) легко избавиться предельным переходом при n → +∞ с
учётом сходимости в (3.1.13) и получить более точную оценку

‖α‖2
S 6 Cµ(ε)

(
‖α‖S + ‖α‖L∞(S)

)
. (3.1.21)

Теперь ещё отметим, что функция αε по своему определению (1.0.13)
и лемме 3.1.2 ограничена равномерно по ε в L∞(S)–норме. Используя
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этот факт и решая неравенство (3.1.21) относительно ‖α‖S, приходим к
(3.1.11). Лемма доказана.

Доказанная лемма даёт удобный способ проверки условия A5: доста-
точно отыскать функции α0 и Ψε, удовлетворяющие условию (3.1.10).
Например, это легко сделать в случае строго периодической перфорации,
когда S = {x : xn = 0}, M ε

k = εM + (εk, 0), k ∈ Γ, где Γ — некоторая
периодическая решётка в Rn−1 с ячейкой периодичности �, M — неко-
торая точка в области � × R. Будем считать, что η = 1, ωk,ε = ω, где
ω ⊂ Rn — некоторая фиксированная ограниченная область такая, что

ω +M ⊂ BR2
(M) ⊂ �×R, BR2

(M⊥) ⊂ �×R,

M⊥ — проекция точки M на гиперплоскость S. В этом случае функция
αε имеет вид

αε(x) =
|∂ω|
Rn−1

2

ζ

(
|x′ − ε(k +M⊥)|

εR2

)
, x′ := (x1, . . . , xn−1),

при |x′ − ε(k + M⊥)| < εR2, k ∈ Γ, и αε = 0 в остальных точках S. В
качестве α0 возьмём постоянную функцию α0(x′) := |∂ω|/|�|, x′ ∈ S. То-
гда существует бесконечно дифференцируемое �–периодическое решение
краевой задачи

∆ξΨ = 0 при ξn > 0,
∂Ψ

∂ξn
= αε(εξ′)− α0 при ξn = 0,

равномерно экспоненциально убывающее при ξn → +∞, где ξ := (ξ′, ξn),
ξ′ = (ξ1, . . . , ξn−1). Положим Ψε(x) := εΨ(xε ) и сразу видим, что условие
(3.1.10) выполнено с µ(ε) = Cε, где C — константа, не зависящая от ε.

Такой же подход удаётся перенести и на более общий случай локально
периодических перфораций вдоль гладких поверхностей. Будем считать,
что поверхность S является графиком некоторой функции F = F (s),
то есть, S =

{
(s, F (s)) : s ∈ Rn−1

}
, а сама функция F и все её част-

ные производные вплоть до пятого порядка непрерывны и равномерно
ограничены на Rn−1. Точки M ε

k выберем лежащими на поверхности S
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следующим образом: M ε
k :=

(
ε(k +M), F (ε(k +M))

)
, k ∈ Γ, где Γ — это

вновь некоторая периодическая решётка в Rn−1 с ячейкой периодичности
�, а M — точка в � такая, что {ξ′ : |ξ′ −M | 6 R2} ⊂ �. Относительно
площадей границ полостей будем предполагать, что

|∂ωk,ε| = w(ε(k +M)), (3.1.22)

где w ∈ C3(Rn−1) — некоторая заданная функция, равномерно ограни-
ченная на Rn вместе со всеми своими производными вплоть до третьего
порядка. Отдельно предполагаем, что полости ωk,ε таковы, что выполне-
ны условия A2, A3.

Поверхность S будем параметризовать переменной s ∈ Rn−1. Вектор
единичной нормали к поверхности S выберем в виде

ν(s) :=
1√

1 + |∇sF (s)|2

(
−∇sF (s)

1

)
.

Данная явная формула позволяет вычислить все производные вектора
нормали по s и проверить, что они непрерывны и равномерны ограниче-
ны на S. Это гарантирует существование сферы фиксированного радиу-
са, которой можно коснуться каждой точки поверхности S, и тем самым
существует τ0 из условия A1 и множество Σ, на котором будут коррект-
но определены локальные переменные (τ, s), которые описывают точки
x ∈ Σ формулой x =

(
s, F (s)

)
+ τν(s). Наличие непрерывных и равно-

мерно ограниченных производных у функции F вплоть до пятого поряд-
ка гарантирует существование непрерывных и равномерно ограниченных
производных x по (τ, s) и (τ, s) по x вплоть до четвёртого порядка. Это
обеспечивает выполнение условия A1 для поверхности S.

Наше основное утверждение о введённой локально периодической пер-
форации выглядит следующим образом.

Лемма 3.1.6. Пусть выполнены описанные выше условия на поверх-
ность S, условия локальной периодичности перфорации для функции αε,
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и имеет место сходимость η(ε) → η0 6= 0, ε → +0. Тогда выполнено
условие A5 с

α0(s) := ηn−1
0 α0(s), κ(ε) := C

(
ε

1
2 + (η(ε)− η0)

)
,

α0(s) :=
w(s)

|�|

∫
Rn−1

ζ
((
|ξ′|2 + |∇sF (s) · ξ′|2

) 1
2

)
dξ,

где константа C не зависит от ε.

Доказательство. В рассматриваемом случае точкиM ε
k совпадают со сво-

ими проекциями M ε
k,⊥. Поэтому согласно определению функции αε в

(1.0.13) эта функция может отличаться от нуля лишь при

|s− ε(k +M)|2 + |F (s)− F (ε(k +M))|2 < ε2R2
2.

Множество таких точек на поверхности S очевидно лежит внутри мно-
жества, описываемого неравенством |s − ε(k + M)| < εR2. Для таких s
при каждом заданном k ∈ Γ и ε в силу формулы Тейлора для функции
F с центром в точке s и непрерывности и равномерной ограниченности
вторых производных функции F верны неравенства∣∣F (s)− F (ε(k +M))−∇sF (s) · (s− ε(k +M))

∣∣ 6 Cε2;

здесь и далее C — некоторые константы, не зависящие от ε, k и s. Из этих
соотношений следует, что при |s− ε(k +M)| < εR2 справедлива оценка∣∣∣∣

(
|s− ε(k +M)|2 + |F (s)− F (ε(k +M))

∣∣2) 1
2

εR2

−
(
|s− ε(k +M)|2 +

∣∣∇sF (s) · (s− ε(k +M))
∣∣) 1

2

εR2

∣∣∣∣ 6 Cε.
В силу предполагаемой гладкости функции w при |s− ε(k + M)| < εR2

выполнена ещё одна оценка

|w(s)−w(ε(k +M))| 6 Cε.
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Из последних двух оценок, определения срезки ζ и (3.1.22) вытекает, что
функцию αε можно представить в виде

αε(s) = ηn−1
0 β0(sε

−1, s)+
(
ηn−1(ε)−ηn−1

0

)
β0(sε

−1, s)+εηn−1βε(s), (3.1.23)

где βε — некоторая бесконечно дифференцируемая функция на S, огра-
ниченная равномерно по ε в норме пространства L∞(S), а функция β0

задаётся формулой

β0(ξ
′, s) =

w(s)

Rn−1
2

ζ

((
|ξ′ − k −M |2 + |∇sF (s) · (ξ′ − k −M)|2

) 1
2

R2

)
при |ξ′ − k −M | < R2, k ∈ Γ, а в остальных точках функция β0 тож-
дественно равна нулю. С учётом равенства (3.1.23) и утверждения лем-
мы 3.1.1, выполнение условия A5 достаточно проверить только для функ-
ции β0(sε

−1, s), что и будет нашей целью далее.
Условие A5 для функции β0(sε

−1, s) проверим на основе леммы 3.1.5.
Требуемую функцию Ψε будем искать как формальное асимптотическое
решение краевой задачи

∆Ψε = 0 в $,
∂Ψε

∂τ
= β0(ε

−1 · , · )− α0 на S, (3.1.24)

имеющего структуру пограничного слоя, сконцентрированного возле по-
верхности S и экспоненциально убывающего при отходе от поверхности
S. Условие экспоненциального убывания является заменой краевого усло-
вия на ∂$ \ S.

А именно, функцию Ψε будем строить на основе комбинации метода
многих масштабов и метода пограничного слоя в виде

Ψε(x) = εΨ1(ξ, s) + ε2Ψ2(ξ, s), ξ := (ξ′, ξn) = (sε−1, τε−1), (3.1.25)

где Ψ1, Ψ2 — некоторые �–периодические по ξ′ функции, экспоненци-
ально убывающие при ξn → +∞. Эти функции мы найдём как решения
некоторых краевых задач, которые стандартно будут определены подста-
новкой (3.1.25) в (3.1.24) с последующим занулением коэффициентов при
старших степенях ε.
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Вначале отметим, что оператор Лапласа в переменных (τ, s) перепи-
сывается следующим образом:

∆ =
∂2

∂τ 2
+ `n(τ, s)

∂

∂τ
+

n−1∑
i,j=1

`ij(τ, s)
∂2

∂si∂sj
+

n−1∑
i=1

`i(τ, s)
∂

∂si
,

где `n, `i, `ij — некоторые вещественные функции, причём

`n, `i ∈ C2([0, τ0]×Rn−1), `ij ∈ C3([0, τ0]×Rn−1),

и для функций `ij выполнено условие равномерной эллиптичности

n−1∑
i,j=1

`ij(τ, s)zizj > c1

n−1∑
i=1

z2
i , (z1, . . . , zn−1) ∈ Rn−1,

с константой c1 > 0, не зависящей от τ , s, z1, . . . , zn−1. Все производные
функций `n, `i вплоть до второго порядка и функций `ij вплоть до третье-
го порядка равномерно ограничены. С учётом определения переменных ξ
оператор Лапласа на функциях Ψ = Ψ(ξ, s) переписывается следующим
образом:

∆xΨ(ξ, s) = ε−2L−2Ψ(ξ, s) + ε−1L−1Ψ(ξ, s) + LεΨ(ξ, s),

L−2 :=
∂2

∂ξ2
n

+
n−1∑
i,j=1

`ij(0, s)
∂2

∂ξi∂ξj
,

L−1 := `n(0, s)
∂

∂ξn
+

n−1∑
i,j=1

`ij(0, s)

(
∂2

∂ξi∂sj
+

∂2

∂ξj∂si

)

+
n−1∑
i,j=1

∂`ij
∂τ

(0, s)ξn
∂2

∂ξi∂ξj
+

n−1∑
i=1

`i(0, s)
∂

∂ξi
,

где Lε — некоторый дифференциальный оператор по переменным (ξ, s) с
коэффициентами, ограниченными величиной C(1 + |ξn|2) равномерно по
s, ξ, ε. Теперь подставим полученное выражение для оператора Лапласа
и (3.1.25) в краевую задачу (3.1.24) и соберём члены при двух старших
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степенях ε. Это приводит к следующим краевым задачам для Ψ1 и Ψ2:

L−2Ψ1 = 0 при ξn > 0,
∂Ψ1

∂ξn
= β0 − α0 при ξn = 0, (3.1.26)

L−2Ψ2 = −L−1Ψ1 при ξn > 0,
∂Ψ2

∂ξn
= 0 при ξn = 0. (3.1.27)

Задачу (3.1.26) легко решить разделением переменных, при этом соот-
ветствующий ряд не содержит постоянного по ξn слагаемого благодаря
выбору функции α0, указанному в формулировке леммы:

Ψ1(ξ, s) =
∑

k∈Γ∗\{0}

γ
(1)
k (s)eik·ξ′−Λk(s)ξn, (3.1.28)

Λk(s) :=

( n−1∑
i,j=1

`ij(0, s)kikj

) 1
2

, γ
(1)
k (s) := − 1

|�|Λk(s)

∫
�

β0(ξ
′, s)e−ik·ξ′ dξ′,

где Γ∗ — двойственная к Γ решётка и k = (k1, . . . ,kn−1). С учётом фи-
нитности функции ζ формулу для γ

(1)
k можно переписать следующим

образом:

γ
(1)
k (s) := − w(s)

|�|Λk(s)

∫
�

ζ
((
|ξ′|2 + |∇sF (s) · ξ′|2

) 1
2

)
e−ik·(R2ξ

′+M) dξ′.

Так как функция ζ = ζ(t) бесконечно дифференцируемая, финитная и
равна единице при |t| < t0, то функция ζ

((
|ξ′|2+|∇sF (s)·ξ′|2

) 1
2

)
бесконеч-

но дифференцируемая по ξ′ и её носитель содержится внутри �. Поэтому
из предполагаемой непрерывности и равномерной ограниченности всех
производных функций F и w следует, что коэффициенты γ

(1)
k трижды

непрерывно дифференцируемы по s ∈ Rn−1 и все их частные производ-
ные вплоть до третьего порядка равномерно ограничены и при k → ∞
убывают быстрее любой обратной степени |k| равномерно по s. Отсю-
да сразу следует, что функция Ψ1, определённая формулой (3.1.28), �–
периодична по ξ′ и имеет все частные производные вида ∂|n|+|m|Ψ1

∂ξn∂sm , n ∈ Zn+,
m ∈ Zn−1

+ , |m| 6 3. Каждая из этих производных является непрерывной
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и равномерно ограниченной функцией (ξ, s) ∈ Rn−1 × R+ × Rn−1, экспо-
ненциально убывающей при ξn → +∞ равномерно по (ξ′, s) ∈ R2(n−1).

Подставляя ряд (3.1.28) в задачу (3.1.27), мы также можем решить
её с помощью разделения переменных. Итоговая формула для решения
будет иметь вид

Ψ2(ξ, s) =
∑

k∈Γ∗\{0}

(
γ

(2,1)
k (s)ξ2

n + γ
(2,0)
k (s)ξn + Λ−1

k (s)γ
(2,0)
k (s)

)
eik·ξ′−Λk(s)ξn,

где γ(2,j)
k , j = 0, 1, — некоторые функции. Эти функции являются коэф-

фициентами решений обыкновенных дифференциальных уравнений по
переменной ξn, возникающих при разделении переменных, и они могут
быть найдены явно в виде достаточно громоздких формул как линей-
ные комбинации с постоянными коэффициентами произведений функ-
ций γ(1)

k (s), их первых производных, степеней Λk, компонент ki индекса
k и коэффициентов дифференциального выражения L−1. Элементарный
анализ таких явных формул показывает, что функции γ

(2,j)
k имеют все

частные производные по s вплоть до второго порядка, каждая из кото-
рых непрерывна и ограничена равномерно по s и убывает быстрее любой
отрицательной степени |k| при k → ∞. Поэтому функция Ψ2, опреде-
лённая выше, �–периодична по ξ′ и имеет все частные производные вида
∂|n|+|m|Ψ2

∂ξn∂sm , n ∈ Zn+, m ∈ Zn−1
+ , |m| 6 2. Каждая из этих производных яв-

ляется непрерывной и равномерно ограниченной функцией переменных
(ξ, s) ∈ Rn−1 × R+ × Rn−1, экспоненциально убывающей при ξn → +∞
равномерно по (ξ′, s) ∈ R2(n−1).

Из задач (3.1.26), (3.1.27) следует, что функция Ψε из (3.1.25) является
решением краевой задачи

∆Ψε = ε
(
L−1Ψ2+εLε(Ψ1+εΨ2)

)
в $,

∂Ψε

∂τ
= β0(ε

−1 · , · )−α0 на S,

и в силу описанной выше гладкости функций Ψ1, Ψ2 и их экспоненциаль-
ного убывания при ξn → +∞ сразу видим, что функция Ψε удовлетворяет
условию леммы 3.1.5 с µ(ε) = Cε. Применение теперь равенства (3.1.23)
завершает доказательство леммы.
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3.2 Вспомогательные утверждения

В данном параграфе мы докажем ряд лемм, которые далее будут исполь-
зоваться в доказательстве наших основных теорем.

Лемма 3.2.1. При выполнении условий A1, A2, A3 для всех u ∈ W 1
2 (Ωε)

верна оценка

‖u‖2
L2(∂θε) 6 C(εη + δηn−1)‖∇u‖2

L2(Ωε) + C(δ)ηn−1‖u‖2
L2(Ωε),

где δ > 0 — произвольная константа, а константы C и C(δ) не зависят
от параметров ε, η, функции u, а также от формы и расположения
полостей ωεk, k ∈ Mε.

Это утверждение является частным случаем леммы 3.2.8 в случае
Mε

D = ∅, θεD = ∅.

Лемма 3.2.2. Для любой функции u ∈ W 1
2 (Ω) функция a(x, u(x)) явля-

ется элементом пространства W 1
2 (Σ) и верны оценки

‖a( · , u(x))‖L2(Σ) 6 C‖u‖L2(Ω),

‖∇xa( · , u(x))‖L2(Σ) 6 C‖u‖W 1
2 (Ω),

(3.2.1)

|a(x, u(x))| 6 a0|u(x)|,
|∇xa(x, u(x))| 6 a0|∇xu(x)|+ a1|u(x)|,

(3.2.2)

где C — некоторые константы, не зависящие от u.

Доказательство. Неравенства (3.2.2) являются прямым следствием усло-
вий (1.0.11). Оценки (3.2.1) выводятся возведением в квадрат неравенств
(3.2.2) с последующим интегрированием по области Σ. Лемма доказа-
на.

Лемма 3.2.3. Пусть выполнены условия A1, A2, A3. Тогда существует
λ0, не зависящее от ε, такое, что при λ < λ0 для всех f ∈ L2(Ω)

задачи (1.0.4), (1.0.17) и (1.0.18), (1.0.19) имеют единственные решения
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u0 ∈ W 1
2 (Ω) и uε ∈ W 1

2 (Ωε) для всех достаточно малых ε. Для решения
задачи (1.0.4) верна равномерная оценка

‖uε‖W 1
2 (Ωε) 6 C‖f‖L2(Ωε), (3.2.3)

где константа C не зависит от f и ε. Решение задачи (1.0.17) принад-
лежит пространству W 2

2 (Ω) и верна равномерная оценка

‖u0‖W 2
2 (Ω) 6 C‖f‖L2(Ω), (3.2.4)

где константа C не зависит от f . Решение задачи (1.0.18), (1.0.19)
принадлежит пространству W 2

2 (Ω \ S) и верна равномерная оценка

‖u0‖W 1
2 (Ω) + ‖u0‖W 2

2 (Ω\S) 6 C‖f‖L2(Ω), (3.2.5)

где константа C не зависит от f .
При λ < λ0 для всех u ∈ W 1

2 (Ωε) верна априорная оценка∣∣h0(u, u)− λ‖u‖2
L2(Ωε)

∣∣ > C‖u‖2
W 1

2 (Ωε), (3.2.6)

где константа C не зависит от u и ε.

Доказательство. Доказательство этой леммы в целом проводится ана-
логично лемме 2.3.1 и отличается лишь некоторыми деталями. Поэтому
кратко опишем схему доказательства и остановимся на имеющихся отли-
чиях.

Мы обсудим только задачу (1.0.4), так как для задачи (1.0.18), (1.0.19)
доказательство проводится совершенно аналогично, а задача (1.0.17) яв-
ляется частным случаем задачи (1.0.18), (1.0.19), соответствующим ра-
венству α0 = 0.

Вначале в пространстве W̊ 1
2 (Ωε, ∂Ω) необходимо ввести оператор, дей-

ствующий по правилу: каждой функции u ∈ W̊ 1
2 (Ωε, ∂Ω) ставится в соот-

ветствие антилинейный непрерывный функционал, заданный на W̊ 1
2 (Ωε, ∂Ω)

и действующий по правилу v 7→ ha(u, v), v ∈ W̊ 1
2 (Ωε, ∂Ω). Далее для дока-

зательства однозначной разрешимости задачи (1.0.4) достаточно прове-
рить выполнение следующих свойств [27, Гл. 2, §2.1, Теор. 2.1; §2.2, Теор.
2.2], [16, Гл. VI, §18.4], [18, Гл. 1, §1.20]:
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1. Для любых u, v, w ∈ W̊ 1
2 (Ωε, ∂Ω) функция t 7→ ha(u + tv, w) непре-

рывна;

2. Для любых u, v ∈ W̊ 1
2 (Ωε, ∂Ω), u 6= v, выполнено

Re
(
ha(u, u− v)− ha(v, u− v)

)
− λ‖u− v‖2

L2(Ωε) > 0;

3. Справедливо соотношение
Re ha(u, u)− λ‖u‖2

L2(Ωε)

‖u‖W 1
2 (Ωε)

→ +∞, ‖u‖W 1
2 (Ωε) → +∞.

Свойство 1 проверяется аналогично проверке соответствующего свой-
ства из доказательства леммы 2.3.1.

Проверим свойство 2. Сразу же отметим равенство

ha(u, u− v)− ha(v, u− v) =h0(u− v, u− v)

+
(
a( · , u)− a( · , v), u− v

)
L2(∂θε)

(3.2.7)

и тривиальную оценку∣∣∣∣ n∑
j=1

(
Aj

∂u

∂xj
, u

)
L2(Ωε)

+ (A0u, u)L2(Ωε)

∣∣∣∣ 6 c0

4
‖∇u‖2

L2(Ωε) + C1‖u‖2
L2(Ωε),

(3.2.8)
где C1 — некоторая константа, не зависящая от u ∈ W 1

2 (Ωε) и ε, а кон-
станта c0 введена в условии эллиптичности (1.0.2). Отсюда и из условия
эллиптичности уже вытекает оценка (3.2.6), если взять λ < −C1 − 1.

Так как функция a имеет ограниченные производные по Reu и Imu

(см. первое условие в (1.0.11)), то она удовлетворяет оценке:

|a(x, u)− a(x, v)| 6 a0|u− v|, (3.2.9)

где a0 — некоторая константа, не зависящая от x, u, v. Поэтому в силу
леммы 3.2.1 при достаточно малом ε верно неравенство∣∣(a( · , u)− a( · , v), u− v)L2(∂θε)

∣∣ 6a0‖u− v‖2
L2(∂θε)

6
c0

4
‖∇(u− v)‖2

L2(Ωε)

+ C2‖u− v‖2
L2(Ωε),

(3.2.10)
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где константа C2 не зависит от ε, u, v ∈ W 1
2 (Ωε). Учитывая эту оценку и

(3.2.7), (3.2.8) и полагая λ < λ0 := −C1 − C2 − c0
2 , получаем

Re
(
ha(u, u− v)− ha(v, u− v))

)
− λ‖u− v‖2

L2(Ωε)

>
c0

2
‖∇(u− v)‖2

L2(Ωε) − (λ+ C1 + C2)‖u− v‖2
L2(Ωε)

>
c0

2
‖u− v‖2

W 1
2 (Ωε).

(3.2.11)

Из этой оценки уже следует свойство 2. Полагая в этой оценке v = 0 и
учитывая равенство ha(0, u) = 0, сразу приходим к свойству 3.

Аналогично выводу оценки (3.2.11) несложно проверить, что
c0

2
‖uε‖2

W 1
2 (Ωε) 6

∣∣ha(uε, uε)− λ‖uε‖2
L2(Ωε)

∣∣
=
∣∣(f, uε)L2(Ωε)

∣∣ 6 ‖f‖L2(Ωε)‖uε‖L2(Ωε),

откуда вытекает априорная оценка (3.2.3) с C = 2
c0
.

Однозначная разрешимость задач (1.0.17) и (1.0.18), (1.0.19) устанав-
ливается аналогично. Для решений этих задач верны априорные оценки,
аналогичные (3.2.3) с заменой пространств W 1

2 (Ωε) и L2(Ω
ε) на W 1

2 (Ω) и
L2(Ω).

Уравнение в задаче (1.0.17) можно переписать в виде

−
n∑

i,j=1

∂

∂xi
Aij

∂u0

∂xj
= f −

n∑
j=1

Aj
∂u0

∂xj
− (A0 − λ)u0 в Ω, (3.2.12)

где в силу априорных оценок для решения, аналогичных (3.2.3), пра-
вая часть — элемент пространства L2(Ω), чья норма оценивается через
C‖f‖L2(Ω) с константой C, не зависящей от f . Учитывая теперь крае-
вое условие из задачи (1.0.17), в силу стандартных теорем о повышении
гладкости приходим к неравенству (3.2.4).

Оценка (3.2.5) доказывается аналогично с единственным отличием,
что здесь помимо приведения уравнения к виду (3.2.12), необходимо ещё
правую часть в краевом условии на скачок производной считать сле-
дом на S функции a(x, u0(x)). Наличие априорных оценок для функ-
ции u0 в W 1

2 (Ω) и лемма 3.2.2 позволяют вывести априорную оценку для
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a(x, u0(x)) в норме W 1
2 (Σ). Затем уже можно применить стандартные

теоремы о повышении гладкости и получить оценку (3.2.5). Лемма дока-
зана.

Обозначим: Bk
r := BrR2εη(M

ε
k).

Лемма 3.2.4. При выполнении условий A1, A2 для всех u ∈ W 1
2 (Ωε)

выполнено неравенство:∑
k∈Mε

‖u‖2
L2(Bkb∗\ω

ε
k) 6 C

(
ε2η2‖∇u‖2

L2(Ωε) + εηn‖u‖2
W 1

2 (Ωε)

)
,

где С — некоторая константа, не зависящая от параметров ε, η, функ-
ции u, формы и расположения полостей ωεk, k ∈ Mε.

Доказательство. Всюду в доказательстве через C обозначаем различ-
ные несущественные константы, не зависящие от k, ε, η, u, формы и
расположения полостей ωεk, k ∈ Mε. Напомним, что χ2 = χ2(t) — беско-
нечно дифференцируемая срезающая функция, равная единице при t < 1

и нулю при t > 2. В окрестности каждой из точекM ε
k введем растянутые

координаты по правилу: y = (x−M ε
k)ε−1. Обозначим:

ũ(y) := u(M ε
k + εy)χ2

(
2|y|

(b+ 1)R2η

)
,

ω̃k,ε — область, полученная сжатием ωk,ε в η−1(ε) раз. Функция ũ являет-
ся элементом пространства W̊ 1

2 (B(b+1)R2η(0) \ ω̃k,ε, ∂B(b+1)R2η(0)). В силу
леммы 3.2 из [55] выполнено неравенство

‖u(M ε
k + ε · )‖2

L2(Bb∗R2η
(0)\ω̃k,ε) 6 ‖ũ‖

2
L2(B(b+1)R2η

(0)\ω̃k,ε)

6Cη2‖∇yũ‖2
L2(B(b+1)R2η

(0)\ω̃k,ε)

6Cη2
(
‖∇yu(M ε

k + ε ·)‖2
L2(B(b+1)R2η

(0)\ω̃k,ε)

+ η−2‖u(M ε
k + ε · )‖2

L2(B(b+1)R2η
(0)\Bb∗R2η

(0))

)
.

Переходя обратно к переменным x, получаем:

‖u‖2
L2(Bkb∗\ω

ε
k) 6 C

(
ε2η2‖∇u‖2

L2(Bkb+1\ωεk) + ‖u‖2
L2(Bkb+1\Bkb∗)

)
. (3.2.13)
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Дословно повторяя вывод последней оценки в доказательстве леммы
2.1.3, легко показать, что

‖u‖2
L2(Bkb+1\Bkb∗)

6 C
(
ε2η2‖∇u‖2

L2(B(2b+1)R2ε
(Mε

k)\Bb∗R2ε
(Mε

k))

+ ηn‖u‖2
L2(B(2b+1)R2ε

(Mε
k)\B(b+2)R2ε

(Mε
k))

)
.

Подставим последнее неравенство в оценку (3.2.13) и просуммируем ре-
зультат по k ∈ Mε. В результате получим∑
k∈Mε

‖u‖2
L2(Bkb∗\ω

ε
k) 6 C

∑
k∈Mε

(
ε2η2‖∇u‖2

L2(B(2b+1)R2ε
(Mε

k)\ωεk)

+ ηn‖u‖2
L2(B(2b+1)R2ε

(Mε
k)\B(b+2)R2ε

(Mε
k))

)
.

(3.2.14)

Заметим, что для |τ | 6 τ0
2 верно равенство

|u(τ, s)|2 =

τ∫
± τ02

∂

∂t
|u(τ, s)|2χ2

(
4|t|
τ0

)
dt, ±τ > 0,

при условии отсутствия пересечения пути интегрирования и полостей θε.
Из последнего равенства в силу неравенства Коши–Буняковского следу-
ет:

|u(τ, s)|2 6 C

∣∣∣∣∣
± τ02∫
τ

∣∣∣∣∂u∂t (τ, s)

∣∣∣∣2 dt
∣∣∣∣∣+ C

∣∣∣∣∣
± τ02∫
± τ04

|u(τ, s)|2 dt

∣∣∣∣∣, ±τ > 0.

(3.2.15)
Интегрируя последнее неравенство по B(2b+1)R2ε(M

ε
k) \ B(b+2)R2ε(M

ε
k) и

суммируя результат по k ∈ Mε, легко получим ещё одно неравенство∑
k∈Mε

‖u‖2
L2(B(2b+1)R2ε

(Mε
k)\B(b+2)R2ε

(Mε
k)) 6 Cε‖u‖2

W 1
2 (Ωε). (3.2.16)

Подставляя это неравенство в (3.2.14), приходим к утверждению леммы.
Лемма доказана.
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Замечание 3.1. Отметим, что утверждение леммы 3.2.4 остаётся в силе и
в вырожденном случае ωεk = ∅. Доказательство требуемой оценки в этом
случае даже упрощается, так как неравенство (3.2.13) оказывается три-
виальным, а все дальнейшие рассуждения относятся к шаровым слоям
Bk

2b∗
\Bk

b∗
и B(2b+1)R2ε(M

ε
k) \B(b+2)R2ε(M

ε
k).

Лемма 3.2.5. При выполнении условий A2, A3 для всех k ∈ Mε и функ-
ций u ∈ W 1

2 (Bk
b∗
\ ωεk), удовлетворяющих условию∫

Bkb∗\ω
ε
k

u(x) dx = 0,

справедливы оценки

‖u‖L2(Bkb∗\ω
ε
k) 6 Cεη‖∇u‖L2(Bkb∗\ω

ε
k), (3.2.17)

‖u‖L2(∂ωεk∪∂Bkb∗)
6 Cε

1
2η

1
2‖∇u‖L2(Bkb∗\ω

ε
k), (3.2.18)

с константами C, не зависящими от u, k, ε и η.

Доказательство. С учётом замены переменных ξ = (x −M ε
k)ε−1η−1 до-

статочно доказать неравенства

‖u‖L2(Bb∗(0)\ωk,ε) 6 C‖∇u‖L2(Bb∗(0)\ωk,ε),

‖u‖L2(∂ωk,ε∪∂Bb∗(0)) 6 C‖∇u‖L2(Bb∗(0)\ωk,ε),
(3.2.19)

для всех u ∈ W 1
2 (Bb∗(0) \ ωk,ε), удовлетворяющих условию∫

Bb∗(0)\ωk,ε

u(x) dx = 0. (3.2.20)

Вторая оценка в (3.2.19) вытекает из первой и неравенства

‖u‖L2(∂ωk,ε) 6 C‖u‖W 1
2 (Bb∗(0)\ωk,ε),

установленного в доказательстве леммы 2.1.2, а также очевидного нера-
венства

‖u‖L2(∂Bb∗(0)) 6 C‖u‖W 1
2 (Bb∗(0)\ωk,ε).



71

Первая оценка в (3.2.19) при условии (3.2.20) была установлена в [55,
Лем. 3.4]. Лемма доказана.

Обозначим S̃ := {x ∈ Ω : τ = (2bR2 +R0)ε}. Поверхность S̃ естествен-
ным образом параметризуем точками поверхности S по формуле

x̃ = x+ ε(2bR2 +R0)ν(x), (3.2.21)

где x ∈ S, x̃ ∈ S̃, а ν, напомним, нормаль к поверхности S.

Лемма 3.2.6. При выполнении условий A1, A2, A3 для всех u, v ∈ W 1
2 (Ωε)

выполнено неравенство:∑
k∈Mε

∣∣∣∣ηn−1|∂ωk,ε|
|∂Bb∗R2

(0)|
(a( · , u),v)L2(∂Bb∗R2ε

(Mε
k)) − (a( · , u), v)L2(∂ωεk)

∣∣∣∣
6 Cε

1
2‖u‖W 1

2 (Ωε)‖v‖W 1
2 (Ωε),

(3.2.22)

где константа C не зависит от параметров ε, η, функций u и v.

Доказательство. Всюду в доказательстве через C обозначаем различ-
ные несущественные константы, не зависящие от k, ε, η, u и v. Для про-
извольной u ∈ W 1

2 (Bk
b∗
\ ωεk) положим:

〈u〉k :=
1

|Bk
b∗
\ ωεk|

∫
Bkb∗\ω

ε
k

u dx, u⊥ := u− 〈u〉k. (3.2.23)

В силу леммы 3.2.5 для функции u⊥ верны оценки (3.2.17), (3.2.18). С
помощью этих оценок и (3.2.2) элементарно проверяется, что∣∣∣∣(a( · , u),v)L2(∂ωεk) −

|∂ωk,ε|
|∂Bb∗R2

(0)|
(a( · , u), v)L2(∂Bkb∗)

∣∣∣∣
6C
(
|〈a( · , u)〉k|‖v⊥‖L1(∂ωεk∪∂Bkb∗)

+ |〈v〉k|‖a( · , u)⊥‖L1(∂ωεk∪∂Bkb∗)

+ ‖a( · , u)⊥‖L2(∂ωεk∪∂Bkb∗)
‖v⊥‖L2(∂ωεk∪∂Bkb∗)

)
6C
(
‖u‖L2(Bkb∗\ω

ε
k)‖∇v‖L2(Bkb∗\ω

ε
k) + ‖u‖W 1

2 (Bkb∗\ω
ε
k)‖v‖L2(Bkb∗\ω

ε
k)

+ εη‖u‖W 1
2 (Bkb∗\ω

ε
k)‖∇v‖L2(Bkb∗\ω

ε
k)

)
.

(3.2.24)
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Суммируя эти оценки по k и применяя затем лемму 3.2.4, получаем∑
k∈Mε

∣∣∣∣∣(a( · , u), v
)
L2(∂ωεk)

− |∂ωk,ε|
|∂Bb∗R2

(0)|
(
a( · , u), v

)
L2(∂Bkb∗)

∣∣∣∣∣
6 Cε

1
2‖u‖W 1

2 (Ωε)‖v‖W 1
2 (Ωε).

(3.2.25)

Проинтегрируем по частям в следующем интеграле:

0 =
(εη)n−1|∂ωk,ε|

(2− n)|∂B1(0)|

∫
Bb∗R2ε

(Mε
k)\Bkb∗

a(x, u(x))v(x)∆|x−M ε
k |−n+2 dx

=
ηn−1|∂ωk,ε|
|∂Bb∗R2

(0)|
(
a( · , u), v

)
L2(∂Bb∗R2ε

(Mε
k))

− |∂ωk,ε|
|∂Bb∗R2

(0)|
(
a( · , u), v

)
L2(∂Bkb∗)

− (εη)n−1|∂ωk,ε|
(2− n)|∂B1(0)|

·
∫

Bb∗R2ε
(Mε

k)\Bkb∗

∇|x−M ε
k |−n+2 · ∇

(
a(x, u(x))v(x)

)
dx.

(3.2.26)
Элементарные оценки и неравенство Коши–Буняковского дают:∑
k∈Mε

∣∣∣∣∣ (εη)n−1|∂ωk,ε|
(2− n)|∂B1(0)|

∫
Bb∗R2ε

(Mε
k)\Bkb∗

∇|x−M ε
k |−n+2 · ∇(a(x, u(x))v(x)) dx

∣∣∣∣∣
6 C

∑
k∈Mε

(
‖v‖L2(Bb∗R2ε

(Mε
k)\Bkb∗)

‖∇a( · , u)‖L2(Bb∗R2ε
(Mε

k)\Bkb∗)

+ ‖∇v‖L2(Bb∗R2ε
(Mε

k)\Bkb∗)
‖a( · , u)‖L2(Bb∗R2ε

(Mε
k)\Bkb∗)

)
.

(3.2.27)
Применяя оценку (3.2.15) для a(x, u(x)) и v(x), интегрируя её по мно-
жествам Bb∗R2ε(M

ε
k) \ Bk

b∗
и суммируя результат по k, с учётом (3.2.2)

получим: ∑
k∈Mε

‖v‖2
L2(Bb∗R2ε

(Mε
k)\Bkb∗)

6 Cε‖v‖2
W 1

2 (Ωε),∑
k∈Mε

‖a( · , u)‖2
L2(Bb∗R2ε

(Mε
k)\Bkb∗)

6 Cε‖u‖2
W 1

2 (Ωε).
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Отсюда и из (3.2.27) выводим:∑
k∈Mε

∣∣∣∣∣ (εη)n−1|∂ωk,ε|
(2− n)|∂B1(0)|

∫
Bb∗R2ε

(Mε
k)\Bkb∗

∇|x−M ε
k |−n+2 · ∇(a(x, u(x))v(x)) dx

∣∣∣∣∣
6Cε

1
2‖u‖W 1

2 (Ωε)‖v‖W 1
2 (Ωε).

(3.2.28)
Выразим теперь скалярное произведение (a( · , u), v)L2(∂Bkb∗)

из равенства
(3.2.26) и подставим полученное выражение в (3.2.25). Тогда немедленно
получим требуемую оценку (3.2.22). Лемма доказана.

Лемма 3.2.7. Для любой функции v ∈ W 1
2 (Ωε) выполнено неравенство

‖v‖2
L2(S̃)

6 δ‖∇v‖2
L2(Ωε) + C(δ)‖v‖2

L2(Ωε)

для любого δ > 0 с константой C(δ) > 0, не зависящей от v и ε.

Доказательство леммы проводится аналогично доказательству леммы
3.1 из [54].

Функции αε и α0, заданные на S, определим также и на поверхности
S̃ с помощью параметризации (3.2.21) по правилу

αε(x̃) := αε(x), α0(x̃) := α0(x), (3.2.29)

где точки x̃ ∈ S̃ и x ∈ S связаны формулой (3.2.21). Напомним, что в
силу условия A5 функция α0 является элементом пространства W 1

∞(S).
Поэтому продолжение этой функции, введённое в (3.2.29), является и
элементом пространства W 1

∞(S̃).
Обозначим:

$ε
0 :=

{
x ∈ Ω : (2bR2 +R0)ε < τ <

τ0

2

}
,

$ε
1 :=

{
x ∈ Ω : 0 < τ < (2bR2 +R0)ε

}
,

$ε
2 :=

{
x ∈ Ω : (2bR2 +R0)ε < τ < (4bR2 + 2R0)ε

}
.

Отметим, что для произвольной функции u ∈ W 1
2 ($ε

0) верны оценки

‖u‖L2(S̃) 6 C‖u‖W 1
2 ($ε

0), ‖u‖L2($ε
2) 6 Cε

1
2‖u‖W 1

2 ($ε
0), (3.2.30)
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где C — некоторые оценки, не зависящие от ε и u. Здесь первая оцен-
ка очевидна, а вторая получается интегрированием по $ε

2 неравенства
(3.2.15).

Лемма 3.2.8. Пусть выполнено условие A1 и α ∈ L∞(S) — произволь-
ная функция, которую продолжим на поверхность S̃ согласно (3.2.29).
Тогда для всех u, v ∈ W 1

2 ($ε
0) верна оценка∣∣(αu, v)L2(S̃)

∣∣ 6C(‖α‖S + ε‖α‖L∞(S)

)
‖u‖W 1

2 ($ε
0)‖v‖W 1

2 ($ε
0)

+ Cε
1
2‖α‖L∞(S)

(
‖u‖W 1

2 ($ε
0)‖∇v‖L2($ε

2)

+ ‖v‖W 1
2 ($ε

0)‖∇u‖L2($ε
2)

)
,

где C — некоторые константы, не зависящие от параметра ε и функ-
ций u, v, α.

Доказательство. Функции u, v продолжим в область $ \$ε
0 чётным об-

разом относительно S̃. А именно, для каждой точки x ∈ $\$ε
0 однознач-

но найдём точки s ∈ S и τ ∈ (0, (2bR2 + R0)ε) по правилу x = s + τν(s)

и положим

u(x) = u
(
s+ ((4bR2 + 2R0)ε− τ)ν(s)

)
,

v(x) = v
(
s+ ((4bR2 + 2R0)ε− τ)ν(s)

)
.

В силу условия A1 такое продолжение определено корректно, продолжен-
ные функции являются элементами пространстваW 1

2 ($) и верны оценки

‖u‖W 1
2 ($) 6 C‖u‖W 1

2 ($ε
0), ‖u‖L2($ε

1) 6 C‖u‖L2($ε
2),

‖∇u‖L2($ε
1) 6 C‖∇u‖L2($ε

2);
(3.2.31)

и такие же оценки верны для v. Здесь и всюду до конца доказательства
через C обозначаем различные константы, не зависящие от ε, u, v, α. Из
равенства

uv
∣∣
τ=(2bR2+R0)ε

= uv
∣∣
τ=0

+

(2bR2+R0)ε∫
0

∂uv

∂τ
dτ



75

следует оценка∣∣∣∣∣
∫
S

α
(
uv
∣∣
τ=(2bR2+R0)ε

− uv
)
ds

∣∣∣∣∣
6 C‖α‖L∞(S)

(
‖u‖L2($ε

1)‖∇v‖L2($ε
1) + ‖v‖L2($ε

1)‖∇u‖L2($ε
1)

)
.

(3.2.32)

Отметим, что дифференциалы площади поверхностей S и S̃ связаны ра-
венствами ds̃ = (1 + εJε(s))ds, где Jε — непрерывно дифференцируемая
функция, ограниченная равномерно по ε и s ∈ S вместе со своими про-
странственными производными первого порядка.

Используя указанные свойства дифференциалов площадей S и S̃ и
оценки (3.1.4), (3.2.30), (3.2.31), (3.2.32), получаем∣∣(αu, v)L2(S̃) − (αu, v)L2(S)

∣∣ 6Cε‖α‖L∞(S)‖u‖W 1
2 ($ε

0)‖v‖W 1
2 ($ε

0)

+ Cε
1
2‖α‖L∞(S)

(
‖u‖W 1

2 ($ε
0)‖∇v‖L2($ε

2)

+ ‖v‖W 1
2 ($ε

0)‖∇u‖L2($ε
2)

)
.

(3.2.33)
Применяя теперь к скалярному произведению (αu, v)L2(S) вторую оценку
из (3.1.2), приходим к утверждению леммы. Лемма доказана.

Лемма 3.2.9. Пусть выполнены условия A1, A5. Тогда для всех u ∈
W 1

2 (Ω), v ∈ W 1
2 (Ωε) верна оценка∣∣((αε − α0)a( · , u), v

)
L2(S̃)

∣∣ 6 C(κ(ε) + ε
1
2

)
‖u‖W 1

2 (Ω)‖v‖W 1
2 (Ωε), (3.2.34)

где константа C не зависит от ε, u, v.

Доказательство. Так как u ∈ W 1
2 (Ω), то в силу леммы 3.2.2 функция

a(x, u(x)) является элементом пространстваW 1
2 (Σ) и справедлива оценка

‖a( · , u)‖W 1
2 (Σ) 6 C‖u‖W 1

2 (Ω),

где C — некоторая константа, не зависящая от u. Применяя теперь лем-
му 3.2.8 с заменой u(x) на a(x, u(x)) и α = αε−α0 и учитывая условие A5,
приходим к оценке (3.2.34). Лемма доказана.
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Рассмотрим краевую задачу

(Ĥ − λ)ũ0 = f в Ω, ũ0 = 0 на ∂Ω,

[ũ0]S̃ = 0,

[
∂ũ0

∂n

]
S̃

− α0a( · , ũ0)|S̃ = 0,
(3.2.35)

где обозначено [u]S̃ := u
∣∣
τ=(2bR2+R0)ε+0

− u
∣∣
τ=(2bR2+R0)ε−0

. Производная по
конормали в (3.2.35) задаётся формулой из (1.0.5), где в качестве нормали
на S̃ выбирается та, которая направлена в ту же сторону, что и нормаль
на S.

Лемма 3.2.10. Пусть выполнено условие A1 и α0 ∈ W 1
∞(S). Существу-

ет фиксированное λ0, не зависящее от ε, такое, что при λ < λ0 задачи
(1.0.18), (1.0.19) и (3.2.35) однозначно разрешимы для любой f ∈ L2(Ω)

и выполнены неравенства

‖ũ0 − u0‖W 1
2 (Ω) 6 Cε

1
2‖f‖L2(Ω), ‖ũ0‖W 2

2 (Ω\S̃) 6 C‖f‖L2(Ω), (3.2.36)

где константа C не зависит от ε, α0 и f .

Доказательство. Существование λ0 и разрешимость задачи (3.2.35) лег-
ко проверяется аналогично доказательству леммы 3.2.3, при этом зави-
симость поверхности S̃ от ε не играет никакой роли. Вторая оценка в
(3.2.36) доказывается по той же схеме, что и оценка (3.2.5); для оценки
нормы вторых производных достаточно повторить доказательство лем-
мы 8.1 из [26, Гл. 3, §8]. При этом необходимая регулярность поверхности
обеспечивается условием A1, а равномерность всех оценок по ε — явным
определением поверхности S̃, которая фактически обладает той же регу-
лярностью, что и поверхность S.

Докажем первую оценку в (3.2.36). Обозначим φ := u0− ũ0. Используя
задачи (1.0.18), (1.0.19) и (3.2.35), несложно убедиться, что функция φ

является решением краевой задачи

(Ĥ − λ)φ = 0 в Ω, φ = 0 на ∂Ω,

[φ]S = 0, [φ]S̃ = 0,
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[
∂φ

∂n

]
S

− α0a( · , u0)|S = 0,

[
∂φ

∂n

]
S̃

+ α0a( · , ũ0)|S̃ = 0.

Выпишем теперь интегральное тождество, соответствующее этой задаче,
взяв в качестве пробной функцию φ,

h0(φ, φ)− λ‖φ‖2
L2(Ω) =

(
α0a( · , ũ0), φ

)
L2(S̃)

−
(
α0a( · , u0), φ

)
L2(S)

.

Перепишем это равенство в более удобном виде

h0(φ, φ)− λ‖φ‖2
L2(Ω) +

(
α0
(
a( · , u0)− a( · , ũ0)

)
, φ
)
L2(S̃)

=
(
α0a( · , u0), φ

)
L2(S̃)

−
(
α0a( · , u0), φ

)
L2(S)

.
(3.2.37)

Аналогично (3.2.8), (3.2.9), (3.2.10) элементарно проверяется оценка∣∣∣h0(φ, φ)− λ‖φ‖2
L2(Ω) +

(
α0
(
a( · , u0)− a( · , ũ0)

)
, φ
)
L2(S̃)

∣∣∣ > c0

2
‖φ‖2

W 1
2 (Ω).

(3.2.38)
Правую часть тождества (3.2.37) оценим с помощью (3.2.33), (3.2.2) и
(3.2.5):∣∣∣(α0a( · , u0), φ

)
L2(S̃)

−
(
α0a( · , u0), φ

)
L2(S)

∣∣∣ 6Cε 1
2‖u0‖W 1

2 (Ω)‖φ‖W 1
2 (Ω)

6Cε
1
2‖f‖L2(Ω)‖φ‖W 1

2 (Ω),

где C — некоторая константа, не зависящая от ε, f , u0, φ. Из этой оценки
и (3.2.38), (3.2.37) следует неравенство

‖φ‖W 1
2 (Ω) 6 Cε

1
2‖f‖L2(Ω),

которое доказывает первую оценку в (3.2.36). Лемма доказана.

3.3 Усреднённая задача без условий на S

В настоящем параграфе мы доказываем теорему 1.0.2. Всюду в доказа-
тельстве считаем, что параметр λ выбирается из условия λ < λ0, где λ0

— отрицательное и достаточно большое по модулю число так, что оно не
превосходит аналогичную константу из леммы 3.2.3.
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Разность решений задач задач (1.0.4) и (1.0.17), обозначаемая через
vε = uε − u0, удовлетворяет краевой задаче

(Ĥ − λ)vε = 0 в Ωε, vε = 0 на ∂Ω,

∂vε
∂n

= −∂u0

∂n
− a( · , uε) на ∂θε.

(3.3.1)

Выпишем для этой задачи интегральное тождество, взяв vε ∈ W̊ 1
2 (Ωε, ∂Ω)

в качестве пробной функции,

h0(vε, vε)− λ‖vε‖2
L2(Ωε) = −

(
∂u0

∂n
, vε

)
L2(∂θε)

−
(
a( · , uε), vε

)
L2(∂θε)

. (3.3.2)

Основная идея доказательства теоремы состоит в том, чтобы оценить
сверху правую часть равенства (3.3.2) и снизу левую часть этого равен-
ства, что в итоге даст оценку для функции vε.

Вначале рассмотрим случай a ≡ 0. В этом случае второе слагаемое в
правой части равенства (3.3.2) обращается в нуль, а для оценки первого
слагаемого проинтегрируем по частям∫
Bk1\ωεk

vεĤu0 dx =
n∑

i,j=1

∫
Bk1\ωεk

Aij
∂u0

∂xj

∂vε
∂xi

dx+
n∑
j=1

∫
Bk1\ωεk

Aj
∂u0

∂xj
vε dx

+

∫
Bk1\ωεk

A0u0vε dx−
∫
∂ωεk

∂u0

∂n
vε ds+

∫
∂Bk1

∂u0

∂n
vε ds;

(3.3.3)

здесь нормаль к ∂Bk
1 считаем направленной внутрь Bk

1 . Из последнего
равенства и уравнения из (1.0.17) следует(

∂u0

∂n
, vε

)
L2(∂ωεk)

=

(
∂u0

∂n
, vε

)
L2(∂Bk1 )

+
n∑

i,j=1

(
Aij

∂u0

∂xj
,
∂vε
∂xi

)
L2(Bk1\ωεk)

+
n∑
j=1

(
Aj
∂u0

∂xj
, vε

)
L2(Bk1\ωεk)

+ (A0u0, vε)L2(Bk1\ωεk)

− (f, vε)L2(Bk1\ωεk) − λ(u0, vε)L2(Bk1\ωεk).

(3.3.4)
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Введем вспомогательную задачу

∆W ε
k,i = 0 в Bk

b∗
\Bk

1 ,

∂W ε
k,i

∂r
=
∂%ki
∂r

на ∂Bk
1 ,

∂W ε
k,i

∂r
= 0 на ∂Bk

b∗
,

(3.3.5)

где %k = (%k1, . . . , %
k
n) = x−M ε

k , r = |%k|. Её решением является функция

W ε
k,i =

−(b+ 1)−n%ki
2−n − (b+ 1)−n

+
2−nr−n%ki

(−n+ 1)(R2ηε)−n(2−n − (b+ 1)−n)
.

Эта функция удовлетворяет неравенству

|∇W ε
k,i| 6 C в Bk

b∗
\Bk

1 , (3.3.6)

где константа C не зависит от W ε
k,i. Проинтегрируем по частям в равен-

стве
n∑

i,j=1

∫
Bkb∗\B

k
1

Aij
∂u0

∂xj
vε∆W

ε
k,i dx = 0

с учётом граничных условий задачи (3.3.5). В результате получим(
∂u0

∂n
, vε

)
L2(∂Bk1 )

=
n∑

i,j=1

∫
Bkb∗\B

k
1

∇W ε
k,i∇

(
Aij

∂u0

∂xj
vε

)
dx.

Из последнего равенства, (3.3.4) и (3.3.6) выводим∣∣∣∣∣
(
∂u0

∂n
, vε

)
L2(∂θε)

∣∣∣∣∣ 6C
( ∑
k∈Mε

‖u0‖2
W 1

2 (Bkb∗\ω
ε
k)

) 1
2
( ∑
k∈Mε

‖∇vε‖2
L2(Bkb∗\ω

ε
k)

) 1
2

+ C

( ∑
k∈Mε

‖u0‖2
W 2

2 (Bkb∗\ω
ε
k)

) 1
2
( ∑
k∈Mε

‖vε‖2
L2(Bkb∗\ω

ε
k)

) 1
2

.

Здесь и всюду далее символом C обозначаем константы, не зависящие
от u0, vε и ε. Правую часть последнего неравенства оценим с помощью
леммы 3.2.4 и оценки (3.2.4)∣∣∣∣∣

(
∂u0

∂n
, vε

)
L2(∂θε)

∣∣∣∣∣ 6C(εη + ε
1
2η

n
2 )‖u0‖W 2

2 (Ω)‖vε‖W 1
2 (Ωε)

6C(εη + ε
1
2η

n
2 )‖f‖L2(Ω)‖vε‖W 1

2 (Ωε).

(3.3.7)
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Из последнего неравенства и (3.2.6), (3.3.2) вытекает оценка (1.0.21).
Теперь рассмотрим случай a 6= 0. Оценим правую часть равенства

(3.3.2). Для первого слагаемого остаётся справедливой оценка (3.3.7).
Применяя (3.2.2), (3.2.3) и лемму 3.2.1, приходим к оценке∣∣(a( · , uε), vε

)
L2(∂θε)

∣∣ 6 C(εη + ηn−1)‖f‖L2(Ω)‖vε‖W 1
2 (Ωε).

Неравенство (1.0.22) вытекает из последней оценки, (3.3.7), (3.3.2) и (3.2.6).
Теорема 1.0.2 доказана.

3.4 Усреднённая задача с дельта–взаимодействием

В данном параграфе мы доказываем теорему 1.0.3. По сравнению с до-
казательством предыдущей теоремы здесь возникают дополнительные
трудности, что требует привлечения новой техники.

Первая трудность связана с тем, что многообразие S может пересе-
кать полости ωεk и это вызывает сложности при попытке прямого вывода
оценки нормы разности uε − u0 по аналогии с предыдущим параграфом.
Поэтому мы вводим многообразие S̃ и рассматриваем краевую задачу
(3.2.35). Многообразие S̃ не пересекает полостей ωεk и это в итоге позво-
лит нам оценить разность uε − ũ0. Поэтому вначале мы оценим норму
разности uε− ũ0, а затем дополнительно воспользуемся имеющейся оцен-
кой нормы разности ũ0 − u0 из леммы 3.2.10.

Как и в доказательстве теоремы 1.0.2, выберем и зафиксируем доста-
точно большое по модулю отрицательное λ0 так, чтобы гарантировать
разрешимость задач для uε, u0, ũ0. Такая возможность гарантируется
леммами 3.2.3, 3.2.10.

Обозначим vε := uε − ũ0. Функция vε является решением задачи

(Ĥ − λ)vε = 0 в Ωε,
∂vε
∂n

= −∂ũ0

∂n
− a( · , uε) на ∂θε,

vε = 0 на ∂Ω, [vε]S̃ = 0,

[
∂vε
∂n

]
S̃

= −α0a( · , ũ0)|S̃.
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Выпишем для неё интегральное тождество с пробной функцией vε:

h0(vε, vε) +
(
a( · , uε)− a( · , ũ0), vε

)
L2(∂θε)

− λ‖vε‖2
L2(Ωε)

=−
(
∂ũ0

∂n
, vε

)
L2(∂θε)

−
(
a( · , ũ0), vε

)
L2(∂θε)

+ (α0a( · , ũ0), vε)L2(S̃).
(3.4.1)

Наша дальнейшая цель — оценить сверху правую часть равенства (3.4.1)
и снизу левую часть этого равенства. Всюду далее до конца доказатель-
ства через C обозначаем различные несущественные константы, не зави-
сящие от ε, vε, f , ũ0, k ∈ Mε, а также пространственных переменных.

Используя свойство (3.2.9) и неравенство Коши–Буняковского, выво-
дим: ∣∣∣(a( · , uε)− a( · , ũ0), vε

)
L2(∂θε)

∣∣∣ 6 a0‖vε‖2
L2(∂θε).

Из последнего неравенства, (3.2.6) и леммы 3.2.1 следует, что увеличивая
при необходимости модуль числа λ0, при λ < λ0 будем иметь∣∣∣h0(vε, vε) +

(
a( · , uε)− a( · , ũ0), vε

)
L2(∂θε)

− λ‖vε‖2
L2(Ωε)

∣∣∣ > C‖vε‖2
W 1

2 (Ωε).

(3.4.2)
Первое слагаемое в правой части неравенства (3.4.1) оценивается так

же, как и первое слагаемое в правой части (3.3.2) в случае a ≡ 0. Поэтому,
повторяя выкладки из вывода оценки (3.3.7), получим неравенство∣∣∣∣∣

(
∂ũ0

∂n
, vε

)
L2(∂θε)

∣∣∣∣∣ 6 C(εη + ε
1
2η

n
2 )‖f‖L2(Ω)‖vε‖W 1

2 (Ωε). (3.4.3)

В дальнейших оценках, не оговаривая отдельно, мы неоднократно бу-
дем пользоваться равномерной ограниченностью площадей |∂ωk,ε|, уста-
новленной в лемме 3.1.2. Согласно оценке (3.2.22) в лемме 3.2.6 и второй
оценке в (3.2.36), выполнено неравенство∑

k∈Mε

∣∣∣∣ηn−1|∂ωk,ε|
|∂Bb∗R2

(0)|
(a( · , ũ0), vε)L2(∂Bb∗R2ε

(Mε
k)) − (a( · , ũ0), vε)L2(∂ωεk)

∣∣∣∣
6 Cε

1
2‖ũ0‖W 1

2 (Ω)‖vε‖W 1
2 (Ωε) 6 Cε

1
2‖f‖L2(Ω)‖vε‖W 1

2 (Ωε).

(3.4.4)
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Пусть ξ = (ξ′, ξn), ξ′ = (ξ1, ξ2, . . . , ξn−1) — декартовы координаты в Rn,

Ξ :=
{
ξ : |ξ′| < bR2, |ξn| < bR2

}
\Bb∗R2

(0),

Υ :=
{
ξ : |ξ′| < bR2, ξn = bR2

}
.

Ясно, что для функций u ∈ W 1
2 (Ξ) с нулевым средним верна оценка

‖u‖L2(Ξ) 6 C‖∇ξu‖L2(Ξ), ‖u‖L2(∂Bb∗R2
(0)∪Υ) 6 C‖∇ξu‖L2(Ξ). (3.4.5)

где C — некоторая константа, не зависящая от u. Фиксируем произ-
вольный индекс k ∈ Mε и определим ξ := yε−1, где y = (y1, . . . , yn) —
декартовы координаты в Rn с центром в точке M ε

k , причём ось yn на-
правлена вдоль положительного направления вектора нормали к поверх-
ности S в точке M ε

k,⊥. Переменные x выразим через y и ξ и положим
Ξε
k := {x : ξ ∈ Ξ}, Υε

k := {x : ξ ∈ Υ}.
Из оценок (3.4.5) следует оценки, аналогичные (3.2.17), (3.2.18),

‖u‖L2(Ξεk) 6 Cε‖∇u‖L2(Ξεk), ‖u‖L2(∂Bb∗R2ε
(Mε

k)∪Υε
k) 6 Cε

1
2‖∇u‖L2(Ξεk)

для всех u ∈ W 1
2 (Ξε

k) с нулевым средним по Ξε
k, где константы C не за-

висят от ε, k, u. Основываясь на этих оценках, применим теперь подход,
использованный в доказательстве леммы 3.2.6 для вывода неравенства
(3.2.25). Аналогично (3.2.23) введём схожие величины, но уже для мно-
жеств Ξε

k:

〈u〉k :=
1

|Ξε
k|

∫
Ξεk

u dx, u⊥ := u− 〈u〉k, u ∈ W 1
2 (Ξε

k).

В терминах этих обозначений функции a(x, ũ0(x)) и vε представим в виде

a( · , ũ0) = 〈a( · , ũ0)〉k + a( · , ũ0)⊥, vε = 〈vε〉k + vε,⊥

и, пользуясь условием (1.0.12) и оценками (3.2.2), аналогично (3.2.24) по-
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лучаем∣∣∣∣ 1

|∂Bb∗R2
(0)|

(a( · , ũ0), vε)L2(∂Bb∗R2ε
(Mε

k))

− 1

Rn−1
2

(
ζ(|ξ′|R−1

2 )a( · , ũ0), vε
)
L2(Υε

k)

∣∣∣∣
6 C

(
|〈a( · , ũ0)〉k|‖vε,⊥‖L1(∂Bb∗R2ε

(Mε
k)∪Υε

k)

+ |〈vε〉k|‖a( · , ũ0)⊥‖L1(∂Bb∗R2ε
(Mε

k)∪Υε
k)

+ ‖a( · , ũ0)⊥‖L2(∂Bb∗R2ε
(Mε

k)∪Υε
k)‖vε,⊥‖L2(∂Bb∗R2ε

(Mε
k)∪Υε

k)

)
6 C

(
‖ũ0‖L2(Ξεk)‖∇vε‖L2(Ξεk) + ‖ũ0‖W 1

2 (Ξεk)‖vε‖L2(Ξεk)

+ ε‖ũ0‖W 1
2 (Ξεk)‖∇vε‖L2(Ξεk)

)
.

(3.4.6)

Отметим ещё, что верны оценки∑
k∈Mε

‖vε‖2
L2(Ξεk) 6 Cε‖vε‖2

W 1
2 (Ωε),

∑
k∈Mε

‖ũ0‖2
L2(Ξεk) 6 Cε‖ũ0‖2

W 1
2 (Ωε),

которые легко получаются интегрированием (3.2.15) по областям Ξε
k. Сум-

мируя теперь неравенства (3.4.6) с учётом этих оценок и второй оценки
в (3.2.36), получаем∑

k∈Mε

∣∣∣∣ηn−1|∂ωk,ε|
|∂Bb∗R2

(0)|
(a( · , ũ0), vε)L2(∂Bb∗R2ε

(Mε
k))

− ηn−1|∂ωk,ε|
Rn−1

2

(
ζ(|ξ′|R−1

2 )a( · , ũ0), vε
)
L2(Υε

k)

∣∣∣∣
6Cηn−1

( ∑
k∈Mε

‖ũ0‖2
L2(Ξεk)

) 1
2
( ∑
k∈Mε

‖∇vε‖2
L2(Ξεk)

) 1
2

+ Cηn−1

( ∑
k∈Mε

‖ũ0‖2
W 1

2 (Ξεk)

) 1
2
( ∑
k∈Mε

‖vε‖2
L2(Ξεk)

) 1
2

+ Cεηn−1

( ∑
k∈Mε

‖ũ0‖2
W 1

2 (Ξεk)

) 1
2
( ∑
k∈Mε

‖∇vε‖2
L2(Ξεk)

) 1
2

6Cε
1
2ηn−1‖f‖L2(Ω)‖vε‖W 1

2 (Ωε).

(3.4.7)
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Определим множества

Ωε
k :=

{
x ∈ Ω : |ξ′| < bR2, ξn > bR2, τ < ε(2bR2 +R0)

}
.

Это цилиндрические области, нижними основаниями которых служат Υε
k,

а верхними — пересечения S̃∩BbR2ε(M̃
ε
k,⊥), где M̃ ε

k,⊥ — точка пересечения
оси Oyn с поверхностью S̃. С учётом финитности срезающей функции ζ
проинтегрируем по частям∫

Ωεk

ζ(|ξ′|R−1
2 )

∂

∂yn

(
a( · , ũ0)vε

)
dx = −

(
ζ(|ξ′|R−1

2 )a( · , ũ0), vε
)
L2(Υε

k)

+
(
ζ(|ξ′|R−1

2 )a( · , ũ0), cos(Oyn, ν̃)vε
)
L2(S̃∩BbR2ε

(M̃ε
k,⊥))

,

(3.4.8)

где ν̃ — нормаль к поверхности S̃, направленная от поверхности S. Ясно,
что верна равномерная по ε, k и x ∈ S̃ ∩BbR2ε(M̃

ε
k,⊥) оценка∣∣ cos(Oyn, ν̃)− 1

∣∣ 6 Cε. (3.4.9)

Интегрирование (3.2.15) даёт ещё одно неравенство∑
k∈Mε

‖u‖2
L2(Ωεk) 6 Cε‖u‖2

W 1
2 (Ωε)

для всех u ∈ W 1
2 (Ωε) с константой C, не зависящей от ε и u. Из данной

оценки, (3.4.8), (3.4.9), (3.2.2), (3.2.30) следует∣∣∣∣ ∑
k∈Mε

ηn−1|∂ωk,ε|
Rn−1

2

(
ζ(|ξ′|R−1

2 )a( · , ũ0), vε
)
L2(Υε

k)

−
∑
k∈Mε

ηn−1|∂ωk,ε|
Rn−1

2

(
ζ(|ξ′|R−1

2 )a( · , ũ0), vε
)
L2(S̃∩BbR2ε

(M̃ε
k,⊥))

∣∣∣∣
6 C

( ∑
k∈Mε

‖ũ0‖2
W 1

2 (Ωεk)

) 1
2
( ∑
k∈Mε

‖vε‖2
L2(Ωεk)

) 1
2

+ C

( ∑
k∈Mε

‖ũ0‖2
L2(Ωεk)

) 1
2
( ∑
k∈Mε

‖∇vε‖2
L2(Ωεk)

) 1
2

+ Cε‖ũ0‖L2(S̃)‖vε‖L2(S̃) 6 Cε
1
2‖ũ0‖W 1

2 (Ω)‖vε‖W 1
2 (Ωε).

(3.4.10)
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Пусть x ∈ S ∩ BbR2ε(M
ε
k,⊥) — произвольная точка, x⊥ — её проекция

на касательную гиперплоскость к поверхности S в точке M ε
k,⊥. Ясно, что

|ξ′| = |x⊥−M ε
k,⊥|ε−1. Так как поверхность S гладкая, а линейный размер

куска S ∩BbR2ε(M
ε
k,⊥) порядка O(ε), то верно неравенство∣∣∣∣∣|ξ′|R2

−
|x−M ε

k,⊥|
εR2

∣∣∣∣∣ =

∣∣∣∣∣ |x⊥ −M ε
k,⊥|

εR2
−
|x−M ε

k,⊥|
εR2

∣∣∣∣∣ 6 Cε,
где константа C не зависит от ε, k ∈ Mε и x ∈ S∩BbR2ε(M

ε
k,⊥). Учитывая

последнюю оценку, (3.2.2) и определение функции αε, теперь видим, что∣∣∣∣ ∑
k∈Mε

ηn−1|∂ωk,ε|
Rn−1

2

(
ζ

(
|ξ′|
R2

)
a( · , ũ0), vε

)
L2(S̃∩BbR2ε

(M̃ε
k,⊥))

− (αεa( · , ũ0), vε)L2(S̃)

∣∣∣∣ 6 Cε‖a( · , ũ0)‖L2(S̃)‖vε‖L2(S̃)

6 Cε‖ũ0‖W 1
2 (Ω)‖vε‖W 1

2 (Ωε).

(3.4.11)

Эта оценка вместе с (3.4.4), (3.4.7), (3.4.10) приводит к неравенству∣∣∣(a( · , ũ0), vε)L2(∂θε) − (αεa( · , ũ0), vε)L2(S̃)

∣∣∣ 6 Cε 1
2‖ũ0‖W 1

2 (Ω)‖vε‖W 1
2 (Ωε).

(3.4.12)
Отсюда уже в силу оценки (3.2.34) с u = ũ0 получаем∣∣(a( · , ũ0), vε)L2(∂θε) − (α0a( · , ũ0), vε)L2(S̃)

∣∣
6 C

(
ε

1
2 + κ(ε)

)
‖ũ0‖W 1

2 (Ωε)‖vε‖W 1
2 (Ωε)

6 C
(
ε

1
2 + κ(ε)

)
‖f‖L2(Ω)‖vε‖W 1

2 (Ωε).

(3.4.13)

Из последнего неравенства и (3.4.3), (3.4.2), (3.4.1) следует

‖vε‖W 1
2 (Ωε) 6 C

(
ε

1
2 + κ(ε)

)
‖f‖L2(Ω). (3.4.14)

Используя последнее неравенство и лемму 3.2.10, выводим

‖uε − u0‖W 1
2 (Ωε) 6 ‖vε‖W 1

2 (Ωε) + ‖ũ0 − u0‖W 1
2 (Ωε) 6 C

(
ε

1
2 + κ(ε)

)
‖f‖L2(Ω).

Теорема 1.0.3 доказана.



Глава 4

Асимптотика решения в случае
усредненного краевого условия
Дирихле

4.1 Формальные асимптотики

В этом параграфе мы начинаем доказательство теоремы 1.0.4, а именно,
начинаем формальное построение асимптотики для решения рассматри-
ваемой задачи.

Для построения асимптотики решения задачи (1.0.4) будем применять
метод согласования асимптотических разложений [25]. Функцию uε будем
строить как комбинацию внешнего и внутреннего разложений. Внешнее
разложение строится в виде

uexε (x, η) = u0(x) +
∞∑
m=1

εmum(x, η), (4.1.1)

где u0 — решение соответствующей усреднённой задачи

(L − λ)u0 = f в Ω \ S, u0 = 0 на S ∪ ∂Ω, (4.1.2)

Внутреннее разложение будем строить в окрестности полостей θε в рас-
тянутых переменных ξ = (ξ′, ξn) = (x′ε−1, xnε

−1) в виде

uinε (x, η) =
∞∑
m=1

εmvm(ξ, x′, η). (4.1.3)

86
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Целью формального построения является определение коэффициентов
внешнего и внутреннего разложений.

Подставим разложение (4.1.1) в задачу (1.0.4) и соберем коэффици-
енты при одинаковых степенях ε. В результате получим краевые задачи
(1.0.26) на коэффициенты внешнего разложения.

Выпишем задачи на коэффициенты внутреннего разложения. Для это-
го разложим функцию f в ряд Тейлора при xn → 0 и сделаем замену
xn = εξn. Тогда получим

f(x) =
∞∑
m=0

1

m!

∂mf

∂xmn
(x′, 0)xmn =

∞∑
m=0

εm

m!

∂mf

∂xmn
(x′, 0)ξmn , xn → 0. (4.1.4)

Подставляя разложение (1.0.31), (4.1.4) и (4.1.3) в задачу (1.0.4) и соби-
рая коэффициенты при одинаковых степенях ε, получим задачи (1.0.27),
(1.0.28), (1.0.30). Поведение функций vm на бесконечности определяется
из условия согласования внешнего разложения с внутренним. Согласова-
ние проводится следующим образом.

Далее в работе будет показано, что функции u0, um бесконечно диф-
ференцируемые в окрестности гиперплоскости xn = 0 с каждой из её
сторон. Поэтому разложим их в ряд Тейлора при xn → ±0, учитывая
граничные условия для u0 при xn = 0,

u0(x, η) =
∞∑
j=1

1

j!

∂ju0

∂xjn
(x′,±0, η)xjn =

∞∑
j=1

εj

j!

∂ju0

∂xjn
(x′,±0, η)ξjn, (4.1.5)

um(x, η) =
∞∑
j=0

1

j!

∂jum

∂xjn
(x′,±0, η)xjn =

∞∑
j=0

εj

j!

∂jum

∂xjn
(x′,±0, η)ξjn. (4.1.6)

В силу метода согласования из последних разложений следует, что функ-
ции vm должны иметь следующие асимптотики (1.0.29) на бесконечности.

Задачи (1.0.27), (1.0.28), (1.0.29) на коэффициенты внутреннего раз-
ложения являются периодическими по ξ′. Поэтому их решения также
будем искать периодическими. В силу предполагаемой периодичности
задачи (1.0.27), (1.0.28), (1.0.29) сводятся к аналогичным задачам в Π
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с периодическими граничными условиями на боковых гранях Π. Решив
такие задачи в Π, решения задач (1.0.28), (1.0.29) получим простым �–
периодическим продолжением по ξ′.

Описанные задачи в Π зависят от параметра η. Их разрешимость и
зависимость от этого параметра будут исследованы в следующем пара-
графе.

4.2 Исследование модельной задачи для коэффици-
ентов внутреннего разложения

4.2.1 Модельная задача

Обозначим: ωη := ωηD ∪ ω
η
R. Пусть F ∈ L2(Π \ ωη), φ ∈ L2(∂θ

η
R) — произ-

вольные функции. Рассмотрим модельную краевую задачу

−∆ξv = F в Π \ ωη,

v = 0 на ∂ωηD,
∂v

∂νξ
= φ на ∂ωηR,

(4.2.1)

v|
ξi=− bi2

= v|
ξi=

bi
2
,

∂v

∂ξi

∣∣∣∣
ξi=− bi2

=
∂v

∂ξi

∣∣∣∣
ξi=

bi
2

, i = 1, . . . , n− 1. (4.2.2)

Для произвольного R > 0 обозначим:

Π±R := {ξ : ξ′ ∈ �, 0 < ±ξn < R} , Πη := ΠR6
\ ωη.

Обобщенным решением задачи (4.2.1), (4.2.2) называется функция v,
принадлежащая пространству W 1

2 (ΠR \ ωη) для каждого R > 0, удовле-
творяющая интегральному тождеству

(∇ξv,∇ξw)L2(ΠR\ωη) − (w, φ)L2(∂ωη) = (F,w)L2(ΠR\ωη)

для всех функций w ∈ C2(Π \ ωη) таких, что функция w обращается
в нуль на ∂ωηD, удовлетворяет периодическим граничным условиям на
боковых гранях Π и тождественно равна нулю при |ξn| > d > 0 для
некоторого d > 0, зависящего от выбора функции w. Поведение решения
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задачи (4.2.1), (4.2.2) на бесконечности будет уточнено далее в процессе
исследования разрешимости.

Целью этого параграфа является исследование разрешимости задачи
(4.2.1), (4.2.2) и зависимости её решения от параметра η.

4.2.2 Операторное уравнение

В этом пункте будем рассматривать задачу (4.2.1), (4.2.2) с финитной
правой частью F и с однородным граничным условием φ = 0. Считаем,
что функция F обращается в нуль вне множества ΠR6

для некоторого
фиксированного R6 > 1 такого, что ωη ⊂ ΠR6−1 для всех η ∈ (0, 1]. Будем
искать решение такой задачи, стремящееся к константам при ξn → ±∞,

v(ξ, η) = A±(η) + o(1), ξn → ±∞. (4.2.3)

Для всех R > 0 обозначим

Π±R := {ξ : ξ′ ∈ �, 0 < ±ξn < R} ,
ΠR,± := {ξ : ξ′ ∈ �, ±ξn > R} .

Пусть g ∈ L2(Π
η) — некоторая функция. Продолжим функцию g ну-

лём при |ξn| > R6 и рассмотрим задачи

−∆ξV
±

1 = g в ΠR6−1,±, V ±1 = 0 на �× {0}, (4.2.4)

с периодическими граничными условиями (4.2.2). Решим эту задачу ме-
тодом разделения переменных:

V ±1 (ξ) =
∑

k∈Zn−1
X±k (ξn)e

2πikb ·ξ
′
, (4.2.5)

где · — скалярное произведение в Rn−1,

X±k (ξn) =

∫
Π±R6
\Π±R6−1

J±k (ξ′, ξn ∓ (R6 − 1), t)g(t)dt, k 6= 0,
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X+
0 (ξn) =

∫
Π±R6
\Π±R6−1

J±0 (ξn ∓ (R6 − 1), tn)g(t)dt

и обозначено:

J±k (ξ′, ξn, t) :=
1

2Zk

(
e∓Zk(ξn+tn) − e−Zk|ξn−tn|

)
e2πikb ·t

′
,

J+
0 (ξn, tn) := −min{ξn, tn}, J−0 (ξn, tn) := max{ξn, tn},

k = (k1, k2, . . . , kn−1),
k

b
=

(
k1

b1
,
k2

b2
, . . . ,

kn−1

bn−1

)
,

t = (t′, tn), t′ = (t1, t2, . . . , tn−1), Zk = 2π

∣∣∣∣kb
∣∣∣∣ .

В силу финитности функции g, при ±ξn > R6 функции X±0 тождественно
совпадают с константами:

X±0 (ξn) ≡ A±, ±ξn > R6, A± =

∫
Π±R6
\Π±R6−1

|tn|g(t) dt. (4.2.6)

Определим функцию V1(ξ) := V ±1 (ξ) в ΠR6−1,±.

Лемма 4.2.1. Ряды (4.2.5) сходятся в норме W 2
2 (Π±R \ΠR6−1,±) для про-

извольного R > R6 − 1, а за вычётом слагаемых X±0 сходимость верна
и в норме W 2

2 (ΠR6−1,±). Оператор B1, отображающий g в V1, линеен и
ограничен как оператор из L2(ΠR6

) в W 2
2 (Π+

R \Π+
R6−1)⊕W 2

2 (Π−R \Π−R6−1).
Верны неравенства

‖V ±1 ‖W 2
2 (Π±R\Π

±
R6−1

) 6 C(R)‖g‖L2(Π±R6
\Π±R6−1

),

‖V ±1 − A±‖W 2
2 (ΠR6−1,±) 6 C‖g‖L2(Π±R6

\Π±R6−1
),

(4.2.7)

где константы C и C(R) не зависят от g, а константы A± определя-
ются формулами (4.2.6).

Доказательство леммы проводится аналогично доказательству леммы
3.1 в [8] с дополнительным использованием того факта, что при |ξn| >
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R > R6 функции X±k имеют вид

X±k (ξ) = A±k e
−Zk(ξn−R6), ±ξn > R,

A±k := − 1

Zk

∫
Π±R6
\Π±R6−1

g(t)e2πikb ·t
′
sinhZktndt, (4.2.8)

и для константA±k верна очевидная оценка

|A±k | 6
CeZkR6

|Zk|
‖g‖L2(Π±R6

\Π±R6−1
), (4.2.9)

где константа C не зависит от k и g.
Рассмотрим ещё одну краевую задачу

−∆ξV2 = g в Πη, V2 = V ±1 на �× {±R6},

V2 = 0 на ∂ωηD,
∂V2

∂νξ
= 0 на ∂ωηR6

,
(4.2.10)

с периодическими граничными условиями (4.2.2).
Задача (4.2.10) имеет единственное решение V2 ∈ W 1

2 (Πη). Согласно
теоремам о повышении гладкости решений эллиптических краевых задач,
функция V2 есть элемент пространства W 2

2 (Πη). Поэтому функцию V2

можно представить как V2 = B2(η)g, где B2(η) — линейный ограниченный
оператор, действующий из L2(Π

η) вW 2
2 (Πη). Для функции V2 выполнены

оценки
‖V2‖W 2

2 (Πη) 6 C‖g‖L2(Πη),

где константа C не зависит от V2 и g, но зависит от R и η.
Обозначим через χ3 = χ3(ξn) чётную бесконечно дифференцируемую

срезающую функцию, равную единице при |ξn| < R6 − 2
3 и нулю при

|ξn| > R6 − 1
3 . Определим функцию v по правилу

v(ξ, η) = (B3(η)g)(ξ, η) = χ3(ξn)V2(ξ, η) + (1− χ3(ξn))V1(ξ), (4.2.11)

где B3(η) — линейный ограниченный оператор, действующий из L2(Π
η)

в W 2
2 (ΠR \ ωη) для всех R > 0. В силу определения функций V1 и V2
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эта функция удовлетворяет граничным условиям задачи (4.2.1), (4.2.2)
и условию (4.2.3). Следовательно, функция v является решением задачи
(4.2.1), (4.2.2), если для нее выполнено уравнение из (4.2.1). Подставляя
равенство (4.2.11) в это уравнение и учитывая уравнения на функции V1

и V2 из задач (4.2.4) и (4.2.10), получим

g + B4(η)g = F, (4.2.12)

где

B4(η)g = 2
∂(V2 − V1)

∂ξn
χ′3 + (V2 − V1)χ

′′
3. (4.2.13)

Лемма 4.2.2. Уравнение (4.2.12) эквивалентно задаче (4.2.1), (4.2.2):
для каждого решения g уравнения (4.2.12) существует решение задачи
(4.2.1), (4.2.2), определённое равенством (4.2.11), и для каждого реше-
ния v задачи (4.2.1), (4.2.2) существует единственное решение g урав-
нения (4.2.12), связанное с v равенством (4.2.11).

Доказательство. Воспользуемся идеями доказательства схожего утвер-
ждения — предложения 3.2 из работы [47]. А именно, как было показа-
но выше, каждое решение уравнения (4.2.12) порождает решение задачи
(4.2.1), (4.2.2) по формуле (4.2.11). Поэтому достаточно показать, как по
заданному решению задачи (4.2.1), (4.2.2) строится соответствующее ре-
шение уравнения (4.2.12).

Пусть u — решение задачи (4.2.1), (4.2.2). Вначале отыщем разность
функций V2 − V ±1 , соответствующих этой функции. Как легко видеть
из задач (4.2.4), (4.2.10) и равенства (4.2.11), функции ũ± := V2 − V ±1
являются решениями задач

−∆ξũ
± = 0 в ΠR6

\ ΠR6−1,

ũ = 0 на �× {±R6}, ũ = u на �× {±(R6 − 1)},

с периодическими граничными условиями (4.2.2). Такие задачи очевидно
однозначно разрешимы. Положим теперь

V ±1 := u− χ3ũ
± в Π±R6

\ Π±R6−1, V2 := u+ (1− χ3)ũ
± в Π±R6

,
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g := F в ΠR6−1 \ ωη, g := F + ∆χ3ũ
± в Π±R6

\ Π±R6−1.

Теперь прямыми вычислениями элементарно проверяется, что опреде-
лённые функции g, V ±1 , V2 соответствует функции u в указанном выше
смысле, а функция g является решением уравнения (4.2.12). Лемма до-
казана.

Лемма 4.2.3. B4(η) является линейным компактным оператором в
L2(Π

η).

Доказательство этой леммы проводится аналогично доказательству
предложения 3.1 из [47].

Поскольку оператор B4(η) является компактным, то к уравнению (4.2.12)
можно применить альтернативы Фредгольма. Это поможет исследовать
разрешимость задачи (4.2.1), (4.2.2) в следующих разделах.

4.2.3 Поведение решения при конечных η

Для любого η ∈ (0, 1] задача (4.2.1), (4.2.2) с однородной правой частью
имеет единственное решение, ограниченное на бесконечности, и благода-
ря наличию однородного краевого условия Дирихле на ∂ωηD, это решение
— тривиальное. В этом легко убедиться, умножив соответствующее урав-
нение на решение и проинтегрировав затем однократно по частям по всей
области с учётом поведения на бесконечности. В силу леммы 4.2.2 этот
факт означает, что уравнение (4.2.12) с однородной правой частью имеет
только тривиальное решение. Поэтому уравнение (4.2.12) с произвольной
правой частью однозначно разрешимо, и тем самым корректно определён
обратный оператор (I+B4(η))−1 в L2(Π

η). Наша цель — показать, что он
в определённом смысле непрерывен по η.

Пусть g = (I + B4(η))−1F — решение уравнения (4.2.12). Результат
действия оператора B4(η) на произвольную функцию g есть функция с
носителем в ΠR6

\ ΠR6−1. Поэтому сразу заключаем, что

g = F в ΠR6−1 \ ωη. (4.2.14)
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В смысле прямого разложения

L2(Π
η) = L2(ΠR6−1 \ ωη)⊕ L2(ΠR6

\ ΠR6−1)

справедливо равенство B4 = B4(I⊕0)+B4(0⊕I), и так как результат дей-
ствия оператора B4 — финитная функция, то оператор B4(η)(0⊕I) можно
эквивалентно рассматривать как оператор в L2(ΠR6

\ ΠR6−1). Поэтому в
свете равенства (4.2.14) уравнение (4.2.12) сводится к эквивалентному
уравнению в L2(ΠR6

\ ΠR6−1)

(I + B4(0⊕ I))g̃ = F̃ − B4(η)(I ⊕ 0)F,

где g̃, F̃ — сужение g и F на ΠR6
\ ΠR6−1.

Пусть 0 < η0 6 1 — некоторое фиксированное число, η ∈ [η0, 1], а
G ∈ L2(Π

η) — некоторая функция. Рассмотрим краевую задачу

−∆ξU = G в Πη,
∂U

∂νξ
= 0 на ∂ωηR,

U = 0 на ∂ωηD ∪
(
�× {−R6, R6}

)
,

(4.2.15)

с периодическими граничными условиями (4.2.2).

Лемма 4.2.4. При η ∈ [η0, 1] для решения задачи (4.2.15) верна оценка

‖U‖W 2
2 (Πη) 6 C(η0)‖G‖L2(Πη), (4.2.16)

где константа C(η0) не зависит от η ∈ [η0, 1) и G.

Доказательство. Благодаря наличию краевого условия Дирихле при ξ2 =

±R6 задача (4.2.15) однозначно разрешима, и верна оценка

‖U‖W 1
2 (Πη 6 C(η0)‖G‖L2(Πη . (4.2.17)

Эта оценка выводится на основе соответствующих интегральных тож-
деств с пробной функцией U и неравенства

‖U‖L2(Πη 6 C(η0)‖∇U‖W 1
2 (Πη . (4.2.18)
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Оно доказывается аналогично лемме 2.1.3, но с ε = 1. Используя теперь
неравенство (4.2.17), для задач (4.2.15) несложно повторить доказатель-
ство леммы 8.1 из [26, Гл. III, §8] и убедиться в выполнении равномерной
оценки (4.2.16). Лемма доказана.

Лемма 4.2.5. Пусть 0 < η0 6 1 — некоторое фиксированное число,
η1, η2 ∈ [η0, 1], а Gi ∈ L2(ΠR2

\ (ωηi)), i = 1, 2, — произвольные функции,
причём G1 = G2 на ΠR2

\(ωη1∪ωη2). Тогда для решений Ui, i = 1, 2, задачи
(4.2.15) с η = ηi, G = Gi при достаточно малых |η1 − η2| выполнена
оценка

‖U1 − U2‖W 2
2 (ΠR6

\ΠR6−1) 6 C(η0)|η1 − η2|
1
2

2∑
i=1

‖Gi‖L2(ΠR2
\(ωηi)), (4.2.19)

где константа C(η0) не зависит от Gi и ηi, i = 1, 2.

Доказательство. Всюду в доказательстве через C обозначаем несуще-
ственные константы, не зависящие от Ui, Fi, ξ и η ∈ [η0, 1), но зависящие
от η0.

Рассмотрим задачу (4.2.15) для функции U1. Пусть γ := ∂ωη2D ∩ (ΠR6
\

ωη1) — часть поверхности ∂ωη2D , лежащая в области ΠR6
\ ωη1. Тогда для

ξ ∈ γ мы можем проинтегрировать по нормали к ∂ωη1D

U1(ξ) = −
ξ∫
ξ̃

∂U1

∂ρ
dρ,

где ρ — расстояние вдоль нормали к ∂ωη1D , а точки ξ̃ ∈ ∂ωη1D соединяет-
ся такой нормалью с точкой ξ. Из полученного представления следует
очевидная оценка

|U1(ξ)|2 6 C|η2 − η1|
ξ∫
ξ̃

|∇U1| dρ.
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Проинтегрировав по γ, получаем

‖U1‖2
L2(∂ω

η2
D ∩(ΠR6

\ωη1)) 6 C|η2 − η1|‖∇U1‖L2(ΠR6
\ωη1). (4.2.20)

Аналогично выводится оценка∥∥∥∥∂U1

∂νξ

∥∥∥∥2

L2(∂ω
η2
D ∩(ΠR6

\ωη1))

6 C|η2 − η1|‖∇U1‖W 1
2 (ΠR6

\ωη1). (4.2.21)

При этом следует учесть, что нормаль νξ на ∂ωη2D отличается от нормали
на ∂ωη1D на величину порядка |η2− η1|, и в силу леммы 4.2.4 верна оценка

‖∇U1‖L2(∂ω
η2
D ∩(ΠR6

\ωη1)) 6 C‖U1‖W 2
2 (ΠR6

\ωη1).

Аналогичные оценки верны и для функции U2 на частях многообразия
ωη1, расположенных внутри области ΠR6

\ ωη2.
Обозначим Û := U1 − U2, ω̂ := ωη1 ∪ ωη2. Выпишем теперь задачу для

этой функции в области ΠR2
\ ω̂, вытекающую из (4.2.15), и запишем для

неё интегральное тождество, взяв Û в качестве пробной функции

‖∇Û‖2
L2(ΠR2

\ω̂) =

∫
∂ω̂

Û
∂Û

∂νξ
ds. (4.2.22)

Каждая точка границы ∂ω̂ является точкой одной из границ ∂ωηiD или
∂ωηiR . Если, например, точка попадает на ∂ωη1D , то Û ∂Û

∂νξ
= −U2

∂Û
∂νξ

. Если

точка попадает на ∂ωη1R , то Û ∂Û
∂νξ

= −Û ∂U2

∂νξ
. Для точек из ∂ωη2 верны ана-

логичные равенства. Используя эти равенства, оценки (4.2.20), (4.2.21) и
аналогичные оценки для U2, а также лемму 4.2.4, на основе соотношения
(4.2.22) несложно проверить, что

‖∇Û‖2
L2(ΠR2

\ω̂) 6 C|η2 − η1|
2∑
j=1

‖Gi‖L2(ΠR2
\(ωηi)).

Теперь остается только применить оценку (4.2.18) к функции Û и это
даёт требуемое неравенство (4.2.19). Лемма доказана.
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Замена решения задачи (4.2.10) на V2− (1−χ3)V1 сводит эту задачу к
(4.2.15) с G = g−∆ξ(1−χ3)V1. В силу леммы 4.2.5 и определения (4.2.13)
оператора B4(η) сразу заключаем, что оператор B4(η)(0⊕ I) непрерывен
по η ∈ (0, 1] и оператор B4(η)(I ⊕ 0) ограничен равномерно по η ∈ [η0, 1]

для каждого фиксированного η0 > 0. С учётом равенства (4.2.14) теперь
окончательно получаем, что при η ∈ [η0, 1] верна оценка

‖(I + B4(η))−1‖ 6 C,

где константа C не от η, но зависит от η0, а норма понимается как норма
оператора L2(Π

η). Восстанавливая теперь решение задачи (4.2.1), (4.2.2)
по формуле (4.2.11) и учитывая леммы 4.2.1, 4.2.4 и оценки (4.2.9), при-
ходим к следующему утверждению.

Лемма 4.2.6. Задача (4.2.1), (4.2.2) с финитной правой частью F ,
чей носитель расположен внутри ΠR6

, и с φ = 0 имеет единствен-
ное обобщённое решение с асимптотикой (4.2.3) для всех η ∈ (0, 1]. При
|ξn| > R6 данное решение представляется в виде

v(ξ, η) = A±(η) +
∑

k∈Zn−1
A±k (η)e−Zk|ξn|e2πikb ·ξ

′
, ±ξn > R6, (4.2.23)

где константы A±k выражаются через соответствующее решение урав-
нения (4.2.12) формулами в (4.2.8). Для каждого фиксированного η ∈
(0, 1] при η ∈ [η0, 1] верны оценки

sup
k∈Zn−1

e−Zk|A±k (η)| 6 C

|Zk|
‖F‖L2(Πη , (4.2.24)

‖v‖W 2
2 (Πη + ‖v − A+

0 ‖W 2
2 (ΠR6,+

)

+ ‖v − A−0 ‖W 2
2 (ΠR6,−) 6 C‖F‖L2(Πη),

(4.2.25)

где константа C не зависит от F и η, но зависит от η0.

4.2.4 Поведение решения при малых η

Исследуем поведение решения уравнения (4.2.12) и соответствующего ре-
шения задачи (4.2.1), (4.2.2) при малых η. Начнём с исследования пове-



98

дения оператора B4(η).
Рассмотрим задачу

−∆ξv
0 = F в Π (4.2.26)

с периодическими граничными условиями (4.2.2). Пусть задана функция
g ∈ L2(ΠR6

). Построим по ней решение V1 задачи (4.2.4). Затем с помо-
щью функции V1 построим решение задачи

−∆ξV
0

2 = g в ΠR6
, V 0

2 = V ±1 на �× {±R6},

с периодическими граничными условиями (4.2.2). Будем искать решение
задачи (4.2.26) в виде

v0(ξ, η) = (B0
3(η)g)(ξ, η) := χ3(ξn)V

0
2 + (1− χ3(ξn))V1.

Обозначим
B5g = 2

∂(V 0
2 − V1)

∂ξn
χ′3 + (V 0

2 − V1)χ
′′
3. (4.2.27)

Уравнение
g + B5g = F

эквивалентно задаче (4.2.26) в том же смысле, в каком это было доказано
в лемме 4.2.2 для уравнения (4.2.12) и задачи (4.2.1), (4.2.2).

Сужение функции из L2(ΠR6
) на Πη очевидно является элементом про-

странства L2(Π
η), поэтому с этой точки зрения оператор B4(η) определён

также и на пространстве L2(ΠR6
). Результат действия — функция с но-

сителем в ΠR6
\ΠR6−1, которую можно рассматривать одновременно как

элемент пространств L2(ΠR6
) и L2(Π

η). В результате оператор B4(η) мож-
но рассматривать как оператор в пространстве L2(ΠR6

). Обозначим те-
перь B6(η) := B4(η)−B5B7, где B7(η) — оператор продолжения функций
из L2(Π

η) нулём внутрь ωη. А именно, оператор B7 : L2(Π
η) → L2(ΠR6

)

каждой функции g ∈ L2(Π
η) сопоставляет функцию

B7(η)g :=

{
g в Πη,

0 в ωη.
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Наша дальнейшая цель — оценить норму введённого оператора B6(η) как
оператора в L2(ΠR6

).
Из (4.2.13), (4.2.27) вытекает, что

B6(η)g = 2χ′3

(
∂V2

∂ξn
− ∂V 0

2

∂ξn

)
+ χ′′3(V2 − V 0

2 ),

где функция V 0
2 строится по функции B7(η)g. Верны неравенства

‖V 0
2 ‖W 1

2 (ΠR6
) 6 C‖g‖L2(ΠR6

),

‖V 0
2 ‖W 2

2 (ΠR6
\ΠR6−1) 6 C‖g‖L2(ΠR6

),

‖B6(η)g‖L2(ΠR6
) 6 C‖V2 − V 0

2 ‖W 1
2 (ΠR6

\ΠR6−1), (4.2.28)

где константы C не зависят от η и g, но зависят от R.
Обозначим V3 = V2 − χ3V1, V 0

3 = V 0
2 − χ3V1. Функция V3 является

решением задачи

−∆ξV3 = g + ∆ξ(χ3V1) в Πη,

V3 = 0 на ∂ωηD ∪ (�× {−R6, R6}),
∂V3

∂νξ
= 0 на ∂ωηR,

с периодическими граничными условиями (4.2.2). Функция V 0
3 — решение

задачи

−∆ξV
0

3 = g + ∆ξ(χ3V1) в ΠR6
, V 0

3 = 0 на �× {±R6},

с периодическими граничными условиями (4.2.2). В силу теорем 1.1, 1.2
из [12] и леммы 4.2.1 выполнены неравенства

‖V3 − V 0
3 ‖W 1

2 (Πη) 6 Cη
1
2‖g‖L2(ΠR6

), n = 3,

‖V3 − V 0
3 ‖W 1

2 (Πη) 6 Cη‖g‖L2(ΠR6
), n > 4,

(4.2.29)

где константа C не зависит от η и g. Из последних неравенств, (4.2.28) и
очевидной оценки

‖V2 − V 0
2 ‖W 1

2 (ΠR6
\ΠR6−1) 6 ‖V3 − V 0

3 ‖W 1
2 (ΠR6

)
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для достаточно малых η следуют неравенства

‖B6(η)‖ 6 Cη
1
2 , n = 3, ‖B6(η)‖ 6 Cη, n > 4, (4.2.30)

где константа C не зависит от η, а норма понимается как норма оператора
в L2(ΠR6

).
Рассмотрим в L2(ΠR6

) уравнение

(I + B5)g = F, (4.2.31)

эквивалентное задаче (4.2.26), (4.2.2). Согласно теореме Фредгольма раз-
решимость этого уравнения эквивалентна ортогональности функции F

всем линейно независимым решениям сопряжённого однородного урав-
нения

(I + B∗5)h0 = 0. (4.2.32)

Пусть h0 ≡ 1. Тогда для всех g ∈ L2(ΠR6
) верно равенство

((I + B5)g, h0)L2(ΠR6
) =

∫
ΠR6

∆ξB0
3g dξ = 0. (4.2.33)

Отсюда следует, что h0 ≡ 1 является решением уравнения (4.2.32). В силу
теоремы Фредгольма однородное уравнение

(I + B5)g0 = 0 (4.2.34)

и сопряжённое с ним однородное уравнение (4.2.32) имеют либо только
тривиальные решения, либо одинаковое конечное число линейно незави-
симых решений. Уравнение (4.2.34) эквивалентно задаче (4.2.26), (4.2.2) с
однородной правой частью. Такая задача имеет единственное решение —
константу. Поэтому уравнения (4.2.32) и (4.2.34) имеют ровно по одному
нетривиальному решению.

Пусть g0 — нетривиальное решение уравнения (4.2.34). Тогда соответ-
ствующая ему функция B0

3g есть решение (4.2.26), (4.2.2) c F = 0. Как
уже обсуждалось, данное решение — константа, которую выберем равной
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единице. Из явной схемы, приведённой в доказательстве леммы 4.2.2 и
применённой к уравнению (4.2.34), следует, что соответствующая функ-
ция g0 имеет вид

g0(ξ) = ∆ξ

(
χ3(ξn)(|ξn| −R6)

)
. (4.2.35)

Отметим, что функция g0 тождественно равна нулю в ΠR6−1.
Введем пространства

V∗ = {g ∈ L2(ΠR6
) : (g, h0)L2(ΠR6

) = 0},
V = {g ∈ L2(ΠR6

) : (g, g0)L2(ΠR6
) = 0}.

Так как уравнения (4.2.32) и (4.2.34) имеют ровно по одному нетриви-
альному решению, то уравнение (4.2.31) однозначно разрешимо в про-
странстве V при функциях F из пространства V∗. В силу теоремы Бана-
ха об обратном операторе существует ограниченный обратный оператор
(I + B5)

−1, отображающий V∗ в V.
Решение уравнения (4.2.12) будем искать в виде

g = β(η)g0 + g⊥, (4.2.36)

где β(η) — некоторая константа, g⊥ — некоторая функция функция, такая
что B7g

⊥ ∈ V. Оператор B4(η) удовлетворяет равенству

B7(η)B4(η)B7(η) = B4(η),

где в левой части оператор B4(η) рассматривается как оператор в L2(Π
η),

а в правой — как оператор в L2(ΠR6
). Учитывая данное равенство, урав-

нение (4.2.12) очевидно переписывается к эквивалентному виду

(I + B5)B7(η)g + B6(η)B7(η)g = B7(η)F.

Подставим теперь сюда представление (4.2.36) и воспользуемся уравнени-
ем (4.2.34) и очевидными равенствами B7g0 = g0, B6B7 = B6. В результате
приходим к уравнению

(I + B5 + B6(η))B7(η)g⊥ + β(η)B6(η)g0 = B7(η)F. (4.2.37)
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Умножим это уравнение на h0 скалярно в L2(ΠR6
) и воспользуемся ра-

венством (4.2.33) с заменой g на B7(η)g. В результате получаем:

β(η)(B6(η)g0, h0)L2(ΠR6
) + (B6(η)B7g

⊥, h0)L2(ΠR6
) = (B7(η)F, h0)L2(ΠR6

).

(4.2.38)
Верна следующая лемма.

Лемма 4.2.7. При η → 0 выполнены равенство

(B6(η)g0, h0)L2(ΠR6
) = C1η

n−2 +O(ηn−1), C1 6= 0,

и неравенство
‖B6(η)g0‖L2(ΠR6

)

|(B6(η)g0, h0)L2(ΠR6
)|
6 C2, (4.2.39)

где константы C1 и C2 не зависят от η.

Доказательство леммы проводится аналогично доказательству леммы
5.6 из [43].

Данная лемма позволяет корректно выразить β(η) из (4.2.38):

β(η) =
−(B6(η)B7(η)g⊥, h0)L2(ΠR6

+ (B7(η)F, h0)L2(ΠR6
)

(B6(η)g0, h0)L2(ΠR6
)

. (4.2.40)

Подставим полученную формулу в уравнение (4.2.37):

(I + B5 + B8(η))B7g
⊥ = F⊥,

где обозначено

B8(η) := B6(η)−
(B6(η) ·, h0)L2(ΠR6

)

(B6(η)g0, h0)L2(ΠR6
)
B6(η)g0,

F⊥ := B7(η)F −
(B7(η)F, h0)L2(ΠR6

)

(B6(η)g0, h0)L2(ΠR6
)
B6(η)g0.

Нетрудно убедиться, что F⊥ ∈ V∗ и оператор B8(η) действует из про-
странства V в пространство V∗. Оценим норму оператора B8(η), дей-
ствующего в пространстве L2(ΠR6

). В силу неравенства (4.2.39) для про-
извольной функции g̃ ∈ L2(ΠR6

) выполнено

‖B8(η)g̃‖L2(ΠR6
) 6‖B6(η)g̃‖L2(ΠR6

) −
|(B6(η)g̃, h0)|L2(ΠR6

)

|(B6(η)g0, h0)|L2(ΠR6
)
‖B6(η)g0‖L2(ΠR6

)



103

6C‖B6(η)g̃‖L2(ΠR6
),

где C — некоторая константа, не зависящая от η и g̃. Из последней оценки
и (4.2.30)) следует, что норма оператора B8(η) мала. Поэтому существует
обратный ограниченный оператор (I + B5 + B8(η))−1, действующий из
пространства пространства V∗ в пространство V. Тогда согласно лемме
4.2.7 верно неравенство

‖g⊥‖ = ‖
(
I + B5 + B8(η)

)−1
F⊥‖L2(ΠR6

)

6 C‖F⊥‖L2(ΠR6
)

6 C

(
‖F‖L2(ΠR6

) +
|(F, h0)L2(ΠR6

)|
|(B6(η)g0, h0)L2(ΠR6

)|
‖B6(η)g0‖L2(ΠR6

)

)
6 C‖F‖L2(ΠR6

).

(4.2.41)

Используя последнее неравенство, равенство (4.2.40) и оценки (4.2.30),
выводим ∣∣∣∣β(η)− C̊η−n+2

∫
Πη

F dξ

∣∣∣∣ 6 Cη−n+3‖F‖L2(Πη , (4.2.42)

где C̊ 6= 0 и C — некоторые константы, не зависящие от η и F . Из форму-
лы (4.2.35), представления (4.2.36), оценок (4.2.41), (4.2.42) и легко про-
веряемого соотношения∫

Π−R6
\Π−R6−1

|ξn|g0(ξ) dξ =

∫
Π+
R6
\Π+

R6−1

|ξn|g0(ξ) dξ = −R6|�|

следует∣∣∣∣∣∣A±(η)− C̊R6|�|η−n+2

∫
Πη

F dξ

∣∣∣∣∣∣ 6 Cη−n+3‖F‖L2(ΠR6
). (4.2.43)

Из формулы (4.2.8), (4.2.11) вытекает, что при |ξn| > R6 функция
v представляется в виде (4.2.23), где константы A±k даётся формулами
из (4.2.8). Подставим в эти формулы представление (4.2.36) и равенство
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(4.2.35) и воспользуемся затем оценками (4.2.41) и (4.2.42). В результате
получим

|A±k | 6
Cη−n+3

|Zk|
eZkR6‖F‖L2(ΠR6

), (4.2.44)

где C — некоторая константа, не зависящая от F , η и k.
Обозначим: v∗(ξ, η) := (B3(η)g0)(ξ, η). Прямыми вычислениями легко

убедиться, что функции V ±1 из (4.2.5), соответствующие g0 и функции v∗,
имеют вид

V ±1 (ξ) = 1 + χ3(ξ)(|ξn| −R6).

В силу свойств оператора B3, описанных в разделе 4.2.2, и оценок (4.2.29),
верны оценки

‖v∗‖W 1
2 (ΠR) 6 C, ‖v∗ ∓ (|ξn| −R6 + 1)‖W 2

2 (Π±R) 6 C,

где C — некоторые константы, не зависящие от η, но зависящие от R. Так
как в силу (4.2.11), (4.2.36) функция v имеет вид v = β(η)v∗ + B3(η)g⊥,
то оценки (4.2.41) и (4.2.42) позволяют заключить, что∥∥∥∥v − C∗η−n+2v∗

∫
Π

F dξ

∥∥∥∥
W 1

2 (ΠR)

6 Cη−n+3‖F‖L2(ΠR6
), (4.2.45)

где обозначено C∗ := C̊R6|�|.
Таким образом, доказана следующая лемма.

Лемма 4.2.8. При достаточно малых η для решения задачи (4.2.1),
(4.2.2) с финитной правой частью F , чей носитель расположен внутри
ΠR6

, с φ = 0 и с асимптотикой (4.2.3) выполнены неравенства (4.2.43),
(4.2.44), (4.2.45).

4.2.5 Оценки максимума решения

Краевые условия на ωηR в задачах (1.0.28) полиномиально зависят от v1,
. . . , vm, что приводит к необходимости оценки Lp(ωηR)–норм функций vi с
произвольным натуральным p. С точки зрения модельной задачи (4.2.1),
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(4.2.2) это означает необходимость оценки аналогичной нормы для её ре-
шения. Известные теоремы о вложении пространств Соболева W 2

2 и W 1
2

в пространства Lp верны лишь для ограниченного интервала значений
p, зависящего от размерности пространства. Поэтому мы будем оцени-
вать максимум модуля решения модельной задачи (4.2.1), (4.2.2). При
этом соответствующие константы в оценках могут иметь особенность при
η → +0 не сильнее, чем O(η−n+2). Это необходимо, чтобы обеспечить оп-
тимальные оценки для членов и остатков в асимптотиках (4.1.1), (4.1.3).
С учётом последнего обстоятельства, нужные неравенства будут получе-
ны на основе оценок Шаудера с анализом зависимости от параметра η на
основе аналогичных неравенств для решения следующей вспомогатель-
ной задачи в области

−∆ξU = G в Π2R6
\ ωη, ∂U

∂νξ
= φ на ∂ωηR,

U = 0 на ∂ωηD ∪ (�× {−2R6, 2R6})
(4.2.46)

с периодическими краевыми условиями (4.2.2). Здесь G, φ — некото-
рые заданные функции, принадлежащие соответственно пространствам
C(ϑ)(Π2R6

\ ωη) и C(1+θ)(∂θθR). Дополнительно предполагаем, что функция
G удовлетворяет первому условию периодичности в (4.2.2), а именно, что
�–периодичное продолжение этой функции по ξ′ остаётся элементом про-
странства C(ϑ). Параметр η в данном разделе считаем изменяющимся во
всем полуинтервале (0, 1].

Для произвольной ограниченной области Θ с липшицевой границей,
заданной на ней функции u и ϑ ∈ (0, 1) обозначим

〈u〉(ϑ)

Θ
:= sup

ξ,ξ̂∈Θ,

0<|ξ−ξ̂|6cη

|u(ξ)− u(ξ̂)|
|ξ − ξ̂|ϑ

(4.2.47)

с некоторым фиксированным c > 0 при условии конечности введённой
величины. В терминах введённого обозначения норма в пространстве
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C(p+ϑ)(Θ), p ∈ Z+ даётся формулой

‖u‖C(p+ϑ)(Θ) = ‖u‖C(p)(Θ) +
∑
k∈Zn+
|k|=p

〈∂kξ u〉
(ϑ)
Θ .

Отметим ещё, что при замене переменных ξ = ξ̃η для функций ũ(ξ̃) :=

u(ξη) выполнено

‖∂kξ u‖C(Θ) = η−|k|‖∂k
ξ̃
ũ‖C(Θ), k ∈ Zn+, 〈u〉(ϑ)

Θ = η−ϑ〈ũ〉(ϑ)

Θ̃
, (4.2.48)

где Θ̃ := {ξ̃ : ξ̃η ∈ Θ}, а определении величины 〈ũ〉(ϑ)

Θ̃
аналогично (4.2.47),

но уже с заменой cη на c.
Основная требуемая оценка сформулирована в следующей лемме.

Лемма 4.2.9. Задача (4.2.46) с периодическими краевыми условиями
(4.2.2) однозначно разрешима в пространстве C(2+ϑ)(Π2R6

\ ωη) и для
решения верны оценки

‖U‖C(Π2R6
\ωη) 6 C

(
‖G‖C(Π2R6

\ωη) + η‖φ‖C(∂ωηR)

)
, (4.2.49)

‖∇ξU‖C(Π2R6
\ωη) + ηϑ〈∇ξU〉(ϑ)

Π2R6
\ωη 6 C

(
η−1‖G‖C(Π2R6

\ωη)

+ ηϑ〈G〉(ϑ)
Π2R6

\ωη + ‖φ‖C(∂ωηR) + η‖∇φ‖C(∂ωηR)

+ η1+ϑ〈∇φ〉(ϑ)
Π2R6

\ωη

)
,

(4.2.50)

где константа C не зависит от функций G, φ и параметра η, а гради-
ент от φ вычисляется вдоль поверхности ∂ωηR.

Доказательство. В силу стандартных оценок Шаудера [26, Гл. III, §§2, 3],
задача (4.2.46) с периодическими краевыми условиями (4.2.2) однозначно
разрешима и решение является элементом пространства C(2+ϑ)(Π2R6

\ ωη).
Основная трудность состоит в доказательстве достаточно специфичной
оценки (4.2.50) равномерно по параметру η.

Вначале оценим максимум модуля решения. Требуемую оценку до-
кажем классическим образом на основе принципа максимума применяя
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подходящие барьерные функции. Доказательство проведём в предполо-
жении ‖G‖C(Π2R6

\ωη) + ‖φ‖C(Π2R6
\ωη) > 0, так как в случае G = 0, φ = 0

утверждение леммы очевидно.
В доказательстве отдельно рассмотрим два случая: η < η0 и η > η0,

где η0 — некоторое достаточно малое фиксированное число, значение ко-
торого будет уточнено ниже.

Начнём со второго случая, предполагая η > η0. Пусть X — решение
однозначно разрешимой краевой задачи

−∆ξX = 1 в Π2R6
\ ωη, ∂X

∂νξ
= 1 на ∂ωηR,

X = 0 на ∂ωηD ∪
(
�× {−2R6, 2R6}

)
,

(4.2.51)

с периодическими краевыми условиями (4.2.2). Используя указанные свой-
ства функции X, для функции

ũ := u− 2
(
‖G‖C(Π2R6

\ωη) + ‖φ‖C1(Π2R6
\ωη)

)
X

получаем

−∆ξũ < 0 в Π2R6
\ ωη, ∂ũ

∂νξ
< 0 на ∂ωηR,

ũ = 0 на ∂ωηD ∪ (�× {2R6}) ∪ (�× {−2R6}).
(4.2.52)

Применяя теперь стандартные рассуждения из доказательства класси-
ческого принципа максимума к функции ũ, немедленно заключаем, что
ũ 6 0, и потому

u 6 2
(
‖G‖C(Π2R6

\ωη) + ‖φ‖C(Π2R6
\ωη)

)
X (4.2.53)

в Π2R6
\ ωη. Аналогично доказывается неравенство

u > −2
(
‖G‖C(Π2R6

\ωη) + ‖φ‖C(Π2R6
\ωη)

)
X. (4.2.54)

Из последних двух оценок будет вытекать оценка (4.2.49), если мы уста-
новим, что функция X ограничена равномерно по ξ и η. Проверим, что
это действительно верно.
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Пусть χ4,D = χ4,D(ξ) — бесконечно дифференцируемая срезающая
функция, равная единице в некоторой фиксированной окрестности ну-
ля, в которую попадает множество ωηD для всех η ∈ [0, 1], и равная
нулю вне некоторой большей фиксированной окрестности, которая ле-
жит строго внутри множества Π2R6

. Аналогичную срезающую функцию
χ4,R = χ4,R(ξ) введём и в окрестности множества ωηR. Условия (1.0.25)
обеспечивают существование таких функций.

Выберем некоторое значение η∗ ∈ (0, 1] и рассмотрим близкие к нему
значения η из этого же полуинтервала. Замена

ξ̃ = ξ − η − η∗
η

(
χ4,D(ξ)(ξ −MD) + χ4,R(ξ)(ξ −MR)

)
отображает область Π2R6

\ ωη в Πη∗. При такой замене задача (4.2.51) в
Π2R6

\ωη переходит в малое регулярное возмущение этой же задачи, но в
области Πη∗. Применение затем оценок классических Шаудера из [26, Гл.
III, §2, 3] позволяет нам утверждать, что∥∥X(ξ(ξ̃, η), η

)
−X(ξ̃, η∗)

∥∥
C(2+ϑ)(Π2R6

\ωη)
→ 0 при η → η∗.

Отсюда следует, что функция η 7→ ‖X(·, η)‖C(Π2R6
\ωη) непрерывна на (0, 1]

и потому ограничена на каждом отрезке [η0, 1], что доказывает оценку
(4.2.49) на данном отрезке.

Докажем теперь оценку (4.2.49) при η ∈ (0, η0] и выберем попутно
величину η0. Пусть Y D

i = Y D
i (ξ̃), Y R

i = Y R
i (ξ̃), i = 0, 1, 2, ξ̃ = (ξ̃1, . . . , ξ̃n) ∈

Rn, есть решения внешних краевых задач

−∆ξ̃Y
D
i = 0 в Rn \ ωD, i = 0, 1, 2,

Y D
0 = 1, Y D

1 = ξ̃n, Y D
1 = ξ̃2

n на ∂ωD,

−∆ξ̃Y
R
i = 0 в Rn \ ωR, i = 0, 1, 2,

∂Y R
0

∂νξ̃
= 1,

∂Y R
1

∂νξ̃
=
∂ξ̃n
∂νξ̃

,
∂Y R

2

∂νξ̃
= ξ̃n

∂ξ̃n
∂νξ̃

на ∂ωR.

(4.2.55)

где νξ̃ — единичная нормаль к границе ωR, направленная внутрь этого
множества. Известно, что существуют классические решения этих задач,
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принадлежащие пространству C∞(Rn\θ)∩C(2+ϑ)(BR(0)), где R — доста-
точно большое фиксированное число, с бесконечно дифференцируемыми
асимптотиками на бесконечности

Y D
i (ξ̃) = O

(
|ξ̃|−n+1

)
, Y R

i (ξ̃) = O
(
|ξ̃|−n+2

)
, ξ̃ →∞, i = 0, 1, 2.

где CR
0 — некоторая константа. С учётом данных асимптотик, указанной

выше гладкости функций Y [
i , [ ∈ {D,R}, i = 0, 1, 2, и задач (4.2.55),

прямыми вычислениями несложно убедиться, что∣∣χ4,[(ξ)Y
[
i ((ξ −M[)η

−1)
∣∣ 6 C,∣∣∆ξηχ4,[(ξ)Y

[
i (ξ −M[)η

−1)
∣∣ 6 Cηn, (4.2.56)

где C — некоторая константа, не зависящая от ξ и η. Пусть ξD
n , ξR

n —
n-ые координаты точек MD, MR. Теперь в качестве барьерных выберем
функции

X1(ξ, η) :=(ξ2
n − 4R2

6)− χ4,D(ξ)
(
η2Y D

2

(
(ξ −MD)η−1

)
+ 2ηξD

n Y
D

1

(
(ξ −MD)η−1

)
+
(
(ξD
n )2 − 4R2

6

)
Y D

0

(
(ξ −MD)η−1

))
− χ4,R(ξ)

(
2η2Y R

2

(
(ξ −MR)η−1

)
+ 2ηξR

n Y
R

1

(
(ξ −MR)η−1

))
,

X2(ξ, η) :=ηχ4,R(ξ)Y R
0

(
(ξ −MR)η−1

)
.

Из определения функций Y [
i и оценок (4.2.56) вытекает, что существует

достаточно малое фиксированное η0 такое, что при η ∈ (0, η0] введён-
ные функции X1, X2 удовлетворяют периодическим краевым условиям
(4.2.2), ограничены равномерно по ξ и η и

−∆ξX1 > 1 в Π2R6
\ ωη, ∂X1

∂νξ
= 0 на ∂ωηR,

|∆ξX2| 6 Cηn в Π2R6
\ ωη, ∂X1

∂νξ
= 1 на ∂ωηR,

Xi = 0 на ∂ωηD ∪ (�× {−2R6, 2R6}), i = 1, 2,
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где C — некоторая константа, не зависящая от ξ и η. Используя теперь
установленные свойства функций X1, X2 и рассматривая функции

u± 2‖φ‖C(Π2R6
\ωη)X2 + 2

(
‖G‖C(Π2R6

\ωη) + Cηn‖φ‖C(Π2R6
\ωη)

)
X1,

аналогично (4.2.52), (4.2.53), (4.2.54) несложно проверить, что при доста-
точно малом η0 для всех η ∈ (0, η0] выполнено

|u| 6 2‖φ‖C(Π2R6
\ωη)X2 + 2

(
‖G‖C(Π2R6

\ωη) + Cηn‖φ‖C(Π2R6
\ωη)

)
X1.

Отсюда, из первых оценок в (4.2.56) и определения функций X1, X2 уже
легко следует оценка (4.2.49) для η ∈ (0, η0]. Оценка (4.2.49) полностью
доказана.

Для исследования задачи (4.2.46) мы используем “растянутую” версию
этой задачи, получаемую переходом к переменным ξ̃ := ξη−1,

−∆ξ̃Ũ = G̃ в Π̃ \ (ω̃D ∪ ω̃R),
∂Ũ

∂νξ̃
= φ̃ на ∂ω̃R,

Ũ = 0 на ∂ω̃D ∪
(
�× {−2R6η

−1, 2R6η
−1}
)
,

с периодическими краевыми условиями (4.2.2) на боковых сторонах мно-
жества Π̃ := {ξ̃ : ξ̃η ∈ Π2R6

}. Здесь

Ũ(ξ̃, η) := U(ξ̃η, η), G̃(ξ̃) := η2G(ξ̃η), φ̃(ξ̃) := ηφ(ξ̃η),

ω̃D :=
{
ξ̃ : ξ̃ − η−1MD ∈ ωD

}
, ω̃R :=

{
ξ̃ : ξ̃ − η−1MR ∈ ωR

}
.

Новая задача задана в области размера порядка η−1, а полости ωη

перешли в фиксированные полости ω̃D, ω̃R и их форма перестала зависеть
от η. Последнее обстоятельство является основной причиной указанного
растяжения. К описанной новой задаче применим оценку Шаудера, см.
[26, Гл. III, §2, 3]. При этом соответствующая константа в этой оценке
может быть выбранной не зависящей от размеров растянутой области,
то есть, от параметра η. Этот факт несложно вывести, если проследить
вывод оценки, приведённый в [26, Гл. III, §2, 3], что также явно указано
в [26, Гл. III, §2] в тексте после финальной оценки (2.24). Возвращаясь
теперь обратно к переменным ξ и учитывая соотношения (4.2.48) и оценку
(4.2.49), немедленно получаем неравенство (4.2.50). Лемма доказана.
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4.2.6 Разрешимость модельных задач

В этом параграфе мы исследуем разрешимость модельной задачи (4.2.1),
(4.2.2) для функций внутреннего разложения и зависимость ее решения
от параметра η, а также разрешимость модельной задачи для функций
внешнего разложения.

Через H, обозначим пространство функций f = f(ξ), заданных на
Π \ ωη таких, что при |ξn| > R6 ряд Фурье функции f имеет вид

f(ξ) =
∑

k∈Zn−1
T±k (ξn)e

−Zk|ξn|e2πikb ·ξ
′
, ±ξn > R6, (4.2.57)

где T±k (ξn) — полиномы степени не выше некоторого p, не зависящего от k,
причём для коэффициентов этих полиномов предполагается выполнение
условия

‖f‖H := sup
k∈Zn−1

e−ZkR6|||T+
k |||+ sup

k∈Zn−1
e−ZkR6|||T−k ||| <∞.

Здесь для произвольного многочлена L величина |||L||| обозначает макси-
мум из абсолютных значений его коэффициентов. Отметим, что в силу
сделанных предположений, при |ξn| > R6 ряды в правой части (4.2.57)
сходятся абсолютно и равномерно по ξ вместе со всеми своими производ-
ными.

Лемма 4.2.10. Пусть

F = F0 +
n−1∑
j=1

∂Fj
∂ξj

, F0 ∈ C(θ)(Π2R6
\ ωη)∩H, Fj ∈ C(1+θ)(Π2R6

\ ωη)∩H,

где для Fj верны представления (4.2.57) с некоторыми полиномами T±k =

T±k,j, а правая часть φ в граничном условии на ∂ωηR в (4.2.1) является
элементом пространства C(1+ϑ)(∂ωηR). Тогда существует единственное
решение задачи (4.2.1), (4.2.2), принадлежащее пространству

C(1+θ)(Π2R6
\ ωη) ∩ H,
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имеющее при |ξn| > R6 вид (4.2.57) с полиномами T±k = Q±k , Q
±
k =

Q±k (ξ, η), обладающими свойствами

− ∂2Q±0
∂ξ2

n

= T±0,0,
∂Q±0
∂ξn

(0, η) = 0,

− ∂2Q±k
∂ξ2

n

± 4π

∣∣∣∣kb
∣∣∣∣ ∂Q±k∂ξn

= T±k,0 + 2πi
n−1∑
j=1

kj
bj
Tk,j,

(4.2.58)

Справедливы оценки∣∣Q±0 (0, η)− C∗
∗
Q0(η)η−n+2

∣∣ 6 C(η−n+3
(
‖F0‖C(Π2R6

\ωη)

+
n−1∑
j=1

‖∇ξFj‖C(Π2R6
\ωη) +

n∑
j=0

‖Fj‖H
)

+ η
3
2‖φ‖C(∂θθR)

)
,

(4.2.59)

∗
Q0(η) := lim

R→+∞

( ∫
ΠR\ωη

F0 dξ +
∂Q+

0

∂ξn
(R, η)|�|

− ∂Q−0
∂ξn

(−R, η)|�|
)
,

(4.2.60)

sup
k∈Zn−1\{0}

e−ZkR6|Q±k (0, η)| 6Cη−n+3

(
‖F0‖C(Π2R6

\ωη)

+
n−1∑
j=0

‖Fj‖C1(Π2R6
\ωη) +

n−1∑
j=0

‖Fj‖H

)
,

(4.2.61)

|||Q±k −Q
±
k (0, η)||| 6

n−1∑
j=0

|||T±k,j|||, k 6= 0, (4.2.62)

‖v‖C(Π2R6
\ωη) 6C

(
η−n+2|

∗
Q0(η)|+ η‖φ‖C(∂ωηR) + η−n+3

(
‖F0‖C(Π2R6

\ωη)

+
n−1∑
j=1

‖∇ξFj‖C(Π2R6
\ωη) +

n∑
j=0

‖Fj‖H
))

,

(4.2.63)
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‖∇v‖C(Π2R6
\ωη) + ηϑ〈∇v〉(ϑ)

Π2R6
\ωη 6 C

(
η−n+1|

∗
Q0(η)|+ ‖φ‖C(∂ωηR)

+ η‖∇φ‖C(∂ωηR) + η1+ϑ〈∇φ〉(ϑ)

∂ωηR
+ ηϑ〈F0〉(ϑ)

Π2R6
\ωη

+ ηϑ
n−1∑
j=1

〈∇Fj〉(ϑ)
Π2R6

\ωη + η−n+3

(
‖F0‖C(Π2R6

\ωη)

+
n−1∑
j=1

‖∇ξFj‖C(Π2R6
\ωη) +

n∑
j=0

‖Fj‖H
))

,

(4.2.64)

где C — некоторые константы, не зависящие от функций Fj, j =

0, . . . , n− 1, и параметров η и k.

Доказательство. Вначале докажем существование обобщённого реше-
ния для рассматриваемой задачи, а затем уже покажем наличие ука-
занной гладкости. Рассмотрим уравнения

−∆ξvφ = 0 в ΠR \ ωηR,
∂vφ
∂νξ

= φ на ∂ωηR, vφ = 0 на �× {±R6},
(4.2.65)

с периодическими граничными условиями (4.2.2). Такая задача однознач-
но разрешима и в силу [12, лемма 2.2] для её решения выполнено

‖vφ‖W 1
2 (ΠR\ωηR) 6 Cη

1
2‖φ‖L2(∂ωηR), (4.2.66)

где константа C не зависит от η и φ.
Рассмотрим задачу

−∆ξv
±
F = F0 +

n−1∑
j=1

∂Fj
∂ξj

в Π±R6−1,

с периодическими граничными условиями (4.2.2). Эти уравнения решим
методом разделения переменных:

v±F (ξ) =
∑

k∈Zn−1
Q̃±k (ξn)e

2πikb ·ξ
′
, (4.2.67)
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где функции Q̃±k определяются из уравнений

−∂
2Q̃±k
∂ξ2

n

± 4π

∣∣∣∣kb
∣∣∣∣ ∂Q̃±k∂ξn

= T̃±k,0 + 2πi
n−1∑
j=1

kj
bj
T̃k,j, (4.2.68)

а функции T̃±k,j = T̃±k,j(ξn) определяются как коэффициенты разложений
функций Fj в ряды Фурье

Fj(ξ) =
∑

k∈Zn−1
T̃±k,j(ξn)e

2πikb ·ξ
′
, T̃±k,j(ξn) = T±k,j(ξn) при ± ξn > R6.

Уравнения (4.2.67) для k 6= 0 разрешимы с точностью до произволь-
ной константы, а при k = 0 — с точностью до произвольной линейной
функции. Выберем эти константы и функции следующим образом. При
±ξn > R6 функции Q̃±k являются полиномами, определёнными также с
указанным произволом. Функции Q̃±k выберем так, чтобы эти полиномы
при ±ξn > R6 не содержали свободного члена, а при k = 0 дополнительно
требуем отсутствия первой степени ξn в Q̃±0 при ±ξn > R6. Такое усло-
вие однозначно определяет решения уравнений (4.2.68). При этом для
полиномов Q̃±k выполнены оценки

|||Q̊±k ||| 6 C
n−1∑
j=0

|||T±k,j|||, (4.2.69)

где константа C не зависит от Tk,j и k.
Аналогично доказательству леммы 4.2.1 легко проверить, что v±F ∈

W 2
2 (Π±R \ Π±R6−1) для любого R > R6 и справедливы неравенства

‖v±F ‖W 2
2 (Π±R\Π

±
R6−1

) 6 C(R)

(
‖F0‖L2(Π±R6

\Π±R6−1
))

+
n−1∑
j=1

‖∇Fj‖L2(Π±R6
\Π±R6−1

)) +
n−1∑
j=0

‖Fj‖H

)
,

(4.2.70)

где C(R) — некоторая константа, не зависящая от функций Fj, j =

0, . . . , n− 1.
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Решение задачи (4.2.1), (4.2.2) будем искать в виде

v = ṽ + (1− χ3)vF + χ3vφ, vF (ξ) := v±F (ξ) при ± ξn > R6 − 1.

Тогда для функции ṽ получаем следующую задачу

−∆ξṽ = F̃ в ΠR \ ωη, ṽ = 0 на ∂ωηD,

∂ṽ

∂νξ
= 0 на ∂ωηR,

(4.2.71)

с периодическими граничными условиями (4.2.2), где

F̃ := Fχ3 + 2
∂(vφ − vF )

∂ξn
χ′3 + (vφ − vF )χ′′3.

Ясно, что функция F̃ финитная с носителем внутри ΠR6
. Из оценок

(4.2.66), (4.2.70) следует, что

‖F̃‖L2(ΠR6
) 6 C

(
η

1
2‖φ‖L2(∂ωηR) + ‖F0‖L2(Π±R6

\Π±R6−1
))

+
n−1∑
j=1

‖∇Fj‖L2(Π±R6
\Π±R6−1

)) +
n−1∑
j=0

‖Fj‖H

)
,

(4.2.72)

где константа C не зависит от функций φ, Fj, j = 0, . . . , n−1, и параметра
η.

Согласно леммам 4.2.8, 4.2.6, задача (4.2.71) разрешима и имеет един-
ственное решение, которое при |ξn| > R6 представляется в виде (4.2.23),
где для коэффициентов верны оценки (4.2.24), (4.2.43), (4.2.44), (4.2.45)
с заменой F на F̃ . Вернёмся теперь к функции v и обозначим

Q±k (ξ, η) := Q̃±k (ξn) + A±k (η), ±ξn > R6.

Тогда немедленно заключаем, что существует единственное обобщённое
решение задачи (4.2.1), (4.2.2), имеющее при ±ξn > R6 вид (4.2.57) с
T±k = Q±k . Уравнения (4.2.58) вытекают из определения полиномов Q±k и
уравнений (4.2.68).
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Докажем теперь требуемые оценки для решения v. Вначале вычислим
интеграл

∫
Πη

F̃ dξ. Используя определение этой функции, проинтегрируем
по частям∫

Πη

F̃ dξ = lim
R→+∞

∫
ΠR

F0 +
n−1∑
j=1

∂Fj
∂ξj

+ ∆ξ((1− χ3)vF + χ3vφ)

 dξ

=Q̊0(η)−
∫
∂ωη

φ ds+
n−1∑
j=1

∫
∂ωη

Fjνj ds,

где для последних двух интегралов верны очевидные оценки∣∣∣∣∣
∫
∂ωη

φ ds

∣∣∣∣∣ 6 |θR|ηn−1‖φ‖C(∂ωηR),

∣∣∣∣∣
n−1∑
j=1

∫
∂ωη

Fjνj ds

∣∣∣∣∣ 6 |θR|ηn−1
n−1∑
j=1

‖Fj‖C(∂ωηR).

Отсюда и из оценок (4.2.25), (4.2.43), (4.2.44), (4.2.72) для коэффициентов
функции ṽ выводим оценку (4.2.59). Оценки (4.2.61) и (4.2.62) есть прямое
следствие оценок (4.2.44), (4.2.72) и (4.2.69).

Переходим к доказательству оценок (4.2.63), (4.2.64). В силу пред-
ставления (4.2.57) для функции v и доказанных оценок (4.2.59), (4.2.60),
(4.2.61), (4.2.62), функция v очевидно бесконечно дифференцируема в
Π2R6

\ Π4
3R6

и верна оценка

‖v‖C3(Π2R6
\Π4

3R6

) 6 C‖v‖H, (4.2.73)

где константа C не зависит от v.
Пусть χ5 = χ5(ξn) — бесконечно дифференцируемая срезающая функ-

ция со значениями в отрезке [0, 1], равная нулю при |ξn| > 5
3R6 и едини-

це при |ξn| 6 4
3R6. Тогда функция U = vχ5 является решением задачи

(4.2.46) с
G = F − 2∇ξχ5 · ∇ξv − v∆ξv.

Применяя теперь лемму 4.2.9 и используя оценки (4.2.73), (4.2.59), (4.2.60),
(4.2.61), (4.2.62), легко получаем оценки (4.2.63), (4.2.64). Лемма доказа-
на.
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4.3 Свойства коэффициентов асимптотики

В настоящем параграфе мы используем лемму 4.2.10 для исследования
разрешимости задач (1.0.27), (1.0.28), (1.0.29) для коэффициентов внут-
реннего разложения. При этом с помощью метода согласования асимпто-
тических разложений будут определены краевые условия для функций
внешнего разложения um, которые дополнят задачи (1.0.26). Исследова-
ние полученных задач для функций um будет сделано на основе следую-
щей вспомогательной леммы, доказательство которой проводится анало-
гично доказательству леммы 6.1 из [43].

Обозначим: Ω± := {x : ±xn > 0} ∩ Ω.

Лемма 4.3.1. Пусть f ∈ L2(Ω) ∩W q
2 (Ω+

τ0
) ∩W q

2 (Ω−τ0), φ± ∈ W
q
2 (S) для

всех q ∈ N. Тогда задача

(L − λ)u = f, x ∈ Ω \ S, u = 0, x ∈ ∂Ω,

u(x′,+0, η) = φ+, x′ ∈ Rn−1, u(x′,−0, η) = φ−, x′ ∈ Rn−1,
(4.3.1)

однозначно разрешима в пространствеW 1
2 (Ω+)∩W 1

2 (Ω−). Решение этой
задачи также принадлежит W q

2 (Ω+
τ0−δ) ∩W

q
2 (Ω−τ0−δ) для всех q ∈ N и

δ > 0 и верны оценки

‖u‖W 1
2 (Ω+) + ‖u‖W 1

2 (Ω−) 6 C
(
‖f‖L2(Ω) + ‖φ+‖W 1

2 (S) + ‖φ−‖W 1
2 (S)

)
,

‖u‖W q
2 (Ωτ0−δ)

6 C(q, δ)
(
‖f‖W q−2

2 (Ωτ0−δ)
+ ‖f‖L2(Ω) + ‖φ+‖W q

2 (S) + ‖φ−‖W q
2 (S)

)
,

где константы C и C(q, δ) не зависят от u, f и φ±, и во второй оценке
q > 2 — произвольно натуральное число. Функция u бесконечно диффе-
ренцируема в Ω±τ0 и для каждого δ > 0 все её производные равномерно
ограничены в области Ω±τ0−δ.

Общая схема исследования задач для функций внутреннего и внешне-
го разложений следующая. Вначале на основе леммы 4.2.10 доказывается
разрешимость задачи (1.0.27) для функции v1, где для решения предпо-
лагается выполнение асимптотики (1.0.29) с m = 1 на уровне главного
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члена
v1(ξ, x

′, η) =
∂u0

∂xn
(x′,±0)ξn +O(1), ξn → ±∞.

Такое решение однозначно определяется. Уточнение асимптотики этого
решения и сравнение её с требуемой асимптотикой (1.0.29) с m = 1 поз-
воляет однозначно определить функции u1(x

′,±0), то есть, граничные
условия для функции u1 на S.

Определив функцию u1, мы тем самым однозначно определяем пер-
вых два главных члена в асимптотике (1.0.29) с m = 2. Это позволяет
затем однозначно найти функцию v2 и определить затем по её асимптоти-
ке на бесконечности функции u2(x

′,±0), то есть граничные условия для
функции u2 на S. Дальнейшие построения проводятся по такой же схеме.

Реализуем теперь описанный подход строго и во всех деталях. Вначале
отметим, что лемма 4.2.7, применённая к задаче (4.1.2), сразу гарантиру-
ет, что функция u0 принадлежатW q

2 (Ω+
τ0−δ)∩W

q
2 (Ω−τ0−δ)∩W

1
2 (Ω) для всех

q ∈ N и всех δ > 0, бесконечно дифференцируема в Ω±τ0 и для каждого
δ > 0 все её производные равномерно ограничены в каждой из областей
Ω±τ0−δ.

Рассмотрим теперь вспомогательные задачи

−∆ξv̊
± = 0 в Π \ ωη, v̊± = 0 на ∂ωηD,

∂v̊±

∂νξ
= 0 на ∂ωηR,

(4.3.2)

с периодическим граничными условиями (4.2.2) и следующим поведением
на бесконечности:

v̊±(ξ) = ξn +O(1), ξn → ±∞, v̊±(ξ) = O(1), ξn → ∓∞.

Положим:

V̊±(ξn) :=

{
ξn, ± ξn > 0,

0, ± ξn < 0.

Переход к функции v̊±(ξ)− (1−χ3(ξn))Q̊
±(ξn) приводит к задаче (4.2.1),

(4.2.2) для такой новой неизвестной функции с правыми частями F =
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2χ′3V̊
′
± + χ′′3V̊±. Применение затем леммы 4.2.10 с F0 = 2χ′3V̊

′± + χ′′3V̊±,
Fj = 0, φ = 0 позволяет установить однозначную разрешимость задачи
(4.3.2), (4.2.2), определить гладкость решения и получить для него оцен-
ки типа (4.2.59), (4.2.60), (4.2.61), (4.2.62), (4.2.63), (4.2.64). А именно,
для функций v̊± верны представления (4.2.57), которые в данном случае
имеют вид:

v̊±(ξ, η) = Q̊±,+(ξn, η) +
∑

k∈Zn−1\{0}

Å±,+k (η)e−Zk|ξn|e2πikb ·ξ
′
, ξn > R6,

v̊±(ξ, η) = Q̊±,−(ξn, η) +
∑

k∈Zn−1\{0}

Å±,−k (η)e−Zk|ξn|e2πikb ·ξ
′
, ξn < −R6,

где
Q̊±,±(ξn, η) = ξn + Å±,±0 (η), Q̊±,∓(ξn, η) = Å±,∓0 (η),

и A[,\
k (η), [, \ ∈ {+,−} — некоторые функции. Выполнены следующие

оценки:

|A[,\
0 (η)| 6 Cη−n+2, sup

k∈Zn−1\{0}
e−ZkR6|A[,\

k (η)| 6 Cη−n+3,

‖̊v±‖C(Π2R6
\ωη) 6 Cη

−n+2, ‖̊v±‖C(Π2R6
\ωη) + ηϑ〈̊v±〉(ϑ)

Πη 6 Cη−n+1,

где C — некоторая константа, не зависящая от η. Легко убедиться, что
решение задачи (1.0.27), (1.0.29) с m = 1 даётся формулой

v1(ξ, x
′, η) =

∂u0

∂xn
(x′,+0)̊v+(ξ, η) +

∂u0

∂xn
(x′,−0)̊v−(ξ, η).

Асимптотики этой функции на бесконечности имеют вид:

v1(ξ, x
′, η) =

∂u0

∂xn
(x′,±0)ξn +

∂u0

∂xn
(x′,+0)Å+,±

0 (η)

+
∂u0

∂xn
(x′,−0)Å−,±0 (η) + o(1), ξn → ±∞.

Сравнивая полученную асимптотику с (1.0.29) при m = 1, получаем гра-
ничные условия для функции u1:

u1(x
′,±0, η) =

∂u0

∂xn
(x′,+0)Å+,±

0 (η) +
∂u0

∂xn
(x′,−0)Å−,±0 (η), x′ ∈ Rn−1.

(4.3.3)
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Полученные граничные условия и уравнения (1.0.26) с m = 1 позволя-
ют однозначно определить функцию u1. Для этого достаточно применить
лемму 4.3.1 к полученной задаче. При этом легко видеть, что решение за-
дачи (1.0.26), (4.3.3) имеет вид

u1(x, η) =
∑

[,\∈{+,−}

A[,\(η)u[,\(x),

где функции u[,\ являются решением задачи (4.3.1) c правой частью f = 0

и граничными условиями

u+,±(x′,±0) =
∂u0

∂xn
(x′,+0), u+,±(x′,∓0) = 0, x′ ∈ Rn−1,

u−,±(x′,±0) =
∂u0

∂xn
(x′,−0), u−,±(x′,∓0) = 0, x′ ∈ Rn−1,

Согласно лемме 4.3.1, задачи для функций u[,\ однозначно разрешимы.
Функции u[,\ принадлежатW q

2 (Ω+
τ0−δ)∩W

q
2 (Ω−τ0−δ)∩W

1
2 (Ω) для всех q ∈ N,

бесконечно дифференцируемы в Ω±τ0 и для каждого δ > 0 все их произ-
водные равномерно ограничены в каждой из областей Ω±τ0−δ.

По той же схеме, что и выше, исследуются задачи для остальных функ-
ций um и vm. Свойства этих функций описывает лемма 1.0.1

Доказательство леммы 1.0.1. Доказательство леммы проведём по ин-
дукции. База индукции, случай m = 1, был уже разобран выше и по-
строенные функции v1, u1 очевидно удовлетворяют всем утверждениям
леммы.

Предположим теперь, что уже построены решения задач (1.0.26), (1.0.27),
(1.0.28), (1.0.29) до некоторого значения (m− 1) с утверждаемыми свой-
ствами и проверим утверждение леммы для значения m.

Обозначим:

F0 :=
ξm−2
n

(m− 2)!

∂m−2f

∂xm−2
n

(x′, 0) + (∆x′ + λ)vm−2, Fj := 2
∂vm−1

∂xj
, (4.3.4)

где j = 1, . . . , n− 1.
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Подстановка рядов Тейлора (4.1.4), (4.1.5), (4.1.6) в уравнения (4.1.2),
(1.0.26) с учётом сделанных предположений относительно поведения ко-
эффициентов Aij, Aj при xn → 0 немедленно приводит к равенствам для
функций u0 и uq, q 6 m− 1,

−∂
2u0

∂x2
n

(x′,±0) = f(x′, 0),

−(∆x′ + λ)
∂ju0

∂xjn
(x′,±0)− ∂j+2u0

∂xj+2
n

(x′,±0) =
∂jf

∂xjn
(x′, 0), j > 1,

−(∆x′ + λ)
∂juq

∂xjn
(x′,±0)− ∂j+2uq

∂xj+2
n

(x′,±0) = 0, j > 0.

(4.3.5)

Из формул (1.0.32), (1.0.33) для функций vp, vqj, q 6 m − 1 и ин-
дукционного предположения следует, что при |ξn| > R6 эти функции
представимы в виде (4.2.57), причём полином T±0 для функции vq имеет
вид

T±0 =

q∑
j=0

1

j!

∂juq−j

∂xjn
(x′,±0, η)ξjn.

Подставим эти формулы в правую часть (1.0.30) уравнения в (1.0.28) для
vm и учтём соотношения (4.3.5). Тогда получим, что функция F0 из (4.3.4)
также представляется в виде (4.2.57), где соответствующий полином име-
ет вид

T±0 (ξn, η) = −
m−2∑
j=2

1

(j − 2)!

∂jum−j

∂xjn
(x′,±0, η)ξj−2

n .

Из определения (4.3.4) введённых функций F0 и Fj и индукционного
предположения о функциях vq, q = 1, . . . ,m−1, заключаем, что функции
F0 и Fj удовлетворяют предположениям леммы 4.2.10. Для функций F0
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и Fj верны оценки

‖F0‖C(Π2R6
\ωη) +

n−1∑
j=1

‖F0‖C(Π2R6
\ωη) +

n−1∑
j=0

‖F0‖H

+ ηϑ〈F0〉(ϑ)
Π2R6

\ωη + ηϑ
n−1∑
j=1

〈∇Fj〉(ϑ)
Π2R6

\ωη

6Cη−(m−1)(n−2),

(4.3.6)

где константа C не зависит от η. Отметим ещё, что для функции
∗
Q0(η),

вычисленной по формуле (4.2.60) для введённой функции F0, верна легко
проверяемая оценка

|
∗
Q0(η)| 6 Cη−(m−2)(n−2). (4.3.7)

Через φ обозначим правую часть в граничном условии на ∂ωηR для
vm в задаче (1.0.28). В силу индукционного предположения, из опреде-
ления полиномов Lm и функции φ следует, что функция φ принадлежит
пространству C(1+ϑ)(∂ωηR) и выполнены равномерные по η оценки

‖φ‖C(∂ωηR) + η‖∇φ‖C(∂ωηR) + η1+ϑ〈∇φ〉(ϑ)

∂ωηR
6 Cη−(m−1)(n−2). (4.3.8)

Применяя теперь лемму 4.3.1, немедленно заключаем, что задача (1.0.28)
имеет единственное решение, принадлежащее пространству H∩C(1+ϑ)(Πη).
Далее добавим к этому решению функцию

∂jum−1

∂xn
(x′,+0, η)̊v+(ξ, η) +

∂jum−1

∂xn
(x′,−0, η)̊v−(ξ, η),

что в силу задач (4.3.2) не изменяет задачи (1.0.28). Полученное таким
образом решение задачи (1.0.28) и возьмём в качестве функции vm. Оцен-
ки (4.3.6), (4.3.7), (4.3.8) и оценки из утверждения леммы 4.3.1 позволяют
получить для построенного решения оценки (1.0.34) с заменой vmj на vm,
но с зависимостью от переменной x′ как от параметра. Вместе с тем, раз-
деление переменных x′ и (ξ, η) в функциях vp, p 6 m − 1, означает, что
такое же разделение переменных присутствует в функциях Fm F0, Fj, φ.
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Поэтому аналогичное разделение переменных имеется и в решении vm,
что доказывает формулу (1.0.32) для vm и означает выполнение оценок
(1.0.34) и для функций vmj.

Представление (1.0.33) есть представления (4.2.57), выписанные для
решения задачи (1.0.28) с учётом структуры правой части уравнения.
Сравнивая доказанные соотношения (1.0.32), (1.0.33) для vm и асимпто-
тику (1.0.29) для этой же функции, заключаем, что функция um должна
удовлетворять следующим граничным условиям:

um(x′,±0, η) =
Nm∑
j=1

A±mj(η)ϕj(x
′), x′ ∈ Rn−1. (4.3.9)

Применяя теперь лемму 4.3.1 к задаче (1.0.26), (4.3.9), немедленно заклю-
чаем, что эта задача однозначно разрешима и решение имеет гладкость,
указанную в утверждении данной леммы. С учётом наличия разделения
переменных в граничном условии (4.3.9) теперь легко убедиться в спра-
ведливости формулы (1.0.32), где функции umj есть решения задачи из
(1.0.26) с функциями ϕ±m из (1.0.35) и краевыми условиями (1.0.36), (1.0.37).
При этом лемма 4.3.1 обеспечивает утверждаемую гладкость функций
umj. Лемма доказана.

4.4 Обоснование асимптотики

Цель данного параграфа — провести обоснование формальное асимпто-
тики решения задачи (1.0.4), построенной в предыдущих параграфах.

Для произвольного натурального N > 3 обозначим

uε,N(x, ξ, η) := χε(xn)u
ex
ε,N(x, η) + (1− χε(xn))uinε,N

(
xε−1, x′, η

)
, (4.4.1)

uexε,N(x, η) := u0(x) +
N∑
m=1

εmum(x, η),

uinε,N(ξ, x′, η) :=
N∑
m=1

εmvm(x′, ξ, η).
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Докажем, что функция uε,N есть формальное асимптотическое решение
задачи (1.0.4).

Лемма 4.4.1. Функция uε,N является решением задачи

(L − λ)uε,N = χεf + fε,N в Ωε,

uε,N = 0 на x ∈ ∂Ω∪ ∈ ∂θεD,
∂uε,N
∂n

+ a(uε,N) = φε,N на ∂θεR,

где fε,N ∈ L2(Ω
ε), φε,N ∈ L2(∂θ

ε
R) и верны оценки

‖fε,N‖L2(Ωε) 6 Cε
− 1

4

(
(εη−n+2)N−1 + ε

N
2

)
, (4.4.2)

‖φε,N‖L2(∂ωεR) 6 C(εη−n+2)N , (4.4.3)

а константы C не зависят от ε и η, но зависят от N .

Доказательство. Выполнение граничных условий на ∂Ω и ∂θεD следует
из свойств функции χε и граничных условий из задач (1.0.27), (1.0.28)для
коэффициентов внутреннего и внешнего разложения.

Обозначим

φε,N :=
∂uinε,N
∂n

+ a(uinε,N).

В силу определения функции uε,N ясно, что граничное условие на ∂ωηR
выполнено именно с такой функцией φε,N . В силу представлений (1.0.32)
и оценок (1.0.34), функция uinε,N(xε−1, x′, η) удовлетворяет равномерной
по ε, η и x оценке на ∂ωηR:

|uinε,N(xε−1, x′, η)| 6 εη−n+2|ΦN,1(x
′)|,

где ΦN,1 ∈ L2(S) ∩ C(S) — некоторая функция, не зависящая от ε и η и
ограниченная равномерно по x′. Считая теперь uinε,N малой величиной на
∂ωηR, разложим функцию a(uinε,N) в ряд Тейлора до N–го члена с остатком
в форме Лагранжа. Тогда получим, что

a(uinε,N) =
N∑
j=0

a(j)(0)

j!
(uinε,N)j + ãN , (4.4.4)
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где ãN = ãN(x, ε, η) — некоторая функция, для которой верна равномер-
ная по x, ε, η оценка

|ã(x, ε, η)| 6 (εη−n+2)N+1|ΦN,2(x
′)|, (4.4.5)

где ΦN,2 ∈ L2(S) ∩ C(S) — некоторая функция, не зависящая от ε и η и
ограниченная равномерно по x′. Полиномы Lm в правых частях краевых
условий на ∂ωηR в (1.0.27), (1.0.28) получаются в результате подстановки
функции uinε,N в сумму в правой части равенства (4.4.4). Поэтому, вновь
учитывая лемму 1.0.1 и оценку (4.4.5), легко вывести требуемую оценку
(4.4.3) для φε,N .

Обозначим:
fε,N := (L − λ)uε,N − χεf.

Используя уравнения из задач (4.1.2), (1.0.26), (1.0.27), (1.0.28), прямыми
вычислениями проверяем, что

fε,N = f
(1)
ε,N + f

(2)
ε,N + f

(3)
ε,N ,

f
(1)
ε,N := (χε(xn)− 1)

f(x)−
N−2∑
j=1

xjn
j!

∂jf

∂xjn
(x′, 0)

 ,

f
(2)
ε,N = εN−1

(
χε(xn)− 1

)λ(vN−1 + εvN) + 2
n−1∑
j=1

∂2vN
∂ξj∂xj

 ,

f
(3)
ε,N := −2(χε)′

∂

∂xn
(uexε,N − uinε,N)− (uexε,N − uinε,N)(χε)′′.

Функция f (1)
ε,N оценивается элементарным образом на основе свойств функ-

ции f и стандартных остатков в формуле Тейлора в форме Лагранжа:

‖f (1)
ε,N‖L2(Ωε) 6 Cε

N+1
2 , (4.4.6)

где константа C не зависит от ε. Оценку нормы функции f (2)
ε,N несложно

получить прямыми вычислениями, если учесть, что эта функция не рав-
на нулю лишь при |xn| 6 2ε

1
2τ0, что фактически означает необходимость
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оценки функций vN−1 и vN при |ξn| 6 2ε−
1
2τ0. Это несложно сделать с по-

мощью оценок (1.0.34), если учесть, что нормы ‖vmj‖H позволяет равно-
мерно по ξ ∈ Π

2ε−
1
2 τ0
\Π3

2R6
оценить |vmj(ξ)| и |∇ξvmj(ξ)|. Окончательная

оценка для функции f (2)
ε,N имеет вид

‖f (2)
ε,N‖L2(Ωε) 6 Cε

1
4

(
(εη−n+2)N−1 + ε

N−1
2

)
. (4.4.7)

Аналогичным образом оценивается и функция f (3)
ε,N . При этом необходимо

учитывать условия согласования внешнего и внутреннего разложений,
обеспечивающие требуемую малость разности uexε,N − uinε,N , а также тот
факт, что функция f (3)

ε,N не равна нулю лишь при ε
1
2τ0 6 |xn| 6 ε

1
2τ0. В

результате получаем

‖f (3)
ε,N‖L2(Ωε) 6 Cε

− 1
4

(
(εη−n+2)N−1 + ε

N
2

)
.

Отсюда и из (4.4.6), (4.4.7) вытекает (4.4.2). Лемма доказана.

Функция ûε,N := uε,N − uε является решением задачи

(L − λ)ûε = fε,N в x ∈ Ωε, ûε,N = 0 на ∂Ω ∪ θεD,
∂ûε,N
∂N

+ a(uε,N)− a(uε) = gε,N на ∂θεR.

Решение этой задачи удовлетворяет интегральному тождеству

h0(ûε,N , ûε,N) + (a(uε,N)− a(uε), ûε,N)L2(∂θεR)

= (f, ûε,N)L2(Ωε) + (gε, ûε,N)L2(∂θεR) ,
(4.4.8)

где, напомним, форма h0 была определена в (1.0.7). Из неравенства (2.3.1)
с u = uε,N , v = uε следует

h0(ûε,N , ûε,N) + (a(uε,N)− a(uε), ûε,N)L2(∂θεR) > C‖ûε,N‖2
W 1

2 (Ωε),

где константа C не зависит от ûε,N , ε и η. Оценим левую часть равен-
ства (4.4.8) снизу с помощью последнего неравенства, а правую часть ра-
венства — сверху с помощью неравенства Коши–Буняковского и (4.4.2),
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(4.4.3). В результате выводим оценку

‖uε,N − uε‖W 1
2 (Ωε) 6 Cε

− 1
4

(
(εη−n+2)N−1 + ε

N−1
2

)
. (4.4.9)

Аналогично тому, как были оценены функции f (2)
ε,N и f (3)

ε,N , несложно про-
верить, что для членов разложения (4.4.1) верны соотношения (1.0.39).
Эти соотношения позволяют пренебречь членами перед εN−1 и εN в функ-
ции, не нарушая при этом оценку (4.4.9), так что в итоге получаем

‖uε,N−2 − uε‖W 1
2 (Ωε) 6 Cε

− 1
4

(
(εη−n+2)N−1 + ε

N−1
2

)
.

Полученная оценка завершает доказательство теоремы 1.0.4.



Глава 5

Асимптотика решения в случае
усредненного третьего нелинейного
краевого условия

5.1 Формальные асимптотики

Введём в окрестности полостей θε растянутые переменные ξ = (ξ′, ξn) =

(x′ε−1, xnε
−1). Асимптотическое разложение решения краевой задачи (1.0.4)

будем искать в виде комбинации внешнего uexε и внутреннего uinε разло-
жений

uε(x, ξ, η) = χε(xn)u
ex
ε (x, η) + (1− χε(xn))uinε (ξ, x′, η).

Внешнее и внутреннее разложения вводятся следующим образом:

uexε (x, η) = u0(x, η) +
∞∑
m=1

εmum(x, η), (5.1.1)

uinε (ξ, x′, η) = v0(ξ, x
′, η) +

∞∑
m=1

εmvm(ξ, x′, η). (5.1.2)

Целью формального построения асимптотик является определение коэф-
фициентов внутреннего и внешнего разложений.

Выпишем задачи для коэффициентов внешнего разложения. Для это-
го подставим разложение (5.1.1) в задачу (1.0.4) и приравняем коэффи-
циенты при одинаковых степенях ε. Тогда для функции u0 получим урав-
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нение и краевое условие на ∂Ω из (1.0.18), а для остальных функций um
— задачи (1.0.46).

Теперь выпишем задачи на коэффициенты внутреннего разложения.
В силу теорем вложения соболевских пространств в пространства непре-
рывно дифференцируемых функций, условие (1.0.24) означает, что функ-
ция f бесконечно дифференцируема при |xn| < τ0. Разложим функцию
f в ряд Тейлора при xn → 0, а затем сделаем замену xn = εξn:

f(x) =
∞∑
m=0

1

m!

∂mf

∂xmn
(x′, 0)xmn =

∞∑
m=0

εm

m!

∂mf

∂xmn
(x′, 0)ξmn . (5.1.3)

Разлагая функцию a(x′, εξn, u
in
ε ) в асимптотический ряд по степеням ε,

получаем соотношение (1.0.43), где Tm — некоторые фиксированные по-
линомы по ξn, Re v1, . . . , Re vm, Im v1, . . . , Im vm с коэффициентами, бес-
конечно дифференцируемыми по x′ и v0, такие что для каждого монома
вида

C(x′, v0)ξ
p0
n (Re v1)

p1(Im v1)
q1(Re v2)

p2(Im v2)
q2 . . . (Re vm)pm(Im vm)qm

выполнено

p0 + p1 + q1 + 2(p2 + q2) + . . .+m(pm + qm) 6 m.

В частности,

T1(x
′, ξn, v1) =

∂a

∂uρ
(x′, 0, v0) Re v1 +

∂a

∂ui
(x′, 0, v0) Im v1 +

∂a

∂xn
a(x′, 0, v0)ξn.

Подставляя последнее разложение, (5.1.3) и (5.1.2) в задачу (1.0.4) и соби-
рая коэффициенты при одинаковых степенях ε, получим задачи (1.0.42)
для функций внутреннего разложения.

Проведём согласование внешнего и внутреннего разложений. Выпи-
шем (асимптотические) ряды Тейлора при xn → ±0 для функций um и
сделаем замену xn = εξn:

um(x, η) =
∞∑
j=0

1

j!

∂jum

∂xjn
(x′,±0, η)xjn =

∞∑
j=0

εj

j!

∂jum

∂xjn
(x′,±0, η)ξjn. (5.1.4)
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Согласно методу согласования асимптотических разложений, эти равен-
ства означают, что функции vm должны иметь следующие асимптотики
при ξn → ±∞:

vm(ξ, x′, η) = P±m(x′, ξn, η) +
∂um−1

∂xn
(x′,±0, η)ξn

+ um(x′,±0, η) + o(1),

(5.1.5)

P±m :=
m∑
j=2

1

j!

∂jum−j

∂xjn
(x′,±0, η)ξjn.

Краевые задачи (1.0.42), (5.1.5) обладают �–периодической структу-
рой по ξ′. Поэтому и решения этих задач будем строить периодическими.
Для этого достаточно заменить краевые задачи (1.0.42), (5.1.5) на ана-
логичные задачи в Π \ ωη с периодическими граничными условиями на
боковых гранях Π. Построив подходящие решения задач в Π \ ωη, ре-
шения задач (1.0.42), (5.1.5) получим затем простым �–периодическим
продолжением по ξ′.

Решения упомянутых задач в Π \ωη зависят от параметра η. Поэтому
помимо разрешимости этих задач, необходимо исследовать также харак-
тер зависимости их решений от параметра η. Для этого в следующих
параграфах мы вначале исследуем модельную краевую задачу в Π \ ωη,
а затем применим полученные результатам к полученным выше задачам
для vm. Это исследование составляет одну из основных трудностей в на-
стоящей работе.

5.2 Модельная задача для коэффициентов внутрен-
него разложения

В данном параграфе рассматривается модельная краевая задача в об-
ласти Π \ ωη для функций внутреннего разложения. Исследуется разре-
шимость рассматриваемой задачи и устанавливаются предварительные
факты о зависимости её решения от параметра η.
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5.2.1 Формулировка задачи

Рассмотрим модельную краевую задачу:

−∆ξv = F в Π \ ωη, ∂v

∂νξ
= φ на ∂ωη, (5.2.1)

v|ξi=−bi = v|ξi=bi,
∂v

∂ξi

∣∣∣∣
ξi=−bi

=
∂v

∂ξi

∣∣∣∣
ξi=bi

, i = 1, . . . , n− 1, (5.2.2)

где F ∈ L2(Π \ωη), φ ∈ L2(∂ω
η) — некоторые функции. Решение краевой

задачи (5.2.1), (5.2.2) мы понимаем в обобщенном смысле. Обобщенным
решением задачи (5.2.1), (5.2.2) называется функция v, принадлежащая
пространству W 1

2 (ΠR \ ωη) для каждого R > 0 и удовлетворяющая сле-
дующему интегральному тождеству:

(∇ξv,∇ξw)L2(ΠR\ωη) − (φ,w)L2(∂ωη) = (F,w)L2(ΠR\ωη)

для всех функций w ∈ C2(Π \ ωη) удовлетворяющих периодическим гра-
ничным условиям на боковых гранях Π и тождественно равных нулю при
|ξn| > d > 0 для некоторого d > 0, зависящего от выбора функции w.

Поведение решения задачи (5.2.1), (5.2.2) на бесконечности мы уточ-
ним далее в процессе исследования ее разрешимости.

5.2.2 Операторное уравнение

В данном параграфе мы рассматриваем краевую задачу (5.2.1), (5.2.2) с
финитной правой частью F и с однородным граничным условием на ∂ωη.
На функцию F здесь налагаем те же условия, что и в §4.2.2. Решение
такой задачи будем искать ограниченным на бесконечности, а именно
удовлетворяющим условию (4.2.3).

Наша дальнейшая цель состоит в сведении краевой задачи (5.2.1),
(5.2.2), (4.2.3) к подходящему операторному уравнению. Схема сведения
краевой задачи (5.2.1), (5.2.2), (4.2.3) к операторному уравнению повторя-
ет аналогичную схему, применявшуюся для задачи (4.2.1), (4.2.2) в §4.2.1,
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но имеются и некоторые отличия. Они связаны с тем, что в §4.2.1 в обла-
сти Π вырезалась ещё одна полость, на границе которого ставилось усло-
вие Дирихле. Это гарантировало однозначную разрешимость модельной
задачи для любых правых частей в уравнениях и граничных условиях. В
нашем случае полость с краевым условием Дирихле отсутствует, что при-
водит к возникновению определенных условий разрешимости. Далее мы
кратко описываем общую схему рассуждений, применявшуюся к задаче
(4.2.1), (4.2.2) , детально останавливаясь только на основных необходи-
мых модификациях.

Возьмем произвольную функцию g ∈ L2(ΠR6
), продолжим её нулём

Π \ ΠR0
и рассмотрим вспомогательную задачу (4.2.4), (5.2.2). Данная

задача решается методом разделения переменных и ответ дается рядом
(4.2.5). Также несложно убедиться, что при |ξn| > R6 функции X±k имеют
вид

X±k (ξ) = A±k e
−2π|kb|(ξn−R6), ±ξn > R,

A±k := − 1

2π|kb|

∫
Π±R0
\Π±R6−1

g(t)e2πikb·t′ sh 2π|kb|tndt,

и для констант A±k верна оценка

|A±k | 6
Ce2π|kb|R6

|kb|
3
2

‖g‖L2(Π±R6
\Π±R6−1

),

где константа C не зависит от k и g.
Определим функцию V1 = V1(ξ) так, как это было сделано перед лем-

мой 4.2.1. Согласно лемме 4.2.1, функцию V1 можно представить как
V1 = B1g, где B1 — линейный ограниченный оператор, действующий из
L2(ΠR6

) в W 2
2 (Π+

R \ Π+
R6−1)⊕W 2

2 (Π−R \ Π−R6−1) для каждого R > R6 − 1.
Введем еще одну вспомогательную задачу:

−∆ξV2 = g в Πη, V2 = V ±1 на �× {±R6},
∂V2

∂νξ
= 0 на ∂ωη,
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с периодическими граничными условиями (5.2.2). Аналогично тому, как
это было сделано в §4.2.2, показывается, что эта задача однозначно раз-
решима и функция V2 представима в виде: V2 = B2(η)g, где B2(η) —
линейный ограниченный оператор, действующий из L2(ΠR6

) в W 2
2 (Πη).

Справедлива оценка

‖V2‖W 2
2 (Πη) 6 C‖g‖L2(ΠR6

), (5.2.3)

где константа C не зависит от V2 и g, но зависит от R6 и η.
Решение задачи (5.2.1), (5.2.2) строится в виде (4.2.11), где B3(η) —

линейный ограниченный оператор, действующий из L2(ΠR6
) в W 2

2 (Πη).
Аналогично выводу уравнения (4.2.12) показывается, что функция v яв-
ляется решением краевой задачи (5.2.1), (5.2.2), если функция g является
решением уравнения (4.2.12), где функцию F будем считать продолжен-
ной нулём внутрь ωη. Отметим, что в силу определения (4.2.12) операто-
ра B4, результат его действия отличен от нуля только в ΠR6− 1

3
\ ΠR6− 2

3
.

Поэтому далее мы продолжим этот результат нулём внутрь ωη и будем
считать, что оператор B4 действует в пространстве L2(ΠR6

). Также в си-
лу продолжения функции F нулём внутрь ωη решения уравнения (4.2.12)
необходимо равны нулю в ωη.

Следующая лемма утверждает эквивалентность исходной краевой за-
дачи (5.2.1), (5.2.2), (4.2.3) операторному уравнению (4.2.12) и доказыва-
ется аналогично лемме 4.2.2.

Лемма 5.2.1. Уравнение (4.2.12) эквивалентно задаче (5.2.1), (5.2.2),
(4.2.3): для каждого решения g уравнения (4.2.12) существует реше-
ние задачи (5.2.1), (5.2.2), (4.2.3) определённое равенством (4.2.11), и
для каждого решения v задачи (5.2.1), (5.2.2), (4.2.3) существует един-
ственное решение g уравнения (4.2.12), связанное с v равенством (4.2.11).

Для оператора B4(η) остаётся в силе лемма 4.2.3. Так как оператор
B4(η) компактен, то к уравнению (4.2.12) применимы альтернативы Фред-
гольма. В частности, уравнение (4.2.12) разрешимо лишь при условии ор-
тогональности правой части этого уравнения всем линейно независимым



134

решениям соответствующего сопряжённого однородного уравнения

(I + B∗4(η))h0 = 0. (5.2.4)

Лемма 5.2.2. Однородное уравнение (5.2.4) и соответствующее одно-
родное уравнение (4.2.12) с F = 0 имеют ровно по одному нетривиаль-
ному решению, которые даются формулами

h0(x) ≡ 1, x ∈ Πη, h0(x) ≡ 0, x ∈ ωη,
g0(x) = ∆ξ (χ1(ξn)(R6 − |ξn|)) , x ∈ ΠR6

.
(5.2.5)

Доказательство. Обозначим h0 = h0(x) ≡ 1 в Πη. Для любой функции
g ∈ L2(Π

η) справедливо равенство

((I + B4(η))g, h0)L2(Πη) = −
∫
Πη

∆ξB3(η)g dξ = 0.

Следовательно, h0 ≡ 1 является решением уравнения (5.2.4). Покажем,
что других решений нет.

Согласно альтернативам Фредгольма, уравнение (4.2.12) с F = 0 и
сопряжённое с ним однородное уравнение (5.2.4) имеют одно и то же ко-
нечное число линейно независимых решений. Уравнение (4.2.12) с F = 0

эквивалентно краевой задаче (5.2.1), (5.2.2), (4.2.3) с однородной правой
частью и однородным граничным условием на ∂ωη. Такая задача имеет
единственное решение — константу. Поэтому уравнения (5.2.4) и (4.2.12)
с F = 0 имеют ровно по одному решению. Решение уравнения (5.2.4)
уже было найдено выше. Решение уравнения (4.2.12) с F = 0 соответ-
ствует функции u ≡ 1 по формуле (4.2.11). На основе рассуждений из
доказательства леммы 4.2.2 несложно проверить, что это решение даётся
формулой из (5.2.5). Лемма доказана.

Пусть χ4 = χ4(ξ) — некоторая бесконечно дифференцируемая функ-
ция, равная единице в фиксированной окрестности полости ωη для всех
η ∈ [0, 1] и нулю вне некоторой большей окрестности, лежащей строго
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внутри ΠR6−1. Определим вектор–функцию

Ξ(t, ξ) := (1 + (t− 1)χ4(ξ))ξ, (5.2.6)

где t — положительный вещественный параметр. Ясно, что эта вектор–
функция бесконечно дифференцируемая и является диффеоморфизмом
области Π на себя при t ∈ [1− t0, 1 + t0] для некоторого фиксированного
достаточно малого t0 > 0. В окрестности полостей ωη диффеоморфизм Ξ

действует как локальное растяжение в t раз. Поэтому для произвольных
η1, η2 ∈ (0, 1) таких, что η2η

−1
1 ∈ [1−t0, 1+t0], диффеоморфизм Ξ(η2η

−1
1 , ξ)

переводит область Π \ωη1 в Π \ωη2, а область Πη1 — в область Πη2. Через
Ξ−1(t, ξ) обозначим обратный диффеоморфизм к Ξ.

Выберем теперь произвольно η0 ∈ (0, 1] и в области Π\ωη введём новые
переменные ξ̃ = Ξ(η0η

−1, ξ), где η ∈ (0, 1] — произвольное число, такое
что η0η

−1 ∈ [1−t0, 1+t0]. В силу свойств диффеоморфизма Ξ, переменные
ξ̃ изменяются в Π \ ωη0. Через Υ = Υ(ξ, η) обозначим соответствующий
якобиан замены, а именно,

Υ(ξ, η) := det−1

(
∂Ξ

∂ξ1
(η0η

−1, ξ) . . .
∂Ξ

∂ξn
(η0η

−1, ξ)

)
. (5.2.7)

В силу определения (5.2.6) диффеоморфизма Ξ, функция Υ представ-
ляется в виде

Υ(ξ, η) = 1 + (η − η0)Υ1(ξ̃, η), (5.2.8)

где функция Υ1 бесконечно дифференцируема по (ξ, η) ∈ Π \ ωη0 × [η0 −
δ(η0), η0 + δ(η0)] с некоторым δ(η0) > 0 и обращается в нуль вне носителя
функции χ2 для всех рассматриваемых значений η. Выполнено соотно-
шение

Υ(ξ, η) =
ηn

ηn0
на множестве {ξ : χ2(ξ) = 1}. (5.2.9)

Отметим ещё очевидную формулу

Υ∆ξ = ∆ξ̃ + (η − η0)B9(η0, η), (5.2.10)
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где B9 — некоторый дифференциальный оператор второго порядка с фи-
нитными коэффициентами, не равными нулю только на носителе функ-
ции χ4. Эти коэффициенты бесконечно дифференцируемы по (ξ̃, η), где ξ̃
меняется по носителю функции χ4 и η ∈ [η0−δ(η0), η0+δ(η0)], и равномер-
но ограничены вместе со всеми своими производными по пространствен-
ным переменным и параметру η. Оператор B9 удовлетворяет равенству

(η − η0)B9(η0, η) = Υ∆ξΥ
−1 −∆ξ̃. (5.2.11)

Следующая лемма описывает зависимость оператора B4 от параметра
η.

Лемма 5.2.3. Оператор B4(η) непрерывен по η ∈ [0, 1].

Доказательство. Для заданной функции g ∈ L2(ΠR6
) через V 0

2 обозна-
чим решение задачи

−∆ξV
0

2 = g в ΠR6
, V 0

2 = V ±1 на �× {±R6},

с периодическими граничными условиями (5.2.2) и примем его в качестве
функции V2 для η = 0. Это позволяет доопределить оператор B4 для η =

0 прежней формулой (4.2.12). Из этой общей формулы также немедленно
следует, что для любой пары значений η1, η2 ∈ [0, 1] верно равенство(

B4(η2)− B4(η1)
)

= 2χ′1
∂

∂ξn

(
Ṽη2 − Ṽη1

)
+
(
Ṽη2 − Ṽη1

)
χ′′1, (5.2.12)

где обозначено
Ṽη(ξ) := V2(ξ, η)− χ1(ξn)V1(ξ, η).

Функция Ṽη является решением уравнения

B10(η)Ṽη = g̃, g̃ := (1− χ1)g − 2χ′1
∂V1

∂ξn
− χ′′1V1, (5.2.13)

где B10(η) — оператор −∆ξ в области Πη с краевым условием Дирихле на
�× {±R6}, краевым условием Неймана на ∂ωη и периодическими крае-
выми условиями (5.2.2). Такой оператор самосопряжён и полуограничен
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снизу на области определения, состоящей из функций из W 2
2 (Πη), удо-

влетворяющих указанным краевым условиям. Из [12, Теор. 1.1, Лем. 2.1]
сразу следует, что при достаточно малых η верна оценка

‖Ṽη − Ṽ0‖W 1
2 (ΠR6

\Π
R6−

2
3

) 6 Cη‖g̃‖L2(ΠR6
)

с константой C, не зависящей от η и g̃. Отсюда, из (5.2.12) и ограни-
ченности оператора B1 вытекает непрерывность оператора B4(η) в точке
η = 0.

Выберем и зафиксируем число η0 ∈ (0, 1] и возьмём произвольное η ∈
(0, 1], достаточно близкое к η0. В уравнении (5.2.13) затем перейдём к
переменным ξ̃ = Ξ(η0η

−1, ξ) и учтём формулу (5.2.10). Тогда получим
следующее уравнение для функции Ṽη, выраженной в переменных ξ̃:(

B10(η0) + (η − η0)B9(η0, η)
)
Ṽη(Ξ

−1) = Υg̃.

С учётом описанных выше свойств коэффициентов оператора B9 сразу
заключаем, что данное уравнение можно решить следующим образом:

Ṽη(Ξ
−1) =

(
B10(η0) + (η − η0)B9(η0, η)

)−1
Υg̃.

Из этой формулы, (5.2.8) и равномерной ограниченности коэффициентов
оператора B9 следует неравенство

‖Ṽη(Ξ−1)− Ṽη0‖W 2
2 (Πη0) 6 C|η − η0|‖g̃‖L2(ΠR6

),

где константа C не зависит от η и g̃. Учитывая теперь определения диф-
феоморфизма Ξ, немедленно получаем:

‖Ṽη − Ṽη0‖W 1
2 (ΠR6

\ΠR6−1) 6 C|η − η0|‖g̃‖L2(ΠR6
),

где константа C не зависит от η и g̃. Отсюда и из (5.2.12) уже вытекает
непрерывность оператора B4(η) в точке η0. Лемма доказана.

Так как уравнение (5.2.4) имеет единственное решение — константу,
то уравнение (4.2.12) разрешимо, если выполнено условие∫

Πη

F dξ = 0.
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Тогда в силу теоремы Банаха об обратном операторе существует ограни-
ченный обратный оператор (I + B4(η))−1 : L∗ → L, где обозначено

L∗ := {g ∈ L2(ΠR6
) : (g, h0)L2(Πη) = 0, g = 0 в ωη},

L := {g ∈ L2(ΠR6
) : (g, g0)L2(Πη) = 0, g = 0 в ωη}.

В силу непрерывности оператора B4(η), установленной в лемме 5.2.3, об-
ратный оператор (I + B4(η))−1 ограничен равномерно по η ∈ [0, 1].

Решение операторного уравнения (4.2.12) имеет вид:

g = ĝ + cg0, ĝ := (I + B4(η))−1F, (5.2.14)

где c — произвольная константа, функция g0 определяется формулой
(5.2.5). Верно неравенство

‖ĝ‖L2(Πη) 6 C‖F‖L2(Πη), (5.2.15)

где константа C не зависит от F . В силу (5.2.14) решение краевой задачи
(5.2.1), (5.2.2) с однородным граничным условием на ∂ωη имеет вид

v(ξ, η) = v̂(ξ, η) + c,

где v̂ — решение задачи (5.2.1), (5.2.2) с однородным граничным условием
на ∂ωη, соответствующее решению ĝ операторного уравнения (4.2.12) в
смысле леммы 5.2.1, а константа c та же, что и в (5.2.14). Функция v̂

имеет следующую асимптотику на бесконечности:

v̂(ξ, η) = Â±(η) + o(1), ξn → ±∞,

где константы Â± определяются формулой

Â± =

∫
Π±R6
\Π±R6−1

|tn|ĝ(t) dt. (5.2.16)

При |ξn| > R6 функция v̂ имеет вид

v̂(ξ, η) = Â±(η) +
∑

k∈Zn−1
Â±k (η)e−2π|kb||ξn|e2πikb·ξ′, ±ξn > R6,
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Â±k := − 1

2π|kb|

∫
Π±R6
\Π±R6−1

ĝ(t)e2πikb·t′ sh 2π|kb|tndt.

В силу последнего равенства и неравенства (5.2.15) выполнено

|Â±k | 6
Ce2π|kb|R6

|kb|
3
2

‖F‖L2(Πη),

где константа C не зависит от k, F , η. Из формулы (4.2.11), неравенств
(5.2.3), (5.2.15) и ограниченности оператора B1 вытекает оценка

‖v̂‖W 1
2 (Πη) 6 C‖F‖L2(Πη),

где константа C не зависит от F и η.
Теперь к решению v̂ задачи (5.2.1), (5.2.2) с однородным граничным

условием на ∂ωη добавим константу −1
2(Â++Â−) и полученную функцию

обозначим через ṽ. Тогда функция ṽ имеет следующую асимптотику на
бесконечности

ṽ(ξ, η) = Ã±(η) + o(1), ξn → ±∞, Ã± = Â± −
1

2
(Â+ + Â−).

Для констант Ã± выполнено равенство Ã++Ã− = 0. Из равенства (5.2.16)
и неравенства (5.2.15) выводим

|Â+ + Â−| 6 C‖F‖L2(Πη),

где константа C не зависит от F . В силу формулы (4.2.11), неравенств
(5.2.3), (5.2.15) и ограниченности оператора B1 тогда получаем

‖ṽ‖W 1
2 (Πη) 6 C‖F‖L2(Πη),

где константа C не зависит от F и η. Таким образом, доказана следующая
лемма.

Лемма 5.2.4. Пусть функция F ∈ L2(Π
η) обращается в нуль вне ΠR6

и выполнено равенство ∫
Πη

F dξ = 0.
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Тогда краевая задача (5.2.1), (5.2.2) с однородным граничным условием
на ∂ωη разрешима. Существует единственное решение v задачи (5.2.1),
(5.2.2) с однородным граничным условием на ∂ωη, имеющее при ξn →
±∞ асимптотику (4.2.3), где константы A± удовлетворяют равен-
ству A+ + A− = 0. Общее решение задачи (5.2.1), (5.2.2) с однородным
граничным условием на ∂ωη отличается от данного решения на произ-
вольную константу.

При |ξn| > R6 функция v имеет вид

v(ξ, η) = A±(η) +
∑

k∈Zn−1
A±k (η)e−2π|kb||ξn|e2πikb·ξ′, ±ξn > R6. (5.2.17)

Верны оценки

sup
k∈Zn−1

e−2π|kb|R0|A±k (η)| 6 C‖F‖L2(Πη), ‖v‖W 1
2 (Πη) 6 C‖F‖L2(Πη),

где константа C не зависит от F и η.

5.2.3 Разрешимость модельной задачи

В данном параграфе исследуется разрешимость модельной задачи (5.2.1),
(5.2.2).

Лемма 5.2.5. Пусть функция F ∈ L2(Π
η) обращается в нуль вне ΠR0

.
Краевая задача (5.2.1), (5.2.2) разрешима, если и только если выполнено
равенство ∫

Πη

F dξ +

∫
∂ωη

φ ds = 0. (5.2.18)

Существует единственное решение v задачи (5.2.1), (5.2.2), имеющее
при ξn → ±∞ асимптотику (4.2.3), где константы A± удовлетворяют
равенству: A+ +A− = 0. Общее решение задачи (5.2.1), (5.2.2) отлича-
ется от данного решения на произвольную константу.

При |ξn| > R6 функция v имеет вид (5.2.17). Верны неравенства

sup
k∈Zn−1

e−2π|kb|R0|A±k (η)| 6 C
(
‖F‖L2(Πη) + ηn−1‖φ‖L2(∂ωη)

)
, (5.2.19)
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‖v‖W 1
2 (Πη) 6 C

(
‖F‖L2(Πη) + ηn−1‖φ‖L2(∂ωη)

)
, (5.2.20)

где константа C не зависит от F , φ и η.

Доказательство. Рассмотрим задачу

∆ξu = 0 в Rn \ ωη, ∂u

∂νξ
= φ на ∂ωη.

Сделаем замену ξ̃ := ξη−1 и перепишем эту задачу в виде

∆ξ̃ũ = 0 в Rn \ ω, ∂ũ

∂νξ̃
= φ̃ на ∂ω, (5.2.21)

где ũ(ξ̃) := u(ξ̃η), φ̃(ξ̃) := ηφ(ξ̃η).
Функция Грина задачи (5.2.21) имеет вид

G(ξ̃, y) =
1

σn(n− 2)|ξ̃ − y|n−2
+G1(ξ̃, y), (5.2.22)

гдеG1 —функция, принадлежащая по переменной ξ̃ пространству C1(Rn)

и удовлетворяющая уравнению ∆ξ̃G1(ξ̃, y) = 0 и равенству G1(ξ̃, y) =

O(|ξ̃ − y|−n+1) при ξn →∞. Функция G обладает следующими свойства-
ми:

G(ξ̃, y) = G(y, ξ̃), ξ̃, y ∈ Rn \ ω,
∂G

∂νξ̃
(ξ̃, y) = 0, ξ̃ ∈ ∂ω, y ∈ Rn \ ω.

(5.2.23)

Решение задачи (5.2.21) можно представить в виде

ũ(ξ̃) =

∫
∂ω

G(ξ̃, y)φ̃(y) ds. (5.2.24)

В силу [17, Гл. I, §1.6] функция ũ принадлежит пространству C1(Rn).
Решение задачи (5.2.1), (5.2.2) будем искать в виде v = χ4u+ ṽ. Функ-

ция ṽ является решением задачи

∆ξṽ = F̃ в Πη,
∂ṽ

∂νξ
= 0 на ∂ωη,

F̃ := F − 2
n∑
i=1

∂u

∂ξi

∂χ4

∂ξi
− u∆ξχ4,

(5.2.25)



142

с периодическими граничными условиями (5.2.2). В силу свойств функ-
ций χ4 и G верно

‖F̃‖L2(Πη) 6 C
(
‖F‖L2(Πη) + ηn−1‖φ‖L2(∂ωη)

)
, (5.2.26)

где константа C не зависит от F , φ и η.
Согласно лемме 5.2.4, задача (5.2.25), (5.2.2) разрешима, если выпол-

нено условие
∫

Πη

F̃ dξ = 0. Проинтегрируем теперь по частям∫
Πη

F̃ dξ =

∫
Πη

(F −∆ξ(χ4u)) dξ =

∫
Πη

F dξ +

∫
∂ωη

φ ds.

Следовательно, условие (5.2.18) гарантирует разрешимость задачи (5.2.25),
(5.2.2). При его выполнении существует единственное решение ṽ этой за-
дачи, имеющее при ξn → ±∞ асимптотику (4.2.3), где константы A±

удовлетворяют равенству A+ + A− = 0. При |ξn| > R6 данное решение
имеет вид (5.2.17). Верны оценки

sup
k∈Zn−1

e−2π|kb||A±k (η)| 6 C‖F̃‖L2(Πη), ‖ṽ‖W 1
2 (Πη) 6 C‖F̃‖L2(Πη),

где константы C не зависят от F , φ и η. Возвращаясь теперь к функции
v и учитывая оценку (5.2.26), приходим к утверждению леммы. Лемма
доказана.

5.3 Оценки максимума решения модельной задачи и
его производных

Цель данного параграфа — оценка максимума модуля решения задачи
(5.2.1), (5.2.2) и модуля его производных. Будем предполагать, что функ-
ции F и φ принадлежат пространствам Cϑ(Πη) и C1+ϑ(∂ωη) соответствен-
но, где ϑ ∈ (0, 1) — фиксированное число. Тогда в силу оценок Шаудера
[26, Гл. III, §§2,3] модельная краевая задача (5.2.1), (5.2.2) разрешима и её
решение принадлежит пространству C2+ϑ(Π). Классические оценки Ша-
удера не позволяют выяснить зависимость нормы решения этой задачи
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в пространстве C2+ϑ от параметра η при малых η. Применение подхо-
да, описанного в §4.2.5, даёт слишком грубую оценку, в первую очередь
для производных. Поэтому в настоящем параграфе мы доказываем бо-
лее тонкие оценки по сравнению с полученными в §4.2.5 с использованием
другой техники.

5.3.1 Оценка максимума решения

В этом пункте оценивается максимум модуля решения задачи (5.2.1),
(5.2.2).

Лемма 5.3.1. Для единственного решения задачи (5.2.1), (5.2.2), суще-
ствование которого было доказано в лемме 5.2.5, верно неравенство

‖v‖C(Πη) 6 C
(
‖F‖C(Πη) + η‖φ‖C(∂ωη)

)
, (5.3.1)

где константа C не зависит от функций F , φ и параметра η.

Доказательство. Доказательство этой леммы в целом проводится по той
же схеме, что и доказательство неравенства (4.2.49) для случая η < η0.

Функция ṽ = (1 − χ3)v, где, напомним, срезающая функция χ3 была
введена перед равенством (4.2.11), является решением задачи

−∆ξṽ = G в Π2R6
\ ωη,

∂ṽ

∂νξ
= φ на ∂ωη, ṽ = 0 на �× {−2R6, 2R6},

G = (1− χ3)F + 2∇ξχ3 · ∇ξv + v∆ξχ3,

с периодическими граничными условиями (5.2.2).
Пусть ξ̃ = (ξ̃1, . . . , ξ̃n) — декартовы координаты в Rn. Рассмотрим

внешние краевые задачи

−∆ξ̃Yi = 0 в Rn \ ω, i = 0, 1, 2,

∂Y0

∂νξ̃
= 1,

∂Y1

∂νξ̃
=
∂ξ̃n
∂νξ̃

,
∂Y2

∂νξ̃
= ξ̃n

∂ξ̃n
∂νξ̃

на ∂ω,
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где νξ̃ — единичная нормаль к ∂ω, направленная внутрь ω. Существуют
классические решения этих задач, принадлежащие пространству C∞(Rn\
ω)∩C2+ϑ(BR(0)), где R — достаточно большое фиксированное число, со
следующими асимптотиками на бесконечности

Yi(ξ̃) = O
(
|ξ̃|−n+2

)
, ξ̃ →∞, i = 0, 1, 2.

Для функций Yi, i = 0, 1, 2 выполнены оценки∣∣χ4(ξ)Yi(ξη
−1)
∣∣ 6 C, ∣∣∆ξηχ4(ξ)Yi(ξη

−1)
∣∣ 6 Cηn−1, (5.3.2)

где C — некоторая константа, не зависящая от ξ и η, а χ4 — срезающая
функция, введённая после леммы 5.2.2.

Введем функции:

Y3(ξ, η) := (ξ2
n − 4R2

6)− χ4(ξ)
(

2η2Y2

(
ξη−1

)
+ 2ηξnY1

(
ξη−1

))
,

Y4(ξ, η) := ηχ4(ξ)Y0

(
ξη−1

)
.

В силу определения функций Yi, i = 0, 1, 2 и неравенств (5.3.2) функции
Y3 и Y4 удовлетворяют соотношениям

−∆ξY3 > 1 в Πη,
∂Y3

∂νξ
= 0 на ∂ωη,

|∆ξY4| 6 Cηn−1 в Πη,
∂Y4

∂νξ
= 1 на ∂ωη,

c периодическими граничным условиями (5.2.2), где C — некоторая кон-
станта, не зависящая от ξ и η. Рассматривая функции

u± 2‖φ‖C(Πη)Y4 + 2
(
‖G‖C(Πη) + Cηn‖φ‖C(Πη)

)
Y3,

аналогично выводу неравенств (4.2.53) и (4.2.54) показывается, что

|u| 6 2‖φ‖C(Πη)Y4 + 2
(
‖G‖C(Πη) + Cηn‖φ‖C(Πη)

)
Y3.

Из последнего неравенства, (5.3.2) и определения функций Y3, Y4 следует

‖ṽ‖C(Πη) 6 C
(
‖G‖C(Πη) + η‖φ‖C(∂ωη)

)
,

где константа C не зависит от F , φ и η. Отсюда уже вытекает (5.3.1).
Лемма доказана.
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5.3.2 Оценка максимума производных решения

В данном параграфе будут получены оценки максимума модуля произ-
водных единственного решения задачи (5.2.1), (5.2.2), существование ко-
торого доказано в лемме 5.2.5.

Обозначим: v̆(ξ) := (1 − χ4(ξ))v(ξ), где, напомним, χ4 — срезающая
функция из доказательства леммы 5.2.5. Продолжим функции F и v̆ ну-
лём внутрь полостей ωη. В силу определения срезки χ4 функция v̆ равна
нулю в окрестности полости ωη. Поэтому продолжение функции v̆ нулём
внутрь ωη не ухудшает её гладкость, а именно, v̆ ∈ C2+ϑ(Π). Функция v̆
является решением задачи

−∆ξv̆ = F1 в Π, F1 := (1− χ4)F + 2
n∑
i=1

∂χ4

∂ξi

∂v

∂ξi
+ v∆ξχ4, (5.3.3)

с периодическими граничными условиями (5.2.2), где функция F1 счита-
ется продолженной нулём внутрь полости ωη. Функция F1 равна нулю в
окрестности полости ωη и принадлежит пространству Cϑ(Π).

Отметим, что задача (5.3.3), (5.2.2) рассматривается во всей области Π

без полости. Для такой задачи удаётся явно построить функцию Грина,
а именно на основе идей из [46, §3.1] можно доказать следующую лемму.

Лемма 5.3.2. Функция Грина задачи (5.3.3), (5.2.2) даётся равенством

GΠ(ξ) =
1

σn(n− 2)|ξ|n−2
+ G̃Π(ξ),

G̃Π(ξ) := ξn +
1

σn(n− 2)

∑
m∈L

(
1

|ξ + (m, 0)|n−2
− 1

|(m, 0)|n−2

−
n∑
i=1

ξi
∂

∂ti

1

|t|n−2

∣∣∣∣
y=(m,0)

)
,

(5.3.4)

где σn — площадь единичной сферы в Rn,

L := 2b1Z1 × . . .× 2bn−1Zn−1 \ {0}.
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Функция GΠ является �-периодической по ξ′ и имеет дифференцируе-
мую асимптотику на бесконечности

GΠ(ξ) = C1 +O(e−C2|ξn|), ξn → ±∞, (5.3.5)

где C1, C2 — некоторые константы. Функция G̃Π бесконечно дифферен-
цируема в Π.

Так как решение задачи (5.3.3), (5.2.2) принадлежит C2+ϑ(Π), то оно
представимо в виде

v̆(ξ) =

∫
ΠR6

GΠ(ξ − y)F1(y) dy. (5.3.6)

Лемма 5.3.3. Верно неравенство

max
ΠR6

|∇v̆| 6 C
(

max
ΠR6

|F |+ max
ΠR6

|v|
)
, (5.3.7)

где константа C не зависит от функций v, F и параметра η.

Доказательство. В силу формулы (5.3.6) и определения функции F1 в
(5.3.3) выполнено равенство

v̆(ξ) =

∫
ΠR6

(
1− χ4(y)

)
(y)F (y)GΠ(ξ − y) dy

+ 2
n∑
i=1

∫
ΠR6

∂v

∂yi
(y)

∂χ4

∂yi
(y)GΠ(ξ − y) dy

+

∫
ΠR6

v(y)GΠ(ξ − y)∆yχ4(y) dy.

Проинтегрируем однократно по частям во втором интеграле в правой
части этого равенства:

v̆(ξ) =

∫
ΠR6

(
(1− χ4(y))F (y)− v(y)∆yχ4(y)

)
GΠ(ξ − y) dy
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+ 2
n∑
i=1

∫
ΠR6

v(y)
∂χ4

∂yi
(y)

∂GΠ

∂ξi
(ξ − y) dy.

Применяя формулу (1.24) из [26, Гл. III, §1], выводим

∂v̆

∂ξj
(ξ) =

∫
ΠR6

(
(1− χ4(y))F (y)− v(y)∆yχ4(y)

)∂GΠ

∂ξj
(ξ − y) dy

− 2 lim
ρ→+0

∫
Π∩{y:|ξ−y|>ρ}

v(y)
n∑
i=1

∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ − y) dy

− 2δij
n
v(ξ)

∂χ4

∂ξi
(ξ),

(5.3.8)

где j = 1, . . . , n, δij — символ Кронекера–Капелли. Так как функция
G̃Π бесконечно дифференцируема в Π, то из формулы для GΠ в (5.3.4)
и асимптотики (5.3.5) сразу следует, что все производные функции G̃Π

равномерно ограничены в Π. С учётом этого факта и �–периодичности
функции GΠ по ξ′ оценим первый интеграл в правой части последнего
равенства:∣∣∣∣ ∫

ΠR6

(
(1− χ4(y))F (y)− v(y)∆yχ4(y)

)∂GΠ

∂ξj
(ξ − y) dy

∣∣∣∣
6C
(

max
ΠR6

|F |+ max
ΠR6

|v|
) ∫

ΠR6

(
1

|ξ − y|n−1
+

∣∣∣∣∂G̃Π

∂ξj
(ξ − y)

∣∣∣∣
)
dy,

6C
(

max
ΠR6

|F |+ max
ΠR6

|v|
) ∫

ΠR6

(
1

|ξ − y|n−1
+ 1

)
dy,

(5.3.9)

где C — константа, не зависящая от F и ξ. Пусть ξ /∈ Π2R6
, тогда верно

неравенство: |ξ − y| > R6 > 1, из которого сразу следует, что∫
ΠR6

1

|ξ − y|n−1
dy 6 |ΠR6

|. (5.3.10)
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При ξ ∈ Π2R6
, y ∈ ΠR6

верно

|ξ − y| < ρ1, ρ1 := 3R6 + 2

(
n−1∑
i=1

b2
i

) 1
2

.

Это приводит к оценке∫
ΠR6

1

|ξ − y|n−2
dy <

∫
Bρ1(0)

dt

|t|n−1
6 ρn1 |B1(0)|.

Данное неравенство и (5.3.10) позволяют продолжить оценки в (5.3.9):∣∣∣∣ ∫
ΠR6

(
(1−χ4(y))F (y)−v(y)∆yχ4(y)

)∂GΠ

∂ξj
(ξ−y) dy

∣∣∣∣ 6 C(max
ΠR6

|F |+max
ΠR6

|v|
)
,

(5.3.11)
где константа C не зависит от ξ, y, j и F .

Интеграл под пределом в правой части (5.3.8) представим в виде
n∑
i=1

∫
Π∩{y:|ξ−y|>ρ}

v(y)
∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y) dy

=
n∑
i=1

∫
Π∩{y:ρ6|ξ−y|6ρ2}

v(y)
∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y) dy

+
n∑
i=1

∫
Π∩{y:|ξ−y|>ρ2}

v(y)
∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y) dy,

(5.3.12)

где ρ2 > 0 — некоторое достаточно малое фиксированное число, не зави-
сящее от ξ и y. Оценим второе слагаемое в правой части этого равенства:∣∣∣∣∣∣∣

n∑
i=1

∫
Π∩{y:|ξ−y|>ρ2}

v(y)
∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y)dy

∣∣∣∣∣∣∣ 6
C

ρn2
max
ΠR6

|v|, (5.3.13)

где константа C не зависит от ξ, y и j.
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Аналогично доказательству неравенства (1.27) из [26, Гл. III, §1] про-
веряется, что ∣∣∣∣∣∣∣

∫
Π∩{y:ρ6|ξ−y|6ρ3}

∂2GΠ

∂ξi∂ξj
(ξ, y) dy

∣∣∣∣∣∣∣ 6 C, (5.3.14)

где константа C не зависит от ξ, y и ρ2. При |ξ − y| < ρ2 выполнено

|v(y)− v(ξ)| 6 C|ξ − y|max
ΠR6

|∇v|,

где константа C не зависит от v, ξ и y. Тогда в силу последнего неравен-
ства и (5.3.14) верно∣∣∣∣∣∣∣

n∑
i=1

∫
Π∩{y:ρ6|ξ−y|6ρ2}

v(y)
∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y) dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣v(ξ)
n∑
i=1

∫
Π∩{y:ρ6|ξ−y|6ρ2}

∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
n∑
i=1

∫
Π∩{y:ρ6|ξ−y|6ρ2}

(v(y)− v(ξ))
∂χ4

∂yi
(y)

∂2GΠ

∂ξi∂ξj
(ξ, y) dy

∣∣∣∣∣∣∣
6 C

(
max
ΠR6

|v|+ ρ2 max
ΠR6

|∇v|
)
,

(5.3.15)

где константы C и C5 не зависят от ρ2, v, j, ξ и y.
В силу (5.3.8), (5.3.11), (5.3.12), (5.3.13) и (5.3.15) выполнено неравен-

ство
max
ΠR6

|∇v̆| 6 C
(

max
ΠR6

|F |+ max
ΠR6

|v|
)

+ Cρ2 max
ΠR6

|∇v|,

где константа C не зависит от F , ρ2, v и ξ. Перенося последнее слагаемое в
левую часть неравенства и выбрав ρ2 достаточно малым, получим оценку
(5.3.7). Лемма доказана.

Обозначим v̌(ξ) := v(ξ)χ5(ξ), где χ5 = χ5(ξ) — бесконечно диффе-
ренцируемая срезающая функция, равная единице на носителе функции
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1−χ4 и нулю вне некоторого окрестности этого носителя, лежащей строго
внутри Π. Функция v̌ является решением задачи

−∆ξv̌ = F2 в Rn \ ωη, ∂v̌

∂νξ
= φ на ∂ωη, (5.3.16)

F2 := χ5F − 2
n∑
i=1

∂v

∂ξi

∂χ5

∂ξi
− v∆ξχ5.

Лемма 5.3.4. Верно неравенство

max
Πη
|∇v̌| 6 C

(
max

Πη
|F |+ max

Πη
|v|+ ηmax

∂ωη
|φ|+ max

∂ωη
|∇φ|

)
, (5.3.17)

где константа C не зависит от F , v, φ и η.

Доказательство. В задаче (5.3.16) сделаем замену ξ̃ := ξη−1. Тогда эта
задача перепишется в виде

−∆ξ̃ṽ = F̃2 в Rn \ ω, ∂ṽ

∂νξ̃
= φ̃ на ∂ω, (5.3.18)

где ṽ(ξ̃) := v̌(ξ̃η), F̃2(ξ̃) := η2F2(ξ̃η), φ̃(ξ̃) := ηφ(ξ̃η). Отметим, что по
своему определению функция ṽ финитна.

Решение задачи (5.3.18) представим в виде

ṽ(ξ̃) = ṽ1(ξ̃) + ṽ2(ξ̃),

ṽ1(ξ̃) :=

∫
Rn\ω

G(ξ̃, y)F̃2(y) dy, ṽ2(ξ̃) :=

∫
∂ω

G(ξ̃, y)φ̃(y) ds, (5.3.19)

где G — функция Грина задачи (5.3.18), определяемая формулой (5.2.22).
В силу [17, Гл. I, §1.6] функция ṽ принадлежит пространству C1(Rn).

Обозначим

ṽ1(ξ̃) :=

∫
Rn\ω

G(ξ̃, y)F̃2(y) dy, ṽ2(ξ̃) :=

∫
∂ω

G(ξ̃, y)φ̃(y) ds.

Оценим производные функции ṽ1. Из формулы (5.2.22) следует оценка∣∣∣∣∂ṽ1

∂ξ̃i
(ξ̃)

∣∣∣∣ 6 C max
Bη
|F̃2|

∣∣∣∣∣
∫
Bη

∂

∂ξ̃i

1

|ξ̃ − y|n−2
dy

∣∣∣∣∣+

∣∣∣∣∣
∫
Bη

∂G1

∂ξ̃i
(ξ̃, y) dy

∣∣∣∣∣
 ,

(5.3.20)
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где Bη := BR2η−1(0) \ ω, а C — константа, не зависящая от F̃2, ξ̃ и y.
В первом интеграле в правой части (5.3.20) произведем замену перемен-
ных z = ξ̃ − y и затем перейдем к сферической системе координат. В
результате получим∣∣∣∣∣

∫
Bη

∂

∂ξ̃i

1

|ξ̃ − y|n−2
dy

∣∣∣∣∣ 6
∣∣∣∣∣
∫

Sn−1

dϕ

η−1∫
0

dr

∣∣∣∣∣ 6 Cη−1,

где Sn−1 — единичная сфера Rn, C — константа, не зависящая от η, ξ̃, y
и i. В силу свойств функции G1 верно∣∣∣∣∣∣

∫
Bη

∂G1

∂ξ̃i
(ξ̃, y) dy

∣∣∣∣∣∣ 6 C,
где константа C не зависит от ξ̃, y и i. Из последних двух неравенств и
(5.3.20) вытекает∣∣∣∣∂ṽ1

∂ξ̃i
(ξ̃)

∣∣∣∣ 6 Cη−1 max
Bη
|F̃2|, ξ̃ ∈ Rn \ ω, (5.3.21)

где константа C не зависит от η, ξ̃, y и i.
Пусть ξ̃ /∈ ∂ω. Тогда верно равенство

∂ṽ2

∂ξ̃i
(ξ̃) =

∫
∂ω

∂G

∂ξ̃i
(ξ̃, y)φ̃(y) ds.

Введем гладкие локальные координаты s = (s1, . . . , sn−1) на ∂ω, тогда
якобиан замены J = J(s), возникающий при переходе от переменных y
к s, является функцией класса C1, ограниченной равномерно вместе со
своими производными. В силу свойств (5.2.23) выполнены соотношения∫

∂ω

φ̃
∂G̃

∂ξ̃i
ds =

∫
∂ω

φ̃
∂G̃

∂yi
ds

=

∫
∂ω

Jφ

(
∂s1

∂yi

∂G

∂s1
+ . . .+

∂sn−1

∂yi

∂G

∂sn−1

)
ds, ξ̃ /∈ ∂ω.
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Проинтегрируем по частям∫
∂ω

Jφ

(
∂s1

∂yi

∂G

∂s1
+ . . .+

∂sn−1

∂yi

∂G

∂sn−1

)
ds

= −
∫
∂ω

G

(
∂

∂s1

∂s1

∂yi
Jφ+ . . .+

∂

∂sn−1

∂sn−1

∂yi
Jφ

)
ds, ξ̃ /∈ ∂ω.

Отсюда в силу ограниченности J получим неравенство∣∣∣∣∂ṽ2

∂ξ̃i
(ξ̃)

∣∣∣∣ 6 C
(

max
∂ω
|φ̃|+ max

∂ω

∣∣∣∣ ∂φ̃∂yi
∣∣∣∣
)
, ξ̃ /∈ ∂ω, (5.3.22)

где константа C не зависит от φ̃, i, ξ̃ и y.
Пусть ξ̃0 ∈ ∂ω. Переходя в последнем неравенстве к пределу при ξ̃ →

ξ̃0, в силу непрерывности ∂ṽ2
∂ξi

, получим, что неравенство (5.3.22) верно
для всех ξ̃ ∈ Rn \ ω. Возвращаясь обратно к переменным ξ и используя
(5.3.19), (5.3.21) и (5.3.22), выводим

max
Πη
|∇v̆| 6 C

(
max

Πη
|F2|+ max

∂ω
|φ|+ max

∂ω
|∇φ|

)
,

где константа C не зависит от F2, φ, ξ и y. Неравенство (5.3.17) следует
из последней оценки и лемм 5.3.1, 5.3.3. Лемма доказана.

Из лемм 5.3.1, 5.3.3 и 5.3.4 вытекает следующее утверждение.

Лемма 5.3.5. Для единственного решения задачи (5.2.1), (5.2.2), суще-
ствование которого доказано в лемме 5.2.5, верно неравенство

max
Πη
|∇v| 6 C

(
max

Πη
|F |+ ηmax

∂ω
|φ|+ max

∂ω
|∇φ|

)
,

где константа C не зависит от η, F , φ.

5.4 Разрешимость модельных задач

В данном параграфе результаты предыдущего параграфа применяются
для исследования разрешимости модельной задачи (5.2.1), (5.2.2) с пра-
вой частью общего вида и описания зависимости решения от параметра
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η. Аналогичные вопросы изучаются и для модельной задачи для коэф-
фициентов внешнего разложения, постановка которой также приводится
в данном параграфе.

Как и в §4.2.6, мы вновь воспользуемся пространством H и нормой в
этом пространстве.

Лемма 5.4.1. Пусть∫
Πη

F dξ +

∫
∂ωη

φ ds = 0, F = F0 +
n−1∑
j=1

∂Fj
∂ξj

,

F0 ∈ Cϑ(Πη) ∩ H, Fj ∈ C1+ϑ(Πη) ∩ H, φ ∈ C1+ϑ(∂ωη),

для функций Fj, j = 0, . . . , n−1 верны представления (4.2.57) с некото-
рыми полиномами T±k = T±k,j. Тогда задача (5.2.1), (5.2.2) разрешима и
существует её единственное решение v, имеющее при ξn → ±∞ асимп-
тотику (4.2.3), где константы A± удовлетворяют равенству A+ +

A− = 0. Это решение принадлежит пространству C1+ϑ(Πη) ∩ H и при
|ξn| > R6 имеет вид (4.2.57), где полиномы T±k заменяются на полино-
мы Q±k = Q±k (ξ, η), обладающими свойствами

− ∂2Q±0
∂ξ2

n

= T±0,0,
∂Q±0
∂ξn

(0, η) = 0,

− ∂2Q±k
∂ξ2

n

± 4π |kb|
∂Q±k
∂ξn

= T±k,0 + πi
n−1∑
j=1

kj
bj
Tk,j.

Справедливы оценки

sup
k∈Zn−1

e−2π|kb|R6|Q±k (0, η)| 6 C
(
ηn−1‖φ‖C(∂ωη) + ‖F0‖C(Πη)

+
n−1∑
j=1

‖∇ξFj‖C(Πη) +
n−1∑
j=0

‖Fj‖H)

)
,

(5.4.1)
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‖v‖C1(Πη) 6 C

(
η‖φ‖C(∂ωη) + ‖∇φ‖C(∂ωη) + ‖F0‖C(Πη)

+
n−1∑
j=1

‖∇ξFj‖C(Πη) +
n∑
j=0

‖Fj‖H
)
,

(5.4.2)

где C — некоторые константы, не зависящие от функций Fj, j =

0, . . . , n− 1, и параметров η и k.

Доказательство. Задачи

−∆ξv
±
F = F0 +

n−1∑
j=1

∂Fj
∂ξj

в Π±R0−1,

с периодическими граничными условиями (5.2.2) были решены методом
разделения переменных, см. (4.2.67), (4.2.68). Для этого решения верна
оценка (4.2.70).

Решение задачи (5.2.1), (5.2.2) будем искать в виде

v = ṽ + χ3vF , vF (ξ) := v±F (ξ) при ± ξn > R6 − 1,

где срезающая функция χ3 была введена перед равенством (4.2.11). Функ-
ция ṽ является решением задачи

−∆ξṽ = F̃ в ΠR \ ωη,
∂ṽ

∂νξ
= 0 на ∂ωη,

F̃ := Fχ3 − 2
∂vF
∂ξn

χ′3 − vFχ′3,
(5.4.3)

с периодическими граничными условиями (5.2.2).
Используя неравенства (5.2.26) и (4.2.70), выводим

‖F̃‖L2(ΠR6
) 6 C

(
ηn−1‖φ‖L2(∂ωη) + ‖F0‖L2(Π±R6

\Π±R6−1
)

+
n−1∑
j=1

‖∇Fj‖L2(Π±R6
\Π±R6−1

) +
n−1∑
j=0

‖Fj‖H

)
,
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где константа C не зависит от η, φ, Fj, j = 0, . . . , n− 1.
Проверим условие разрешимости для задачи (5.4.3), (5.2.2), указанное

в лемме 5.2.4. Для этого проинтегрируем по частям∫
Πη

F̃ dξ +

∫
∂ωη

φ ds =

∫
Πη

(F −∆ξχ3vF ) dξ =

∫
Πη

Fd ξ +

∫
∂ωη

φ ds = 0.

Следовательно, согласно лемме 5.2.4, существует единственное решение
задачи (5.4.3), (5.2.2), имеющее при ξn → ±∞ асимптотику (4.2.3), где
константы A± удовлетворяют равенству A+ + A− = 0. При |ξn| > R6

данное решение представляется в виде (5.2.17), где для коэффициентов
Â±k (η) верны оценки:

sup
k∈Zn−1

e−2π|kb||Â±k (η)| 6 C

|kb|

(
ηn−1‖φ‖C(∂ωη) + ‖F0‖C(Πη)

+
n−1∑
j=1

‖∇ξFj‖C(Πη) +
n−1∑
j=0

‖Fj‖H
)
,

(5.4.4)

где константа C не зависит от η, φ, Fj, j = 0, . . . , n− 1. Поэтому задача
(5.2.1), (5.2.2) также разрешима и имеет единственное решение, имеющее
при ξn → ±∞ асимптотику (4.2.3), где константы A± удовлетворяют
A+ + A− = 0. При |ξn| > R6 данное решение имеет вид (4.2.57) с

T±k = Q±k , Q±k (ξ, η) := Q̃±k (ξn) + Â±k (η).

Неравенство (5.4.1) для этого решения является прямым следствием (5.4.4).
Пусть χ6 = χ6(ξn) — бесконечно дифференцируемая срезающая функ-

ция, равная единице при |ξn| < R6 + 4
3 и нулю при |ξn| > R6 + 5

3 . Функция
χ6v является решением задачи

−∆ξχ6v = χ6F − 2∇ξχ6 · ∇ξv − v∆ξχ6 в ΠR6+2 \ ωη,
∂χ6v

∂νξ
= φ на ∂ωη, χ6v = 0 на �× {±(R6 + 2)}

(5.4.5)

с периодическими граничными условиями (5.2.2). Применяя к этой функ-
ции лемму 5.3.5 и учитывая оценки (5.4.1), получим оценку (5.4.2). Лемма
доказана.
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5.5 Бесконечная дифференцируемость по η

В настоящем параграфе мы исследуем гладкость по параметру η ∈ (0, 1]

решения задачи (5.2.1), (5.2.2), существование которого доказано в лем-
ме 5.2.5, а также гладкость по η ∈ [0, 1] решения пары модельных задач
в Ω \ S для функций внешнего разложения.

5.5.1 Гладкость решения модельной задачи для коэффициен-
тов внутреннего разложения

В данном разделе мы исследуем гладкость по η решения задачи (5.2.1),
(5.2.2). Всюду в разделе считаем, что функция F обращается в нуль вне
ΠR6

и является бесконечно дифференцируемой вместе φ, а именно F ∈
C∞(ΠR6

\ ωη), φ ∈ C∞(∂ωη).
С учётом поведения решения задачи (5.2.1), (5.2.2) на бесконечности,

описанного в лемме 5.4.1, решение бесконечно дифференцируемо по ξ в
Π \ΠR6+1. Функция ṽ = vχ6 является решением задачи (5.4.5) с периоди-
ческими граничными условиями на боковых гранях. Правая часть урав-
нения в этой задаче очевидно бесконечно дифференцируемая в ΠR6+2\ωη,
а потому в силу стандартных оценок Шаудера сразу заключаем, что
ṽ ∈ C∞(ΠR6+2 \ ωη). С учётом бесконечной дифференцируемости v в
Π \ΠR6+1 отсюда немедленно следует, что v ∈ C∞(Π \ ωη). Отметим ещё
очевидные оценки

‖v‖
Ck+2+1

2 (Π\ωη)
6 Ck(η)

(
‖F‖

Ck+
1
2 (ΠR6

\ωη)
+ ‖φ‖

Ck+1+1
2 (∂ωη)

)
, (5.5.1)

где Ck(η) — некоторые константы, не зависящие от F и φ, а параметр η
строго положителен.

Далее всюду предполагаем, что для всех η ∈ (0, 1] функция φ в гранич-
ном условии на ∂ωη в (5.2.1) является следом некоторой гладкой функции
Φ = Φ(ξ, η), заданной в Π \ ωη и обращающейся в нуль вне множества
{ξ : χ4(ξ) = 1}.
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Основное утверждение настоящего раздела выглядит следующим об-
разом.

Лемма 5.5.1. Пусть функции Φ = Φ(ξ, η), F = F (ξ, η) определены и
бесконечно дифференцируемы по ξ в Π \ωη для каждого η ∈ (0, 1], функ-
ция F обращается в нуль вне ΠR6

, функция Φ обращается в нуль вне
множества {ξ : χ4(ξ) = 1} для всех η ∈ (0, 1] и выполнены равенства

φ = Φ
∣∣
∂ωη
,

∫
Π\ωη

F (ξ, η) dξ +

∫
∂ωη

φ(ξ, η) ds = 0, η ∈ (0, 1]. (5.5.2)

Предположим, что для каждого η0 ∈ (0, 1] и каждого k ∈ N существу-
ет достаточно малое число δk = δk(η0) > 0 такое, что для функций
Φ
(
Ξ−1(η0η

−1, ξ), η
)
и F

(
Ξ−1(η0η

−1, ξ), η
)
выполнено

Φ
(
Ξ−1(η0η

−1, ξ), η
)
∈ Ck+ 1

2

(
Π \ ωη0 × [η0 − δk(η0), η0 + δk(η0)]

)
,

F
(
Ξ−1(η0η

−1, ξ), η
)
∈ Ck+1+ 1

2

(
Π \ ωη0 × [η0 − δk(η0), η0 + δk(η0)]

)
,
(5.5.3)

где диффеоморфизм Ξ был введён формулой (5.2.6). Тогда решение v =

v(ξ, η) задачи (5.2.1), (5.2.2), существование которого доказано в лем-
ме 5.4.1, также бесконечно дифференцируемо в Π \ ωη для каждого
η ∈ (0, 1] и для каждого k ∈ N существует δ̃k = δ̃k(η0) > 0 такое,
что для функции v

(
Ξ(ηη−1

0 , ξ), η
)
выполнено

v
(
Ξ(ηη−1

0 , ξ), η
)
∈ Ck+ 1

2

(
Π \ ωη0 × [η0 − δ̃k(η0), η0 + δ̃k(η0)]

)
. (5.5.4)

Полиномы Qk(ξ, η), соответствующие функции v, имеют бесконечно
дифференцируемые по η коэффициенты.

Оставшаяся часть раздела посвящена доказательству этой леммы.
В силу леммы 5.4.1 второе равенство в (5.5.2) гарантирует разреши-

мость задачи (5.2.1), (5.2.2) для каждого η ∈ (0, 1]. Бесконечная диф-
ференцируемость решения по ξ была установлена выше, а также были
доказаны оценки (5.5.1).
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Выберем η0 ∈ (0, 1] и k ∈ N, и пусть η ∈ [η0 − δk(η0), η0 + δk(η0)].
Рассмотрим краевую задачу

∆ξvφ = 0 в Rd \ ωη, ∂vφ
∂νξ

= Φ(ξ, η) на ∂ωη.

Растяжение ξ̂ = η0η
−1ξ переводит эту задачу в

∆ξ̂vφ = 0 в Rd \ ωη0, ∂vφ
∂νξ̂

= η0η
−1Φ

(
η0η
−1ξ, η

)
на ∂ωη0. (5.5.5)

В силу определения функции Φ и диффеоморфизма Ξ на носителе функ-
ции Φ диффеоморфизм Ξ действует как простое растяжение в (t−1) раз,
а потому

Φ
(
η0η
−1ξ, η

)
= Φ

(
Ξ(η0η

−1, ξ), η
)

и данная функция является элементом пространства, указанного в пер-
вой принадлежности в (5.5.3). Ещё одним растяжением в η0 раз задача
(5.5.5) сводится к задаче (5.2.21), решение которой уже дается сверткой
с фиксированной функцией Грина, см. (5.2.24). В результате заключаем,
что функция vφ = vφ(ξ, η) бесконечно дифференцируема по ξ в Rn \ ωη

для каждого η ∈ (0, 1], а функция vφ(ξ, η)χ2(ξ), рассматриваемая как
заданная в Π \ ωη, удовлетворяет условию (5.5.4).

Решение задачи (5.2.1), (5.2.2) представим в виде v = vφχ4 + vF и на
функцию vF тогда получаем краевую задачу

−∆vF = F1 в Π \ ωη, ∂vF
∂νξ

= 0 на ∂ωη,

F1 := F + 2
n∑
j=1

∂vφ
∂ξj

∂χ4

∂ξj
+ vφ∆ξχ4,

(5.5.6)

с периодическими краевыми условиями на боковых границах. В силу
установленных выше свойств функции vφ, функция F1 обладает теми же
свойствами, что и функция F с единственным исключением, что второе
равенство в (5.5.2) заменяется на∫

Π\ωη

F1(ξ, η) dξ = 0, η ∈ (0, 1]. (5.5.7)
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Определим пространство функций

Ck :=

{
f ∈ Ck+ 1

2 (Π \ ωη0) :

∫
Πη0

f(ξ) dξ = 0, f = 0 вне ΠR6

}

с нормой пространства Ck+ 1
2 (Πη0). С такой нормой пространство Ck ока-

зывается банаховым.
В области Π \ ωη введём новые переменные ξ̃ = Ξ(η0η

−1, ξ). В силу
свойств диффеоморфизма Ξ, переменные ξ̃ изменяются в Π \ ωη0. На-
помним, что соответствующий якобиан замены Υ = Υ(ξ, η) был введён
в (5.2.7) и для него верны соотношения (5.2.8), (5.2.9). Учитывая эти со-
отношения и гладкость функций F1 и Υ, в интеграле (5.5.7) перейдём
к переменным ξ̃ и сразу получим, что функция ΥF1, выраженная в пе-
ременных ξ̃, принадлежит пространству Ck. Далее перейдём к перемен-
ным ξ̃ в задаче (5.5.6) и введём новую неизвестную функцию по правилу
ṽF (ξ̃, η) := vF (ξ, η)Υ(ξ, η). Тогда ввиду равенств (5.2.8), (5.2.9), (5.2.10),
(5.2.11) получим задачу

−(∆ξ̃ + (η − η0)B9(η0, η))ṽF = ΥF1 в Π \ ωη0,
∂vF
∂νξ̃

= 0 на ∂ωη0,
(5.5.8)

с периодическими краевыми условиями на боковых границах. В силу
свойств оператора B9, описанных после (5.2.10), этот оператор является
ограниченным равномерно по η ∈ [η0 − δk(η0), η0 + δk(η0)] как действую-
щий из Ck+2+ 1

2 (ΠR6
\ ωη0) в Ck+ 1

2 (ΠR6
\ ωη0).

Пусть v ∈ Ck+ 1
2 (Π \ ωη0) — произвольная функция, удовлетворяющая

краевому условию Неймана на ∂ωη0. Тогда с учётом определения диффео-
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морфизма Ξ и соотношения (5.2.9) интегрированием по частям получаем∫
Π\ωη0

(η − η0)B9(η0, η)v dξ̃ =

∫
ΠR0
\ωη0

(Υ∆ξΥ
−1 −∆ξ̃)v dξ̃

=

∫
ΠR0
\ωη

∆ξΥ
−1v dξ −

∫
ΠR0
\ωη0

∆ξ̃v dξ̃

=
ηn0
ηn

∫
∂ωη

∂v

∂νξ
ds−

∫
∂ωη0

∂v

∂νξ̃
ds = 0.

(5.5.9)

Для произвольной функции f ∈ Ck рассмотрим краевую задачу

−∆ξ̃v = f в Π \ ωη0, ∂v

∂νξ̃
= 0 на ∂ωη0, (5.5.10)

с периодическими краевыми условиями на боковых границах. В силу лем-
мы 5.4.1 эта задача разрешима, а в силу доказанного выше её решение
попадает в пространство Ck+2. Пусть B11 : Ck → Ck+2+ 1

2 (Π \ ωη0) — ли-
нейный оператор, отображающий функции f в решение задачи (5.5.10).
В силу оценок (5.5.1) данный оператор является ограниченным.

Так как функция ΥF1 является элементом пространства Ck и выпол-
нены соотношения (5.5.9), то из задачи (5.5.8) следует, что

ṽF = B11f, f = ΥF1 + (η − η0)B9(η0, η)ṽF ∈ Ck. (5.5.11)

Подставляя это равенство в задачу (5.5.8), приходим к операторному
уравнению (

I − (η − η0)B5(η0, η)B7

)
g = ΥF1

в пространстве Ck, где I — единичный оператор. Ограниченность опера-
тора B7 гарантирует малость нормы оператора (η− η0)B5(η0, η)B7 при η,
достаточно близких к η0. Это гарантирует существование обратного опе-
ратора

(
I − (η− η0)B5(η0, η)B7

)−1, что позволяет определить функцию g

и затем функцию ṽF по формуле (5.5.11):

ṽFB7 =
(
I − (η − η0)B9(η0, η)B11

)−1
ΥF1.
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Из этой формулы и бесконечной дифференцируемости коэффициентов
оператора B9(η0, η) по η и пространственным переменным теперь легко
выводим, что

ṽF ∈ Ck+ 1
2

(
Π \ ωη0 × [η0 − δ̃k(η0), η0 + δ̃k(η0)]

)
.

Возвращаясь теперь к функции v и учитывая установленные выше свой-
ства функции vφ, приходим к утверждению леммы 5.5.1. Лемма доказана.

5.5.2 Гладкость решения по параметру задачи для функций
внешнего разложения

В настоящем разделе мы исследуем гладкость по параметру решений
двух модельных задач для внешнего разложения.

Обозначим: Ω± := {x : ±xn > 0} ∩ Ω, Ω±r := {x : 0 < ±xn < r}.

Лемма 5.5.2. Существует λ0 такое, что при λ < λ0 задача

(L − λ)u = f, x ∈ Ω, u = 0, x ∈ ∂Ω,

[u]0 = φ1,

[
∂u

∂xn

]
0

= φ2 на S,
(5.5.12)

однозначно разрешима в пространстве W 1
2 (Ω+)⊕W 1

2 (Ω−) для всех f ∈
L2(Ω), φ1, φ2 ∈ W 2

2 (S). Пусть для f выполнено условие (1.0.24) и φ1, φ2 ∈
W p

2 (S) для всех p ∈ N. Тогда решение этой задачи также принадлежит
W p

2 (Ω+
τ0

)⊕W p
2 (Ω−τ0) для всех p ∈ N и τ0 ∈ (0, τ) и верны оценки

‖u‖W 1
2 (Ω) 6 C

(
‖f‖L2(Ω) + ‖φ1‖W 1

2 (S) + ‖φ2‖W 1
2 (S)

)
,

‖u‖W p
2 (Ω+

τ0) + ‖u‖W p
2 (Ω−τ0) 6C(p, δ)

(
‖f‖W p−2

2 (Ω+
τ ) + ‖f‖W p−2

2 (Ω−τ )

+ ‖f‖L2(Ω) + ‖φ1‖W p
2 (S) + ‖φ2‖W p

2 (S)

)
,

(5.5.13)

где τ0 ∈ (0, τ) — произвольное фиксированное число, константы C и
C(p, δ) не зависят от u, f и φ1, φ2, во второй оценке p > 2 — произ-
вольное натуральное число. Функция u бесконечно дифференцируема в
Ω±τ0 и для каждого τ0 ∈ (0, τ) все её производные равномерно ограничены
в области Ω±τ0.
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Доказательство. Пусть χ7 = χ7(xn) — функция, равная нулю при xn >
2τ
3 и xn < 0 и единице при 0 < xn 6

τ
3 . Решение задачи (5.5.12) будем

искать в виде:

u(x) = χ7(xn)(φ1(x
′) + xnφ2(x

′)) + ũ. (5.5.14)

Функция ũ является решением задачи

(L − λ)ũ = f̃, x ∈ Ω, ũ = 0, x ∈ ∂Ω, (5.5.15)

где f̃ = f − (L− λ)(χ7(xn)φ1(x
′) + xnχ7(xn)φ2(x

′)) при xn > 0, f̃ = f при
xn < 0.

Через H обозначим оператор в L2(Ω) с дифференциальным выраже-
нием L и краевым условием Дирихле на ∂Ω. Соответствующая полуто-
ралинейная форма — это форма h0, рассматриваемая на пространстве
W̊ 1

2 (Ω, ∂Ω). Такой оператор является m–секториальным, а потому его
спектр содержится в некотором угле в комплексной плоскости с верши-
ной на вещественной оси и раствором вдоль положительного направле-
ния на этой оси. Выберем теперь число λ0 так, чтобы оно лежало левее
вершины упомянутого конуса. Тогда при λ < λ0 определена резольвента
(H − λ)−1, и следовательно, задача (5.5.15) разрешима. Поэтому задача
(5.5.12) тоже разрешима.

Ясно, что оператор (H−λ) ограничен как действующий из W̊ 2
2 (Ω, ∂Ω)

в L2(Ω). И так как по доказанному выше у него существует обратный (H−
λ)−1, по теореме Банаха об обратном операторе немедленно заключаем,
что оператор (H − λ)−1 : L2(Ω) → W̊ 2

2 (Ω, ∂Ω) ограничен. Это означает
справедливость оценки

‖ũ‖W 2
2 (Ω) 6 C‖f̃‖L2(Ω). (5.5.16)

Здесь и всюду далее в доказательстве через C обозначаем различные
несущественные константы, не зависящие от f̃ , ũ, x ∈ Ω, а также индекса
k, который будет введен ниже.
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Докажем оценку (5.5.13). В пространстве Rn−1 выберем разбиение еди-
ницы бесконечно дифференцируемыми финитными функциями ζk = ζk(x

′),
k ∈ N, удовлетворяющими следующим условиям

0 6 ζk 6 1,

∣∣∣∣∂ζk∂xi

∣∣∣∣+

∣∣∣∣ ∂2ζk
∂xi∂xj

∣∣∣∣ 6 C, ∞∑
k=1

ζk = 1.

Дополнительно предполагаем, что носитель каждой функции ζk с помо-
щью некоторого сдвига можно вложить в фиксированное ограниченное
множество Q, не зависящее от k. Также предполагаем, что в каждой точ-
ке x ∈ Ω пересекается конечное число носителей функции ζk, при этом
число пересечений ограничено некоторой константой, не зависящей от x
и k. Обозначим: Ω(k) := supp ζk ×R, Ω

(k)
τ := supp ζk × (−τ, τ).

Функцию ũ представим в виде

ũ(x) =
∞∑
k=1

uk(x), где uk(x) = ũ(x)ζk(x
′). (5.5.17)

Каждая из функций uk является решением задачи

(L − λ)uk = ζkf̃ + F̃k, x ∈ Ω(k)
τ , uk = 0, x ∈ ∂Ω(k)

τ ,

F̃k = ũ
n∑
i=1

n−1∑
j=1

∂

∂xi
Aij

∂ζk
∂xj

+ 2
n∑
i=1

n−1∑
j=1

Aij
∂ũ

∂xi

∂ζk
∂xj
−

n−1∑
j=1

Ajũ
∂ζk
∂xj

.

В силу гладкости функций f , ũ и теорем повышения гладкости [17, глава
4, §2] выполнены априорные оценки

‖uk‖2

W p
2 (Ω

(k)
τ0 )
6 C

(
‖ζkf̃‖2

W p−2
2 (Ω

(k)
τ1 )

+ ‖F̃k‖2

W p−2
2 (Ω

(k)
τ1 )

+ ‖uk‖2
L2(Ω(k))

)
, (5.5.18)

где p > 2, p ∈ N, τ0 < τ1 < τ .
Используя определение функций ζk и неравенство 0 6 ζk 6 1, для

произвольной функции w ∈ L2(Ω) и произвольного τ выводим
∞∑
k=1

‖ζkw‖2

L2(Ω
(k)
τ )
6 C

∞∑
k=1

∫
Ω

(k)
τ

ζ2
k |w|2 dx = ‖w‖2

L2(Ωτ ).
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В силу последнего неравенства, предполагаемых равномерных оценок
для производных ζk и (5.5.16) выполнено
∞∑
k=1

‖uk‖2
L2(Ω(k)) 6 C‖f̃‖

2
L2(Ω),

∞∑
k=1

‖ζkf̃‖2

W p−2
2 (Ω

(k)
τ1 )

+
∞∑
k=1

‖F̃k‖2

W p−2
2 (Ω

(k)
τ1 )
6 C

(
‖f̃‖2

W p−2
2 (Ωτ )

+ ‖ũ‖2
W p−1

2 (Ω)

)
.

Из последних двух неравенств и (5.5.17), (5.5.18) следует

‖ũ‖2
W p

2 (Ωτ0) 6
∞∑
k=1

‖uk‖2

W p
2 (Ω

(k)
τ0 )
6 C

(
‖f̃‖2

W p−2
2 (Ωτ1)

+ ‖ũ‖2
W p−1

2 (Ωτ1)

)
.

Применяя полученное неравенство по индукции для p > 2 на подходящей
монотонной последовательности τ ′ → τ0, c учётом неравенства (5.5.16)
получаем

‖ũ‖W p
2 (Ωτ0) 6 C

(
‖f̃‖W p−2

2 (Ωτ1) + ‖f̃‖L2(Ω)

)
для произвольных τ0 < τ1 < τ . Неравенство (5.5.13) следует из последней
оценки и (5.5.14). Лемма доказана.

Следующее утверждение является прямым следствием доказанной лем-
мы.

Лемма 5.5.3. Пусть λ < λ0, где λ0 — из утверждения леммы 5.5.2, а
функции f = f(x, η), φ1 = φ1(x

′, η), φ2 = φ2(x
′, η) являются элементами

пространств L2(Ω) ∩ (W p
2 (Ω+

τ1
) ⊕ W p

2 (Ω−τ1)), W
p
2 (S) для всех p ∈ N c

некоторым 0 < τ1 < τ , бесконечно дифференцируемы по η ∈ (0, 1] и
ограничены равномерно по η ∈ [0, 1] в нормах указанных пространств.
Тогда решение задачи (5.5.12) принадлежит W̊ 1

2 (Ω) иW p
2 (Ω+

τ0
)⊕W p

2 (Ω−τ0)

для всех p ∈ N и 0 < τ0 < τ1, бесконечно дифференцируемо по η ∈ (0, 1]

и ограничено равномерно по η ∈ [0, 1] в нормах указанных пространств.

Действительно, линейный оператор, сопоставляющий тройкам (f, φ1, φ2)

решение задачи (5.5.12), является ограниченным из пространств

L2(Ω) ∩ (W p
2 (Ω+

τ1
)⊕W p

2 (Ω−τ1))×W
p+2
2 (S)×W p+2

2 (S)
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в
(W 1

2 (Ω+)⊕W 1
2 (Ω−)) ∩ (W p+2

2 (Ω+
τ0

)⊕W p+2
2 (Ω−τ0))

согласно лемме 5.5.2. Поэтому бесконечная дифференцируемость и рав-
номерная ограниченность по параметру его аргументов немедленно вле-
чёт аналогичные свойства для результата действия этого оператора.

Остальная часть параграфа посвящена изучению гладкости решения
задачи (1.0.18), (1.0.19) по пространственным переменным и параметру
α.

Начнём с рассмотрения вспомогательной задачи, свойства решения ко-
торой далее будут играть ключевую роль:

(−∆− λ)u = 0 в Ωτ0 \ S, u = 0 на ∂Ωτ0 \ S,

[u]0 = 0,

[
∂u

∂xn

]
0

+ a(x, u) = h на S,
(5.5.19)

где τ0 < τ — некоторое фиксированное число, a — комплекснозначная
функция, заданная для тех же значений аргументов, что и функция a,
и удовлетворяющая условиям (1.0.40), h = h(x′) — некоторая заданная
функция, относительно которой пока предполагаем, что h ∈ L2(S).

Сразу же отметим, что существует фиксированное число λ0, зависящее
от a, но не зависящее от h такое, что задача (5.5.19) однозначно разре-
шима в W 1

2 (Ωτ0) для любой функции h ∈ L2(S). Этот факт проверяется
аналогично тому, как была доказана разрешимость задачи (1.0.4) в лем-
ме 3.2.3 для произвольной функции a(x, u), удовлетворяющей условиям
(1.0.40). Всюду далее считаем, что λ < λ0.

Из постановки задачи (5.5.19) немедленно вытекает, что решение этой
задачи чётно по xn и в силу стандартных теорем о внутренней гладкости
решений линейных эллиптических задач верны принадлежности

u ∈ W p
2 (Ωτ0 \ Ωτ1) для любых τ1 < τ0, p ∈ N. (5.5.20)

Обозначим:
uρ := Reu, ui := Imu, hρ := Reh,

hi := Imh, aρ := Re a, ai := Im a.
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В силу условий (1.0.40) для функции a выполнена оценка

|aρ(x, u)uρ + ai(x, u)ui| 6|ur|2 sup
x,u

∣∣∣∣∂aρ∂uρ

∣∣∣∣+ |ui|2 sup
x,u

∣∣∣∣ ∂ai

∂uρ

∣∣∣∣
+ |ur||ui|

(
sup
x,u

∣∣∣∣∂aρ∂ui

∣∣∣∣+ sup
x,u

∣∣∣∣ ∂ai

∂uρ

∣∣∣∣)
6a1(|uρ|+ |ui|)2 6 2a1(|uρ|2 + |ui|2).

(5.5.21)

Следующая лемма было доказана в [14]. Доказательство было прове-
дено Д.И. Борисовым и здесь мы его не приводим.

Лемма 5.5.4. Пусть h ∈ L2(S)∩L∞(S). Существует абсолютная кон-
станта λ̃0, не зависящая от a и h, такая что при λ < λ̃0 обобщён-
ное решение задачи (5.5.19) необходимо принадлежит пространству
L∞(Ωτ0) ∩ Cϑ(Ωτ0), где ϑ — некоторая абсолютная константа, не за-
висящая от h и a. Верно неравенство

max
Ωτ0

|u(x)| 6 C(λ, ‖h‖L∞(S), ‖u‖L2(Ωτ0)), (5.5.22)

где константа C не зависит от a, но зависит от указанных аргумен-
тов. Эти аргументы можно заменить на их верхние оценки, не нару-
шая при этом неравенство (5.5.22).

Доказанная лемма вместе со стандартными теоремами о повышении
гладкости для линейных задач позволит нам доказать следующее клю-
чевое утверждение.

Лемма 5.5.5. Пусть λ < min{λ0, λ̃0} и h ∈ W p
2 (S) для всех p ∈ N. Тогда

решение задачи (5.5.19) является элементом пространства W p
2 (Ω−τ0)⊕

W p
2 (Ω+

τ0
) для всех p ∈ N и некоторого τ0 < τ . Нормы решения u в этих

пространствах оцениваются константами, зависящими лишь от кон-
стант a1 и aβ,γ из (1.0.40), нормы ‖u‖W 1

2 (Ωτ0) и норм ‖h‖W p
2 (S).

Доказательство. В силу второй оценки в (1.0.40) для функции a, функ-
ция a(x, u(x)) является элементом пространстваW 1

2 (Ωτ0). След этой функ-
ции является одним из слагаемых в правой части граничного условия в
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(5.5.19) и согласно [?, §25, Теор. 25.1] существует функция из W 2
2 (Ω+

τ0
)⊕

W 2
2 (Ω−τ0), удовлетворяющая краевым условиям в задаче (5.5.19). Поэтому

в силу стандартных теорем о повышении гладкости для линейных кра-
евых задач сразу заключаем, что u ∈ W 2

2 (Ω+
τ0

) ⊕ W 2
2 (Ω−τ0). Кроме того,

применение леммы 5.5.4 позволяет утверждать, что функция u также
является элементом пространства L∞(Ωτ0) ∩ Cϑ(Ωτ0).

С учётом установленной принадлежности для функции u продиффе-
ренцируем уравнение и краевые условия в (5.5.19) по xj, j = 1, . . . , n− 1.
Тогда видим, что функции uj := ∂u

∂xj
, j = 1, . . . , n− 1, являются обобщён-

ными решениями краевой задачи

(−∆− λ)uj = 0 в Ωτ0 \ S, uj = 0 на ∂Ωτ0 \ S,

[uj]0 = 0,

[
∂uj
∂xn

]
0

+ aj(x, uj) = hj на S,
(5.5.23)

где обозначено

aj(x, uj) :=
∂a

∂uρ
(x, u(x)) Reuj + i

∂a

∂ui
(x, u(x)) Imuj,

hi(x) :=
∂a

∂xi
(x, u(x)) +

∂h

∂xi
(x).

В силу условий (1.0.40), принадлежности u ∈ L∞(Ωτ0) и предполагаемой
гладкости функции h легко видеть, что функции aj также удовлетворя-
ют условиям (1.0.40). Это позволяет применить лемму 5.5.4 к задачам
(5.5.23) и заключить, что ∂u

∂xj
= uj ∈ L∞(Ωτ0) ∩ Cϑ(Ωτ0).

С учётом чётности функции u по xn и принадлежностей (5.5.20), функ-
ция un := ∂u

∂xn
является решением того же уравнения из (5.5.19), нечётна

по xn, её след на поверхности ∂Ω \ S является элементом пространств
W p

2 (∂Ω \ S) для всех p ∈ N и выполнено краевое условие un
∣∣
xn=±0

=

±a(x, u(x))
∣∣
xn=0

. В силу предположений относительно функции a и уже
установленных свойств функции u видим, что функции ±a(x, u(x))

∣∣
xn=0

являются элементами пространств L∞(S)∩Cϑ(S) с некоторым показате-
лем ϑ и следами функций a(x, u(x)), принадлежащих W 1

2 (Ω±τ0). Это поз-
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воляет применить к ней теорему 13.1 из [26, Гл. III, §13] и теорему 14.1 из
[42, Гл. III, §13], из которых уже следует, что un ∈ L∞(Ω±τ0) ∩ C

ϑ(Ωτ0).
Так как u, ∂u∂xj ∈ L∞(Ω±τ0)∩C

ϑ(Ωτ0), j = 1, . . . , n, то с учётом предпола-
гаемой гладкости функции a и условий (1.0.40), (1.0.11) теперь легко про-
верить, что функция a(x, u(x)) является элементом пространствW 2

2 (Ω±τ0).
Поэтому, аналогично началу доказательства, функция u является эле-
ментом пространства W 3

2 (Ω+
τ0

) ⊕ W 3
2 (Ω−τ0). Это позволяет уже дважды

продифференцировать задачу (5.5.19) по пространственным переменным
и установить в итоге, что вторые производные функции u принадлежат
L∞(Ω±τ0) ∩ C

ϑ(Ωτ0). Повторяя данный процесс по индукции, приходим к
утверждению леммы. Лемма доказана.

Лемма 5.5.6. Существует λ0, такое что при λ < λ0 задача(
−

n∑
i,j=1

∂

∂xi
Aij

∂

∂xj
+

n∑
j=1

Aj
∂

∂xj
+ A0 − λ

)
u = f в Ω, (5.5.24)

u = 0 на ∂Ω, [u]0 = 0 на S, (5.5.25)[
∂u

∂n

]
0

+ αa(x, u) = g на S,

однозначно разрешима в W 1
2 (Ω) для всех α ∈ [0, α∗], α∗ := |∂ω|

|�| , всех
функций f , удовлетворяющих условию (1.0.24) и всех функций h, таких
что h ∈ W p

2 (S) для всех p ∈ N. Справедливо неравенство

‖u‖W 1
2 (Ω) + ‖u‖W 2

2 (Ω+
τ0) + ‖u‖W 2

2 (Ω−τ0) 6 C
(
‖f‖L2(Ω) + ‖g‖W 1

2 (S)

)
, (5.5.26)

где константа C не зависит от f и g. Решение задачи (5.5.24), (5.5.25)
принадлежит пространствам W p

2 (Ω+
τ0

) ⊕W p
2 (Ω−τ0), W

p
∞(Ω+

τ0
) ⊕W p

∞(Ω−τ0)

для всех p ∈ N, а также пространствам C∞(Ω+
τ0

) ⊕ C∞(Ω−τ0) для всех
τ0 < τ . Нормы решения в этих пространствах оцениваются констан-
тами, зависящими лишь от чисел a1 и aβ,γ из (1.0.40), и норм ‖f‖L2(Ω),
‖f‖W p

2 (Ωτ0), ‖g‖W p
2 (S).

Доказательство. Пусть χ8 = χ8(xn) — бесконечно дифференцируемая
срезающая функция, равная единице при |xn| < τ0

3 и нулю при |xn| > 2τ0
3 .



169

Замена функции u = ũ+ 1
2χ8(xn)|xn|h(x′) сводит задачу (5.5.24), (5.5.25) к

её частному случаю h = 0 с некоторой новой правой частью в уравнении,
причём эта правая часть также удовлетворяет условию (1.0.24). Разре-
шимость задачи (5.5.24), (5.5.25) в случае h = 0 была показана в в лемме
3.2.3 для произвольной функции a(x, u), при этом величина параметра λ0

фактически определялась лишь константой a1 из условий (1.0.40). Поэто-
му для рассматриваемой задачи достаточно выбрать общую константу a1

сразу для всех значений α ∈ [0, α∗] и применить затем лемму 3.2.3
Докажем гладкость решения по пространственным переменным. Вы-

берем произвольно значение α0 ∈ [0, α∗], через u0 обозначим соответству-
ющее решение задачи (5.5.24), (5.5.25) для некоторой заданной функции
f . Тогда функция ũ0 := u0χ8 является решением краевой задачи

(−∆− λ)ũ0 = f̃ в Ωτ0, ũ0 = 0 на ∂Ωτ0,

[ũ0]0 = 0,

[
∂ũ0

∂xn

]
0

+ a(x, ũ0) = g на S,
(5.5.27)

где функция f̃ := χf − 2χ′8
∂u0
∂xn
− χ′′8u0 принадлежит W p

2 (Ωτ0) для всех
p ∈ N.

Пусть uf — решение уравнения в (5.5.27) с краевыми условиями Ди-
рихле на ∂Ωτ0 ∪S. Такая задача разрешима при λ < 0, поэтому без огра-
ничения считаем, что λ0 < 0. В силу стандартных теорем о повышении
гладкости линейных эллиптических задач выполнено uf ∈ W p

2 (Ω±τ0) для
всех p ∈ N.

Обозначим: ua := ũ0 − uf . Тогда для ua получаем задачу (5.5.19),
где h = g +

[
∂uf
∂xn

]
0
. В силу свойств функции uf выполнено h ∈ W p

2 (S)

для всех p ∈ N. Применяя теперь лемму 5.5.5, заключаем, что ua ∈
W p

2 (Ω+
τ0

) ⊕W p
2 (Ω−τ0) для всех p ∈ N. Возвращаясь теперь обратно к ре-

шению задачи (5.5.27) и учитывая гладкость функции uf , приходим к
утверждению леммы.

Лемма 5.5.7. В условиях леммы 5.5.6 решение задачи (1.0.18), (1.0.19)
бесконечно дифференцируемо по α ∈ [0, α∗] в нормах пространствW 1

2 (Ω)



170

и W p
2 (Ω+

τ0
) ∩W p

2 (Ω−τ0) для всех p ∈ N.

Доказательство. Выберем теперь достаточно малое ε и через uε обозна-
чим решение задачи (1.0.18), (1.0.19) для α = α0 + ε ∈ [0, α∗]. Разностное
отношение wε := (uε − u0)ε

−1 является решением краевой задачи(
−

n∑
i,j=1

∂

∂xi
Aij

∂

∂xj
+

n∑
j=1

Aj
∂

∂xj
+ A0 − λ

)
wε = 0 в Ω,

wε = 0 на ∂Ω, [wε]0 = 0,[
∂wε
∂n

]
0

+ aε(x,wε) + a(x, u0(x)) = 0 на S,

где обозначено

aε(x,w) := (α0 + ε)ε−1
(
a(x, u0(x) + εw)− a(x, u0(x))

)∣∣
xn=0

.

Отметим, что в силу оценки 0 6 α0 + ε 6 α∗ и леммы Адамара для
функции aε выполнены условия (1.0.40), причём с теми же константами,
что и для функции a. Согласно лемме 5.5.5 и теоремам о вложении про-
странств W p

2 в Cp−[
n
2 ]−1, след функции u0 на S принадлежит W p

2 (S) для
всех p ∈ N, бесконечно дифференцируем и равномерно ограничен вместе
со всеми своими производными. Это позволяет применить лемму 5.5.6 и
получить равномерные по ε оценки

‖wε‖W 1
2 (Ω) 6 C,

‖wε‖W p
2 (Ω+

τ0) + ‖wε‖W p
2 (Ω−τ0) 6 C,

‖wε‖W p
∞(Ω+

τ0) + ‖wε‖W p
∞(Ω−τ0) 6 C,

max
Ω+
τ0

|∂βwε|+ max
Ω−τ0

|∂βwε| 6 C,

(5.5.28)

где p ∈ N, β ∈ Zn+, а C — некоторые константы, не зависящие от ε.
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Рассмотрим задачу(
−

n∑
i,j=1

∂

∂xi
Aij

∂

∂xj
+

n∑
j=1

Aj
∂

∂xj
+ A0 − λ

)
w0 = 0 в Ω,

w0 = 0 на ∂Ω, [w0]0 = 0,[
∂w0

∂n

]
0

+ a0(x,w0) + a(x, u0(x)) = 0 на S,

(5.5.29)

где обозначено

a0(x,w) := α0

(
∂a

∂uρ
(x, u0) Rew + i

∂a

∂ui
(x, u0) Imw

)
.

Ясно, что для функции a0 верны условия (1.0.40) причём с теми же кон-
стантами a1, aβ,γ, что и для функции a. Поэтому, не меняя указанный
выше выбор константы λ0, для функции w0 получаем оценки, аналогич-
ные (5.5.28), достаточно лишь заменить wε на w0.

Обозначим: Θε := wε − w0. Эта функция является решением задачи(
−

n∑
i,j=1

∂

∂xi
Aij

∂

∂xj
+

n∑
j=1

Aj
∂

∂xj
+ A0 − λ

)
Θε = 0 в Ω,

Θε = 0 на ∂Ω, [Θε]0 = 0,[
∂Θε

∂n

]
0

+ aε(x,w0 + Θε) = a0(x,w0) на S.

(5.5.30)

Несложно проверить, что

aε(x,w0 + Θε)− a0(x,w0) = aε(x,Θε) + hε(x),

aε(x,Θ) := (α0 + ε)ε−1
(
a(x, u0(x) + εw0(x) + εΘ)− a(x, u0(x) + εw0(x))

)
,

hε(x) :=(α0 + ε)ε−1
(
a(x, u0(x) + εw0(x))

− a(x, u0(x))
)
− α0

(
∂a

∂uρ
(x, u0) Rew0(x) + i

∂a

∂ui
(x, u0) Imw0(x)

)
.

С учётом гладкости функций u0 и v0 и оценок типа (5.5.28) для этих
функций сразу заключаем, что hε ∈ W p

2 (S) ∩W p
∞(S) ∩ C∞(S) для всех
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p ∈ N и верны оценки

max
S
|∂βhε| 6 Cε, ‖hε‖W p

2 (S) 6 Cε, p ∈ N, β ∈ Zn+, (5.5.31)

с некоторыми константами C, не зависящими от ε. Функция aε удовле-
творяет условиям (1.0.40) с теми же константами, что и функция a. Ис-
пользуя этот факт, оценки (5.5.31) и оценку (5.5.26), заключаем, что

‖Θε‖W 1
2 (Ω) + ‖Θε‖W 2

2 (Ω+
τ0) + ‖Θε‖W 2

2 (Ω−τ0) 6 Cε,

где константа C не зависит от ε. Дифференцируя теперь задачу (5.5.30)
по пространственным переменным, выписывая соответствующие краевые
задачи для производных функции Θε, на основе оценок (5.5.31), (5.5.26)
по индукции несложно проверить, что

‖Θε‖W p
2 (Ω+

τ0) + ‖Θε‖W p
2 (Ω−τ0) 6 Cε,

где константа C не зависит от ε. Полученные оценки означают сходимость
функции wε к w0 при ε→ +0 в нормах пространств W 1

2 (Ω) и W p
2 (Ω+

τ0
)⊕

W p
2 (Ω−τ0) для всех p ∈ N. Следовательно, решение задачи (1.0.18), (1.0.19)

дифференцируемо по α в нормах указанных пространств, причём произ-
водная — это решение w0 задачи (5.5.29). Эта задача такого же типа, что
и исходная задача (1.0.18), (1.0.19) и дифференцируемость её решения
по α доказывается аналогично. Продолжая этот процесс по индукции,
приходим к утверждению леммы.

5.6 Свойства коэффициентов внутреннего и внешне-
го разложений

В настоящем параграфе мы устанавливаем разрешимость задач для ко-
эффициентов внешнего и внутреннего разложений и исследуем их свой-
ства.

Начнём с задачи (1.0.42), (5.1.5) для m = 0. Это однородная задача,
которая в силу леммы 5.4.1 имеет единственное решение, ограниченное



173

на бесконечности — константу. С учётом асимптотик (5.1.5) это означает
выполнение равенств

u0(x
′,+0, η) = u0(x

′,−0, η), v0(ξ, x
′, η) ≡ u0(x

′, 0, η). (5.6.1)

Для определения решения задачи (1.0.42), (5.1.5) с m = 1 рассмотрим
вспомогательные задачи

∆ξZ± = 0 в Π\ωη, ∂Z−
∂νξ

= 0,
∂Z+

∂νξ
=
|�|
|∂ω|

, на ∂ωη, (5.6.2)

с периодическими граничными условиями (5.2.2) и следующим поведени-
ем на бесконечности:

Z−(ξ) =
1

2
ξn +O(1), Z+(ξ) =

ηn−1

2
|ξn|+O(1), ξn → ±∞. (5.6.3)

Решение задач (5.6.2), (5.6.3) будем искать в виде

Z−(ξ) = Z̃−(ξ) +
1

2
χ3(ξn)ξn, Z+(ξ) = ṽ+(ξ) +

ηn−1

2
χ3(ξn)|ξn|.

Тогда для функций ṽ± получаем задачи

∆ξZ̃− = −1

2
∆ξ(χ3ξn) в Π \ ωη, ∂Z̃−

∂νξ
= 0 на ∂ωη,

∆ξZ̃+ = −η
n−1

2
∆ξ(χ3|ξn|) в Π \ ωη, ∂Z̃+

∂νξ
=
|�|
|∂ω|

на ∂ωη,

(5.6.4)

с периодическими граничными условиями (5.2.2). Проверим, что для этих
задач выполнено условие разрешимости из леммы 5.4.1. Для этого про-
интегрируем по частям∫

∂ωη

|�|
|∂ωη|

ds− ηn−1

2

∫
Π\ωη

∆ξ(|ξn|χ3) dξ

= |�|ηn−1 − 1

2
lim

R→+∞

∫
|�|

∂|ξn|
∂ξn

∣∣∣∣ξn=R

ξn=−R
dξ = 0.
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Аналогично проверяется выполнение условия разрешимости задачи для
Z−. Тогда в силу лемм 5.4.1, 5.5.1 сразу следует, что задачи (5.6.4), а
следовательно, и задачи (5.6.2), (5.6.3) разрешимы и для каждого η ∈
(0, 1] имеют бесконечно дифференцируемые в Π \ ωη решения. Функции
Z± при |ξn| > R0 имеют вид

Z+(ξ, η) =
ηn−1

2
|ξn|+

∑
k∈Zn−1

A+,±
k (η)e−2π|kb||ξn|e2πikb·ξ′, ±ξn > R6, (5.6.5)

Z−(ξ, η) =
1

2
ξn +

∑
k∈Zn−1

A−,±k (η)e−2π|kb||ξn|e2πikb·ξ′, ±ξn > R6, (5.6.6)

где A+,±
k , A−,±k — некоторые бесконечно дифференцируемые по η ∈ (0, 1]

функции. Выполнены оценки

sup
k∈Zn−1

e−2π|kb|R6|A+,±
k (η)|+ sup

k∈Zn−1
e−2π|kb|R6|A−,±k (η)| 6 C, ‖v±‖C1(Πη) 6 C,

где константа C не зависит от η. Для каждого k ∈ N и η0 ∈ (0, 1] суще-
ствует δk(η0) такое, что

Z±
(
Ξ−1(η0η

−1, ξ), η
)
∈ Ck+ 1

2

(
Π \ ωη0 × [η0 − δk(η0), η0 + δk(η0)]

)
. (5.6.7)

Рассмотрим теперь краевые задачи

∆ξϕ1j = 0 в Π \ ωη, ∂ϕ1j

∂νξ
= νj на ∂ωη,

с периодическими краевыми условиями на боковых границах. Для этих
задач выполнены условия разрешимости из леммы 5.4.1, так как

0 =

∫
ωη

∆ξξj dξ =

∫
∂ωη

∂ξj
∂ν

ds =

∫
∂ωη

νj ds.

Согласно леммам 5.4.1, 5.5.1, функции ϕ1j имеют вид:

ϕ1j(ξ, η) =
∑

k∈Zn−1
A±1j,k(η)e−2π|kb||ξn|e2πikb·ξ′, ±ξn > R6, (5.6.8)
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где A±1j,k = A±1j,k(η) ∈ C∞(0, 1] — некоторые функции. Имеют место оцен-
ки

sup
k∈Zn−1

e−2π|kb|R6|A±1j,k| 6 C, ‖ϕ1j‖C1(Πη) 6 C,

где константа C не зависит от η. Для функций ϕ1j верны принадлежно-
сти, аналогичные (5.6.7).

Теперь решение задачи (1.0.42), (5.1.5) для m = 1 можно найти явно:

v1(ξ, x
′, η) =

(
∂u0

∂xn
(x′,+0, η) +

∂u0

∂xn
(x′,−0, η)

)
Z−(ξ, η)

+ η−n+1

(
∂u0

∂xn
(x′,+0, η)− ∂u0

∂xn
(x′,−0, η)

)
Z+(ξ, η)

−
n−1∑
j=1

∂u0

∂xj
(x′, 0, η)ϕ1j(ξ, η) + v

(0)
1 (x′, η),

(5.6.9)

где v(0)
1 — некоторая функция, которая будет определена ниже. Предъяв-

ленная функция удовлетворяет уравнению из (1.0.42) и периодическим
краевым условиям на боковых границах и обладает поведением (5.1.5)
при m = 1. Выполнение для неё краевого условия из (1.0.42) для m = 1

с учётом формулы для T0(x
′, v0), равенств (5.6.1) и краевых условий для

функций Z± из (5.6.2) приводит к следующему краевому условию для u0:

[u0]0 = 0,

[
∂u0

∂xn

]
0

+
ηn−1|∂ω|
|�|

a(x′, 0, u0(x
′, 0, η)) = 0,

где первое условие следует из первого равенства в (5.6.1). Второе краевое
условие позволяет переписать формулу (5.6.9):

v1(ξ, x
′, η) =

(
∂u0

∂xn
(x′,+0, η) +

∂u0

∂xn
(x′,−0, η)

)
Z−(ξ, η)

− |∂ω|
|�|

a(x′, 0, u0(x
′, 0, η))Z+(ξ, η)

−
n−1∑
j=1

∂u0

∂xi
(x′, 0, η)ϕ1j(ξ, η) + v

(0)
1 (x′, η).
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Сравнивая третий член в асимптотике (5.1.5) для v1 с аналогичным чле-
нов, вытекающим из последней формулы и (5.6.5), (5.6.6), (5.6.8), прихо-
дим к граничным условиям

u1(x
′,±0, η) =

(
∂u0

∂xn
(x′,+0, η) +

∂u0

∂xn
(x′,−0, η)

)
A−,±0 (η)

− |∂ω|
|�|

a(x′, 0, u0(x
′, 0, η))A+,±

0 (η)

−
n−1∑
j=1

∂u0

∂xi
(x′, 0, η)A±1j,0(η) + v

(0)
1 (x′, η),

[u1]0 =

(
∂u0

∂xn
(x′,+0, η) +

∂u0

∂xn
(x′,−0, η)

)(
A−,+0 (η)− A−,−0 (η)

)
− |∂ω|
|�|

a(x′, 0, u0(x
′, 0, η))

(
A+,+

0 (η)− A+,−
0 (η)

)
−

n−1∑
j=1

∂u0

∂xj
(x′, 0, η)

(
A+

1j,0(η)− A−1j,0(η)
)
.

(5.6.10)

Отметим, что в силу леммы 5.5.7 функции ∂u0
∂xn

( · ,±0, η) бесконечно диф-
ференцируемы по η ∈ [0, 1] в нормах пространств W p

2 (S) для всех p ∈ N.
Для определения скачка производной

[
∂u1
∂xn

]
0
необходимо провести ана-

лиз разрешимости задачи для функции v2. Зная данный скачок, с одной
стороны далее можно построить функцию u1, решив для неё соответ-
ствующую краевую задачу, а с другой стороны — решить задачу для
функции v2. Повторяя эту процедуру по индукции, удаётся определить
все функции внешнего и внутреннего разложений. Такое построение и
его результаты сформулируем в виде следующей леммы.

Лемма 5.6.1. Задачи (1.0.42), (5.1.5) разрешимы. Для решений этих
задач справедливы представления (1.0.45). При |ξn| > R6 функции vmj

представляются в виде

vmj(ξ, η) =K±mj(ξn) + A±mj(η)

+
∑

k∈Zn−1
Q±mjk(ξn, η)e−2π|kb||ξn|e2πikb·ξ′, ±ξn > R6,

(5.6.11)
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гдеK±mj — некоторые полиномы степени не вышеm, причёмK±mj(0) = 0,
а Q±mjk — некоторые полиномы по ξn степени не выше (m − 1) с коэф-
фициентами, зависящими от η, A±mj — некоторые функции. Функции
v

(0)
m , ϕmj принадлежат пространству W p

2 (S) для всех p ∈ N, бесконечно
дифференцируемы по η ∈ (0, 1] и равномерно ограничены по η ∈ [0, 1] в
нормах указанных пространств.

Функции vmj бесконечно дифференцируемы в Π \ ωη для каждого η ∈
(0, 1] и бесконечно дифференцируемы по η ∈ (0, 1] в смысле соотношения
(5.5.4). Справедливы оценки

‖vmj‖H + ‖vmj‖C1(Πη) 6 C, (5.6.12)

где константы C не зависят от η ∈ [0, 1] и j, но зависят от m. На
плоскости S функции um удовлетворяют краевым условиям

[um]0 =
Nm∑
j=1

ϕmj(x
′, η)(A+

mj(η)− A−mj(η)), (5.6.13)[
∂um
∂xn

]
0

=− 1

|�|

∫
∂ωη

ψm+1 ds

− 1

|�|
lim

R→+∞

( ∫
ΠR\ωη

fm+1 dξ +

∫
�×{R}

∂P+
m+1

∂ξn
dξ′

−
∫

�×{−R}

∂P−m+1

∂ξn
dξ′

)
.

(5.6.14)

Задачи (1.0.46) с данными краевыми условиями однозначно разрешимы.
Функции um принадлежат пространствам W 1

2 (Ω) и W p
2 (Ω+

τ0
)⊕W p

2 (Ω−τ0)

для всех p ∈ N, τ0 < τ , бесконечно дифференцируемы по η ∈ (0, 1] и
равномерно ограничены по η ∈ [0, 1] в нормах указанных пространств.

Доказательство. Доказательство леммы проведём по индукции. База
индукции, случай m = 1, разобрана выше: построены функции u0, v1,
и для функции u1 получено граничное условие (5.6.10).
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Предположим, что построены решения задач (1.0.42), (5.1.5) до неко-
торого значения m, решения задач (1.0.46) построены до значения m−1,
и получено граничное условие (5.6.13) для [um]0. Функция vm имеет вид
(1.0.45) с неизвестной пока функцией v(0)

m . Для нахождения функции v(0)
m

достаточно определить функцию um. Зная последнюю, в силу (5.1.5) мы
можем найти v(0)

m по формуле

v(0)
m (x′, η) = um(x′,+0, η)−

Nm∑
j=1

ϕmj(x
′, η)A+

mj(η). (5.6.15)

В задаче для um на данный момент уже определена правая часть через
функции uj, j 6 m − 1, известно граничное условие на ∂Ω и задан ска-
чок самой функции на S, cм. (5.6.13). С учётом леммы 5.5.2 достаточно
определить скачок нормальной производной um на поверхности S, чтобы
затем уже однозначно разрешить полученную задачу для um. Данный
скачок мы найдем из анализа разрешимости задачи для функции vm+1.

Функции f , uj, j 6 m − 1, являются элементами пространств W 1
2 (Ω)

и W p
2 (Ω+

τ0
) ⊕ W p

2 (Ω−τ0) для всех p ∈ N и 0 < τ0 < τ1. Поэтому в си-
лу стандартных теорем вложения пространств Соболева в пространства
непрерывно дифференцируемых функций приходим к выводу, что функ-
ции uj, j 6 m − 1, бесконечно дифференцируемы в Ω+

τ0
и Ω−τ0. Поэтому

справедливы формулы (5.1.4), и верна аналогичная формула для f .
Подставим (5.1.4) и (5.1.3) в уравнения из (1.0.18), (1.0.19) и (1.0.46)

с учётом сделанных предположений относительно вида коэффициентов
Aij, Aj при малых xn. Тогда получим равенства

− ∂u0

∂xn
(x′,±0) = f(x′, 0),

− (∆x′ + λ)
∂ju0

∂xjn
(x′,±0)− ∂j+2u0

∂xj+2
n

(x′,±0) =
∂jf

∂xjn
(x′, 0), j > 1,

− (∆x′ + λ)
∂jup

∂xjn
(x′,±0)− ∂j+2up

∂xj+2
n

(x′,±0) = 0, j > 0.

(5.6.16)
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Решение задачи (1.0.42), (5.1.5) для vm+1 будем строить в виде

vm+1 = ṽm+1 +

(
∂um
∂xn

(x′,+0, η)ξn +
∂um
∂xn

(x′,−0, η)ξn + P+
m+1 + P−m+1

)
χ1.

где χ1 — срезающая функция, введённая перед (4.2.11). Тогда для функ-
ции ṽm+1 получим следующую задачу:

−∆ξṽm+1 = F̃m+1 в Π \ ωη, ∂ṽm+1

∂νξ
= ψm+1 на ∂ωη, (5.6.17)

F̃m+1 := fm+1 (5.6.18)

+ ∆ξ

(
∂um
∂xn

(x′,+0, η)ξn +
∂um
∂xn

(x′,−0, η)ξn + P+
m+1 + P−m+1

)
χ1,

с периодическими граничными условиями (5.2.2).
Исследуем поведение функции F̃m+1 при ξn → ±∞. Для этого в F̃m+1

вместо функций vm−1 и vm подставим их асимптотики при ξn → ±∞, и с
учётом равенств (5.6.16) получим

F̃m+1 =
ξm−1
n

(m− 1)!

(
∂m−1f

∂xm−1
n

(x′, 0) + (∆x′ + λ)
∂m−1u0

∂xm−1
n

(x′,±0, η)

+
∂m+1u0

∂xm+1
n

(x′,±0, η)

)
+ (∆x′ + λ)

m−2∑
j=0

ξjn
j!

∂jum−1−j

∂xjn
(x′,±0, η)

+
m∑
j=2

ξj−2
n

(j − 2)!

∂j−2um+1−j

∂xj−2
n

(x′,±0, η) + o(1) = o(1), ξn → ±∞,

где o(1) обозначает члены, экспоненциально убывающие при ξn → ±∞.
Согласно лемме (5.4.1), задача (5.6.17) разрешима, если выполнено усло-
вие разрешимости∫

∂ωη

ψm+1 ds

+

∫
Π\ωη

∆ξ

(
∂um
∂xn

(x′,+0, η)ξn +
∂um
∂xn

(x′,−0, η)ξn

)
χ3 dξ

+

∫
Π\ωη

(
fm+1 + ∆ξ(P

+
m+1 + P−m+1)χ3

)
dξ = 0.

(5.6.19)
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Проинтегрируем по частям∫
Π\ωη

∆ξ

(
∂um
∂xn

(x′,+0, η)ξn +
∂um
∂xn

(x′,−0, η)ξn

)
χ3 dξ

= lim
R→+∞

∫
ΠR\ωη

∆ξ

(
∂um
∂xn

(x′,+0, η)ξn +
∂um
∂xn

(x′,−0, η)ξn

)
χ3 dξ

= |�|
(
∂um
∂xn

(x′,+0, η)− ∂um
∂xn

(x′,−0, η)

)
.

Аналогичным образом представляя в виде предела третий интеграл в
(5.6.19) и интегрируя по частям, перепишем это условие разрешимости в
виде∫

∂ωη

ψm+1 ds+ |�|
(
∂um
∂xn

(x′,+0, η)− ∂um
∂xn

(x′,−0, η)

)

+ lim
R→+∞

( ∫
ΠR\ωη

fm+1 dξ +

∫
�×{R}

∂P+
m+1

∂ξn
dξ′ −

∫
�×{−R}

∂P−m+1

∂ξn
dξ′

)
= 0.

Отметим, что так как в исходном равенстве (5.6.19) все интегралы были
сходящимися, то предел в полученным равенстве существует и конечен.
Это позволяет выписать граничное условие (5.6.14) для функции um. В
силу предположения индукции о гладкости функций uj, j 6 m, и функ-
ций vj, j 6 m, по пространственным переменным и формулы (1.0.45)
для vj, j 6 m, мы сразу заключаем, что правая часть (5.6.14), являясь
функцией переменной x′, принадлежит пространствам W p

2 (S) для всех
p ∈ N. Из индукционного предположения об ограниченности по η ∈ [0, 1]

функций vj, j 6 m, немедленно следует, что правая часть (5.6.14) рав-
номерно ограничена по η ∈ [0, 1] в нормах пространств W p

2 (S) для всех
p ∈ N. С учётом индукционного предположения о бесконечно дифферен-
цируемости по η ∈ (0, 1] функций vj, j 6 m, и точной формулировки
этого свойства в (5.5.4), для каждого η0 ∈ (0, 1] сделаем замену пере-
менных ξ 7→ Ξ−1(η0η

−1, ξ) в интеграле по ∂ωη в правой части (5.6.14).
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Тогда из индукционного предположения относительно бесконечной диф-
ференцируемости по η ∈ (0, 1] функций uj, vmj, j 6 m, и представлений
(1.0.45) сразу заключаем, что интеграл по ∂ωη в правой части (5.6.14)
является бесконечно дифференцируемой функцией по η ∈ (0, 1] в нормах
пространств W p

2 (S) для всех p ∈ N. Далее выпишем аналог представ-
ления (1.0.45) для функции fm+1 и воспользуемся формулами (5.6.16).
Тогда получим, что при ±ξn > R6 функция fm+1 имеет вид

fm+1(ξ, η) = − ∂
2

∂ξ2
n

(
P+
m+1(ξn, η) + P−m+1(ξn, η)

)
+ f̃m+1,

f̃m+1 :=
∑

k∈Zn−1
F±(m+1)jk(ξn, η)e−2π|kb||ξn|e2πikb·ξ′,

где F±mjk — некоторые полиномы по ξn степени не выше (m − 1) с ко-
эффициентами, бесконечно дифференцируемыми по η ∈ (0, 1], причём
величина ‖fm+1‖H ограничена равномерно по η ∈ [0, 1]. Такое представ-
ление позволяет переписать предел в (5.6.14)

lim
R→+∞

( ∫
ΠR\ωη

fm+1 dξ +

∫
�×{R}

∂P+
m+1

∂ξn
dξ′ −

∫
�×{−R}

∂P−m+1

∂ξn
dξ′

)

=

∫
Π2R6

\ωη

fm+1 dξ +

∫
Π\Π2R6

f̃m+1 dξ

−
∫

�×{2R6}

∂P+
m+1

∂ξn
dξ′ +

∫
�×{−2R6}

∂P−m+1

∂ξn
dξ′.

Из индукционного предположения о бесконечной дифференцируемости
по η ∈ (0, 1] функций vmj и uj, j 6 m, и полученной формулы теперь
следует, что предел в (5.6.14) является бесконечно дифференцируемой
по η ∈ (0, 1] функцией в нормах пространств W p

2 (S) для всех p ∈ N.
С учётом сказанного выше, найденное граничное условие (5.6.14) за-

мыкает задачу для um, и в силу леммы 5.5.2 эта задача разрешима. Функ-
ция v(0)

m определяется формулой (5.6.15). В силу индукционного предпо-
ложения о свойствах функций uj, j 6 m и леммы 5.5.3 функция um+1
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является элементом пространств W 1
2 (Ω) и W p

2 (Ω+
τ0

) ⊕ W p
2 (Ω−τ0) для всех

τ0 < τ , а также равномерно ограничена по η ∈ [0, 1] и бесконечно диф-
ференцируема по η ∈ (0, 1) в нормах этих пространств.

В силу леммы 5.4.1, условие (5.6.14) обеспечивает разрешимость зада-
чи (5.6.17). Так как в решениях задач (1.0.42), (5.1.5) для функций vm−1

и vm имеется разделение переменных (x′, η) и (ξ, η), то такое же разделе-
ние переменных присутствует и в fm+1, ψm+1, F̃m+1. Следовательно, такое
же разделение переменных имеется в решении задачи (1.0.42), (5.1.5) для
функции ṽm+1:

ṽm+1(ξ, x
′, η) =

Ñm∑
j=1

ϕm+1j(x
′, η)ṽm+1j(ξ, η),

где Ñm — некоторые числа, ϕm+1j — некоторые функции из W p
2 (S) для

всех p ∈ N, равномерно ограниченные по η ∈ [0, 1] и бесконечно диффе-
ренцируемые по η ∈ (0, 1] в нормах этих пространств. В силу индукци-
онного предположения относительно функций vij, i 6 m, и леммы 5.5.1
функции vmj бесконечно дифференцируемы по ξ в Π \ ωη для каждого
η ∈ (0, 1] и бесконечно дифференцируемы по η ∈ (0, 1] в смысле соот-
ношения (5.5.4) и справедливы оценки (5.6.12). Возвращаясь теперь к
функции vm+1, заключаем, что задача (1.0.42), (5.1.5) для этой функ-
ции также разрешима. Для функции vm+1 справедливы представления
(1.0.45), (5.6.11) и оценки (5.6.12), где для функций, участвующих в этих
соотношениях, верны все свойства, указанные в формулировке леммы.
Выписывая ещё аналог представления (5.6.11) для функции vm и сравни-
вая его с асимптотиками (5.1.5), получаем равенство (5.6.13) с заменой m
на m+ 1, что завершает доказательство индукционного перехода. Лемма
доказана.

Отметим, что из доказанной леммы сразу следует, что функции um

и vm обладают всеми свойствами, указанными в формулировке теоре-
мы 1.0.5.
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5.7 Обоснование асимптотики

Обозначим:

uε,N(x, η) := χε(xn)u
ex
ε,N(x, η) + (1− χε(xn))uinε,N

(
xε−1, x′, η

)
,

uexε,N(x, η) := u0(x) +
N∑
m=1

εmum(x, η),

uinε,N(ξ, x′, η) := v0(x
′, ξ, η) +

N∑
m=1

εmvm(x′, ξ, η),

где N > 3 — натуральное число.

Лемма 5.7.1. Функция uε,N является решением задачи

(L − λ)uε,N = f + fε,N в Ωε, uε,N = 0 на ∂Ω,

∂uε,N
∂n

+ a( · , uε,N) = φε,N на ∂θε,

где fε,N ∈ L2(Ω
ε), φε,N ∈ L2(∂θ

ε). Верны оценки

‖fε,N‖L2(Ωε) 6 Cε
N
2 −

1
4 , ‖φε,N‖L2(∂θε) 6 Cε

N+n−1
2 , (5.7.1)

где константы C не зависят от ε и η, но зависят от N . Справедливы
оценки (1.0.47).

Доказательство. Однородное краевое условие Дирихле для функции uε,N
на ∂Ω сразу следует из такого же условия для функций внешнего разло-
жения в задачах (1.0.46).

Обозначим:

φε,N(x) :=
∂uinε,N
∂n

(x) + a(x, uinε,N(x)) на ∂θε.

Отметим, что в силу леммы 5.6.1 для функций vj(xε−1, x′, η) верны рав-
номерные по ε, η и x оценки на ∂θε

|vj(xε−1, x′, η)| 6 CVj(x′),
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где C — некоторые константы, не зависящие от x, ε, η, а Vj(x′) — некото-
рые функции из W p

2 (S) для всех p ∈ N. Этот факт, гладкость функции
a и условия (1.0.11) обеспечивают справедливость формулы Тейлора при
x ∈ ∂θε

a(x, uinε (x)) = a(x′, εξn, u
in
ε )

=T0(x
′, v0(x

′, ξ, η)) +
N−1∑
m=1

εmTm
(
x′, v1(x

′, ξ, η), . . . , vm(x′, ξ, η)
)

+ εNTN,ε
(
x′, ξn, v1(x

′, ξ, η), . . . , vN(x′, ξ, η)
)
,

где TN,ε — некоторая функция, для которой верна равномерная оценка∣∣TN,ε(x′, ξn, v1(x
′, ξ, η), . . . , vN(x′, ξ, η)

)∣∣ 6 CT̃N(x′),

константа C не зависит от ε, η, x, ξ, а функция T̃N принадлежит W p
2 (S)

для всех p ∈ N. Учитывая теперь краевые условия на ∂θη из задач (1.0.42)
и свойства функций vj, установленные в лемме 5.6.1, немедленно полу-
чаем оценку для φε,N из (5.7.1).

Обозначим: fε,N := (L − λ)uε,N − f . С учётом уравнений из задач
(1.0.42), (1.0.46) непосредственно проверяем, что

fε,N = f
(1)
ε,N + f

(2)
ε,N + f

(3)
ε,N ,

f
(1)
ε,N := (χε(xn)− 1)

(
f(x)−

N−2∑
j=1

xjn
j!

∂jf

∂xjn
(x′, 0)

)
,

f
(2)
ε,N = εN−1

(
χε(xn)− 1

)λ(vN−1 + εvN) + 2
n−1∑
j=1

∂2vN
∂ξj∂xj

 ,

f
(3)
ε,N := −2(χε)′

∂

∂xn
(uexε,N − uinε,N)− (uexε,N − uinε,N)(χε)′′.

Гладкость функции f позволяет сразу оценить f (1)
ε,N с помощью формулы

Тейлора с остатком в форме Лагранжа

‖f (1)
ε,N‖L2(Ωε) 6 Cε

N
2 −

1
4 , (5.7.2)
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где константа C не зависит от ε.
Функция f

(2)
ε,N не равна нулю лишь при |xn| 6 2ε

1
2 , что в терминах

переменных ξ соответствует слою {ξ : |ξn| < 2ε−
1
2}. Лемма 5.6.1 даёт

требуемые оценки для функций vmj, ϕmj, v
(0)
m , K±mj, A

±
mj, Q

±
mjk, m = N −

1, N , и их производных, что сразу позволяет оценить функцию f
(2)
ε,N

‖f (2)
ε,N‖L2(Ωε) 6 Cε

N
2 −

1
4 . (5.7.3)

В силу определения срезки χε, функция f (3)
ε,N не равна нулю лишь при

ε
1
2 < |xn| < 2ε

1
2 . Поэтому для оценки функции f

(3)
ε,N следует учитывать

условия согласования (5.1.5), обеспечивающие требуемую малость разно-
сти uexε,N − uinε,N , а также гладкость и оценки для функций vj и uj, уста-
новленные в лемме 5.6.1. В итоге имеем

‖f (3)
ε,N‖L2(Ωε) 6 Cε

N
2 −

1
2 .

Отсюда и из (5.7.2), (5.7.3) вытекает первая оценка в (5.7.1).
Оценка (1.0.47) устанавливается аналогично доказательству приведён-

ным выше оценкам функций f (i)
ε,N . Лемма доказана.

Обозначим ûε,N := uε,N −uε. Функция ûε,N является решением задачи

(L − λ)ûε = fε,N в Ωε, ûε,N = 0 на ∂Ω,

∂ûε,N
∂N

+ a( · , uε,N)− a( · , uε) = φε,N на ∂θε.

Решение этой задачи удовлетворяет интегральному тождеству

h0(ûε,N , ûε,N)+(a(uε,N)− a(uε), ûε,N)L2(∂θε)

= (fε,N , ûε,N)L2(Ωε) + (φε,N , ûε,N)L2(∂θε) .
(5.7.4)

Согласно лемме 2.1.4, для любой функции u ∈ W 1
2 (Ωε) с нулевым следом

на ∂Ω верна оценка

‖u‖2
L2(∂θε) 6 (cε+ δ)‖∇u‖2

L2(Ωε) + C(δ)‖u‖2
L2(Ωε), (5.7.5)
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где δ > 0 — произвольное фиксированное число, c— некоторая константа,
не зависящая от u, ε, δ, а константа C(δ) не зависит от ε и u. Отметим
ещё очевидное неравенство, выполненное в силу условий (1.0.2):

|h0(u, u)| > 3c0

4
‖∇u‖2

L2(Ωε) − C‖u‖2
L2(Ωε),

где константа C не зависит от ε и u. Это неравенство и (1.0.40), (5.7.5)
позволяют оценить левую часть равенства (5.7.4) для λ < λ0, предпола-
гая, что λ0 отрицательно и достаточно велико по модулю:∣∣h0(ûε,N , ûε,N) + (a(uε,N)− a(uε), ûε,N)L2(∂θε) − λ‖ûε,N‖2

L2(Ωε)

∣∣
>
∣∣h0(ûε,N , ûε,N)− λ‖ûε,N‖2

L2(Ωε)

∣∣− 2|a1|‖ûε,N‖2
L2(θε)

>
c0

2
‖ûε,N‖2

W 1
2 (Ωε),

а также оценить правую часть равенства (5.7.4)∣∣(f, ûε,N)L2(Ωε) + (φε,N , ûε,N)L2(∂θε)

∣∣
6 C

(
‖fε,N‖L2(Ωε) + ‖φε,N‖L2(∂θε)

)
‖ûε,N‖W 1

2 (Ωε),

где константа C не зависит от ε. Из полученных оценок и (5.7.4) теперь
следует, что

‖ûε,N‖W 1
2 (Ωε) = ‖uε,N − uε‖W 1

2 (Ωε) 6 Cε
N
2 −

1
4 .

Заменим теперь в этой оценке N на N + 2 и учтём оценки (1.0.47) для
m = N + 1, N + 2. Тогда получим равенство (1.0.44). Теорема доказана.
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[68] Lobo M., Oleinik O.A., Pérez M.E, Shaposhnikova T.A. On
homogenizations of solutions of boundary value problems in domains,
perforated along manifolds // Ann. Sc. Norm. Super. Pisa, Cl. Sci. —
1997. — V. 25. № 3–4. — P. 611–629.

[69] Oleinik O.A., Iosifyan G.A., Shamaev A.S. Mathematical Problems in
Elasticity and Homogenization. Amsterdam: North–Holland, 1992. — 398
p.

[70] Pastukhova, S.E. Resolvent approximations in L2-norm for elliptic
operators acting in a perforated space // Contemp. Math. — 2020. —
V. 66. — P. 314–334.



195

[71] Senik N.N. Homogenization for non-self-adjoint periodic elliptic
operators on an infinite cylinder // SIAM J. Math. Anal. — 2017. —
V. 49. № 2. — P. 874–898.

[72] Senik N.N. Homogenization for locally periodic elliptic operators // J.
Math. Anal. Appl. — 2021. — V. 505. № 2. — id. 5.

[73] Suslina T.A. Homogenization of the Neumann problem for elliptic
systems with periodic coefficients // Mathematika. — 2013. — V. 59.
№ 2. — P. 463–476.

[74] Suslina T.A. Homogenization of the Dirichlet problem for elliptic
systems: L2-operator error estimates // SIAM J. Math. Anal. — 2017.
— V. 49. № 2. — P. 874–898.

[75] Suslina T.A. Spectral approach to homogenization of elliptic operators
in a perforated space // Rev. Math. Phys. — 2018. — V.30. № 8. — id.
125398258


