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Общая характеристика работы

Актуальность темы исследования. Изучение сингулярностей решений
квазилинейных систем уравнений с частными производными первого порядка
и связанных с ними эффектов – актуальная задача математической физики,
берущая начало с классической работы Бернхарда Римана 1860 г., в которой
было теоретически предсказано существование ударных волн, обнаруженных
экспериментально лишь впоследствии.

Математическая теория катастроф, понимаемая далее как теория особенно-
стей дифференцируемых отображений вместе с приложениями, дала мощный
аппарат для изучения поведения решений таких уравнений в окрестности точ-
ки градиентной катастрофы (ГК) – такой конечной точки, в которой локально
бесконечно дифференцируемые решения принимают конечные значения, но их
первые производные обращаются в бесконечность. Начиная с пионерских работ
А. Х. Рахимова (представителя школы В. И. Арнольда) с 1990-х годов начало
формироваться направление исследований типичных (здесь и далее – в смыс-
ле математической теории катастроф) особенностей решений квазилинейных
систем. В числе таких – изучаемые в настоящей диссертации типичные особен-
ности решений следующих систем: системы уравнений одномерной изоэнтропи-
ческой газовой динамики (далее – ГД){︃

𝑢𝑡 + 𝑢𝑢𝑥 + 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(1)

где 𝑢(𝑡, 𝑥) – скорость течения, 𝜌(𝑡, 𝑥) ≥ 0 – плотность, 𝑡 – время, 𝑥 – единствен-
ная пространственная координата, 𝛼(𝜌) = 𝑝′(𝜌)

𝜌 > 0 – бесконечно дифференци-
руемая положительная функция с разложением в сходящийся ряд Тейлора

𝛼(𝜌) = 4 +
∞∑︁
𝑖=1

𝛼𝑗

𝑗!
∆𝜌𝑗 (∆𝜌 = 𝜌− 𝜌*). (2)

𝑝(𝜌) – давление газа, и системы уравнений нелинейной геометрической оптики
(далее – НГО) {︃

𝑢𝑡 + 𝑢𝑢𝑥 − 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0.
(3)

Для исследования решений данных систем применяется преобразование го-
дографа, меняющее ролями зависимые и независимые переменные и переводя-
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щее квазилинейные системы в линейные. Из формул для производных преобра-
зования годографа

𝑢𝑥 = 𝐽𝑡𝜌, 𝑢𝑡 = −𝐽𝑥𝜌, 𝜌𝑥 = −𝐽𝑡𝑢, 𝜌𝑡 = 𝐽𝑥𝑢,

𝐽 = 𝑢𝑥𝜌𝑡 − 𝑢𝑡𝜌𝑥, 𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢, 𝐽 = 𝑗−1
(4)

следует, что система (1) переходит в систему{︃
𝑥𝜌 = 𝑢𝑡𝜌 − 𝛼(𝜌)𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌,

а система (3) – в систему {︃
𝑥𝜌 = 𝑢𝑡𝜌 + 𝛼(𝜌)𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌
(5)

Рассматриваются их гладкие (здесь и далее гладкие – бесконечно дифферен-
цируемые) решения 𝑡(𝑢, 𝜌), 𝑥(𝑢, 𝜌), чьи первые производные не обращаются в
нуль одновременно в конечной точке (𝑢*, 𝜌*; 𝑡*, 𝑥*). Тогда обращение в нуль яко-
биана преобразования годографа 𝑗 = 𝑥𝑢𝑡𝜌− 𝑥𝜌𝑡𝑢 в конечной точке (𝑢*, 𝜌*; 𝑡*, 𝑥*)

сопровождается обращением в бесконечность как минимум одной из первых
производных решений систем (1) и (3) – происходит градиентная катастрофа.
При этом теряет гладкость и взаимную однозначность отображение из плос-
кости годографа на плоскость скорости и плотности течения (𝑡, 𝑥) → (𝑢, 𝜌). В
диссертации изучены именно такие сингулярности решений систем (1) и (3).

Описанная ситуация формулируется как задача анализа критических точек
локально гладкой (в случае системы (3), что комментируется отдельно – ло-
кально аналитической) функции,

𝐹 = 𝜌(𝑢𝑡−𝐵 − 𝑥), (6)

зависящей от 𝑢 и 𝜌 как от основных переменных, а от 𝑥 и от 𝑡 как от параметров.
Критические точки этой функции 𝐹𝑢 ≡ 𝑡− 𝐵𝑢 = 0, 𝐹𝜌 ≡ 𝑢𝑡− 𝐵 − 𝑥− 𝜌𝐵𝜌 = 0

– суть решения линейной системы, получаемой из исходной системы (1) (либо
из системы (3)) после применения преобразования (4). Здесь, в случае анализа
решений системы уравнений ГД (1), 𝐵(𝑢, 𝜌) – локально гладкое решение гипер-
болического (при 𝜌 > 0) уравнения

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = 𝛼(𝜌)𝐵𝑢𝑢, (7)

4



получаемого из системы на 𝑡(𝑢, 𝜌) и 𝑥(𝑢, 𝜌) невырожденными заменами

𝑡 = 𝐵𝑢, 𝑥 = 𝑢𝐵𝑢 −𝐵 − 𝜌𝐵𝜌 (8)

или, что оказывается удобнее, после перехода к инвариантам Римана (далее –
𝑐(𝜌) > 0 – скорость звука)

𝑟 = 𝑢+

∫︁ 𝜌

𝑠

𝑐(𝑠)

𝑠
d𝑠, 𝑙 = 𝑢−

∫︁ 𝜌

𝑠

𝑐(𝑠)

𝑠
d𝑠, 𝑐2 = 𝑝𝜌 = 𝜌𝛼(𝜌), (9)

𝐵(𝑟, 𝑙) – решение уравнения

8𝛼𝐵𝑟𝑙 =

(︂
𝛼𝜌 + 3

𝛼

𝜌

)︂√︂
𝜌

𝛼
(𝐵𝑟 −𝐵𝑙). (10)

Для анализа особенностей решений системы уравнений НГО (3) использует-
ся та же функция (6), где 𝐵(𝑢, 𝜌) – локально аналитическое решение эллипти-
ческого уравнения

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = −𝛼(𝜌)𝐵𝑢𝑢. (11)

Непустота множества локально бесконечно дифференцируемых решений
уравнения (10) обоснована в Лемме 1.1. основного текста при помощи теоремы
Бореля и известного результата о разрешимости задачи Коши для линейного ги-
перболического уравнения с бесконечно дифференцируемыми начальными дан-
ными (Р. Курант «Уравнения с частными производными». М.: Мир, 1962, Глава
V, §6, п.1–3). В Главе 3 для обоснования непустоты множества решений (11) в
силу результата Пикара необходимо рассматривать лишь класс аналитических
решений, существование которых следует из теоремы Коши-Ковалевской.

Существует (например, Р. Гилмор «Прикладная теория катастроф», М: Мир,
1984 г., Книга 1, Часть I, Глава 2, пункт 4; Книга 2, Часть IV, Глава 21, пункт 5)
конечный список нормальных канонических форм, к которым сводится локаль-
но гладкая (аналитическая) функция, зависящая как от основных переменных,
так и от управляющих параметров в окрестности критической точки конечной
кратности 𝜇 ∈ N при 𝜇 ∈ [2, 5] (далее используется 𝐴𝐷𝐸-классификация В. И.
Арнольда):

𝐴±
𝜇 : ±𝑥𝜇+1 + 𝑘𝜇𝑥

𝜇−1 + ...+ 𝑘1,

𝐷±
4 : 𝑥2𝑦 ± 𝑦3 + 𝑘4𝑦

2 + 𝑘3𝑦 + 𝑘2𝑥+ 𝑘1,

𝐷±
5 : 𝑥2 ± 𝑦4 + 𝑘5𝑦

3 + 𝑘4𝑦
3 + 𝑘3𝑦 + 𝑘2𝑥+ 𝑘1.
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Значения этих многочленов при всех 𝑘𝑖 = 0 называются генотипами соот-
ветствующих особенностей (В. Д. Седых «Математические методы теории ката-
строф», М.: МЦНМО, 2021 г., §14). Отметим, что линейными преобразованиями
генотип особенности 𝐷+

4 может быть сведен к используемому далее виду 𝑢3+𝑣3.
Нами рассматривается подмножество множества всех гладких (аналитиче-

ских) функций 𝐹 (𝑢, 𝜌; 𝑡, 𝑥), элементы которого задаются формулой (6) и глад-
кими (или аналитическими) решениями уравнения (7) (или уравнения (11)).
На всем множестве гладких (аналитических) функций 𝐹 (𝑢, 𝜌; 𝑡, 𝑥) функциям
𝑢(𝑡, 𝑥), 𝜌(𝑡, 𝑥), определяемым из анализа критических точек 𝐹 (𝑢, 𝜌; 𝑡, 𝑥) долж-
ны быть присущи только особенности типа складки (𝐴2) и сборки (𝐴3). По-
скольку изучается именно описанное подмножество, оказывается, что решения
систем (1) и (3) наряду с особенностями складки (𝐴2) и сборки (𝐴3) имеют так-
же типичные особенности сечения гиперболической (𝐷+

4 ) и эллиптической (𝐷−
4 )

омбилики соответственно. Для этих сечений 𝑘3 является функцией двух других
управляющих параметров, т.е. 𝑘3 = 𝑘3(𝑘1, 𝑘2).

Замечание. В работе А. Х. Рахимова 1993 г. «Особенности римановых ин-
вариантов» («Функциональный анализ и его приложения», том 27, №1) без ана-
лиза вырождений критических точек потенциальной функции были описаны
типичные особенности решений квазилинейной гиперболической системы более
общего, чем (1) вида при соблюдении условия более сильного, чем условие силь-
ной нелинейности (представленного далее): особенности складки (𝐴2), сборки
(𝐴3) и особенность 𝐶2

2 , локально определяемая корнями системы уравнений

𝑣21 = 𝑧1 + 𝑧2𝑣2, 𝑣22 = 𝑧1𝑣1 + 𝑧2. (12)

В диссертационной работе подтвержден вывод о типичности особенностей 𝐴2 и
𝐴3 посредством изучения потенциальной функции, а также была описана ти-
пичная особенность 𝐷+

4 , то есть, было показано, что в окрестности точки ГК
решения системы ГД (1) локально выражаются через решения системы

𝑦21 − 𝑥3(𝑥1, 𝑥2)𝑦2 − 𝑥1 = 0,

𝑦22 − 𝑥3(𝑥1, 𝑥2)𝑦1 − 𝑥2 = 0,
(13)

определяющей критические точки кубической функции

𝐻(𝑦1, 𝑦2; 𝑥1, 𝑥2) =
𝑦31 + 𝑦32

3
− 𝑥3(𝑥1, 𝑥2)𝑦1𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2
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основных переменных 𝑦1, 𝑦2 и двух управляющих параметров 𝑥1, 𝑥2. По-
видимому, с помощью локальных диффеоморфизмов решения системы (12) воз-
можно выразить через решения (13), но автору не удалось ни доказать это стро-
го, ни обнаружить такое доказательство в литературе.

Целью исследования является описание решений уравнений газовой ди-
намики и нелинейной геометрической оптики в окрестности точки типичной
градиентной катастрофы в терминах решений канонических уравнений теории
особенностей дифференцируемых отображений.

Задачи исследования:
1. Описать типичную омбилическую особенность решений системы уравне-

ний идеальной одномерной газовой динамики.
2. Показать совпадение с точностью до растяжений генотипов всех трех

типичных особенностей решений линейного одномерного однородного волново-
го уравнения в образе годографа (к которому сводится линеаризация системы
уравнений ГД) и генотипов всех трех типичных особенностей решений системы
уравнений ГД.

3. Описать типичную особенность сечения сборки решений системы уравне-
ний ГД в случае Чаплыгина 𝑝 = 𝑝0 − 𝑚2

𝜌 , нарушающем условие сильной нели-
нейности. Показать специфику данного случая.

4. Описать типичную омбилическую особенность решений системы уравне-
ний ГД в случае Бехерта-Станюковича 𝑝 = 𝑎2

3 𝜌
3, нарушающем условие еще более

сильное, чем условие сильной нелинейности. Показать специфику этого случая.
5. Описать типичную особенность сборки решений системы уравнений ГД и

системы уравнений нелинейной геометрической оптики при стремлении плот-
ности газа (падении интенсивности) к нулю.

6. Описать типичную омбилическую особенность решений системы уравне-
ний НГО. Показать совпадение с точностью до растяжений генотипа особен-
ности решения уравнения Лапласа и генотипа особенности решения системы
уравнений НГО.

Научная новизна.
В окрестности типичной точки градиентной катастрофы описаны асимпто-

тики решений уравнений идеальной одномерной газовой динамики (гипербо-
лическая система) и решений системы уравнений нелинейной геометрической
оптики (эллиптическая система) для локально бесконечно дифференцируемых
(или, в случае системы уравнений нелинейной геометрической оптики, анали-
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тических) функций давления (интенсивности) и при различных условиях обра-
щения якобиана в нуль.

Строго обоснованы формальные результаты предыдущих работ, дополнены
два результата предшественников: впервые описана типичная особенность се-
чения сборки для газа Чаплыгина (оставленного за рамками анализа в работе
В. Р. Кудашева и Б. И. Сулейманова 2001 г.) и уточнен вид нормальной формы
типичной особенности сечения эллиптической омбилики решений системы урав-
нений нелинейной геометрической оптики (этим уточняется результат известной
работы Б. А. Дубровина, Т. Гравы, К. Клейна 2009 г.).

Замечено совпадение с точностью до растяжений генотипов типичных осо-
бенностей складки, сборки и сечения гиперболической омбилики решений систе-
мы уравнений одномерной газовой динамики и генотипов особенностей склад-
ки, сборки и сечения гиперболической омбилики решений линейного волнового
уравнения в образе годографа. Установлено явление наследования всех типич-
ных особенностей в гиперболическом случае.

Замечено совпадение с точностью до растяжений генотипа типичной осо-
бенности эллиптической омбилики решения системы уравнений нелинейной гео-
метрической оптики и генотипа типичной особенности эллиптической омбилики
решения уравнения Лапласа.

Теоретическая и практическая значимость исследования. Работа
носит теоретический характер и обладает теоретической значимостью. Изуче-
ны решения квазилинейных систем уравнений первого порядка в окрестности
типичной конечной точки градиентной катастрофы. Представлен конструк-
тивный метод проведения подобного исследования на основе методов теории
особенностей с использованием преобразований в классе локально бесконеч-
но дифференцируемых (для гиперболической системы уравнений ГД) или
аналитических (для эллиптической системы уравнений НГО) функций.

Методология и методы исследования. В работе используются класси-
ческие результаты и методы теории особенностей дифференцируемых отобра-
жений и теории уравнений с частными производными.

Основные положения, выносимые на защиту:
Все задачи решены математически строго с применением конечной последо-

вательности бесконечно дифференцируемых (при исследовании эллиптической
системы уравнений НГО – аналитических) преобразований, а не посредством
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использования формальных степенных рядов и их усечений, как это делалось в
значительной части более ранних работ предшественников.

1. В окрестности типичной омбилической точки градиентной катастрофы
(соответствующей ситуации с наложением двух ограничений на коэффициенты
разложения решения уравнения (10)) описаны решения системы уравнений иде-
альной одномерной газовой динамики в терминах решений канонических урав-
нений сечения гиперболической омбилики.

2. Показано, что с точностью до растяжений генотипы всех трех типичных
особенностей решений линейного одномерного однородного волнового уравне-
ния (к которому сводится линеаризация системы уравнений ГД) совпадают с
генотипами всех трех типичных особенностей решений системы уравнений иде-
альной одномерной газовой динамики – тем самым показано, что происходит
наследование особенностей.

3. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения) реше-
ние системы уравнений ГД в случае Чаплыгина (нарушающего условие сильной
нелинейности) описано в терминах решений канонического уравнения сечения
сборки. Дополнен результат Б. И. Сулейманова и В. Р. Кудашева 2001 г., в кото-
ром газ Чаплыгина не рассматривался. Показано, что в отличие от более общего
случая, происходит наследование не только генотипа, но и всей канонической
нормальной формы катастрофы.

4. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения)
описаны решения системы уравнений ГД в случае Бехерта-Станюковича (на-
рушающего условие более сильное, чем условие сильной нелинейности) в тер-
минах решений канонических уравнений сечения гиперболической омбилики.
Показано, что в этом случае тождественно равен нулю один из управляющих
параметров канонической нормальной формы катастрофы. В этом заключается
специфика данного случая.

5. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения) реше-
ние системы уравнений идеальной одномерной газовой динамики (и, при замене
𝜌 → −𝜌, решение системы НГО) описано в терминах решений канонического
уравнения сборки при стремлении плотности газа к нулю (в случае НГО – па-
дении интенсивности).
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6. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения (11))
описаны решения системы уравнений нелинейной геометрической оптики в тер-
минах решений канонических уравнений сечения эллиптической омбилики. По-
казано, что с точностью до растяжений генотип омбилической особенности ре-
шения уравнения Лапласа совпадает с генотипом омбилической особенности ре-
шения системы уравнений НГО – тем самым происходит наследование особенно-
сти. Дополнительно исправлен (по части неравенства нулю одного из управляю-
щих параметров) и выполнен не на формальном уровне, а на уровне сходящихся
рядов Тейлора аналитических функций, результат Б. А. Дубровина, Т. Гравы,
К. Клейна 2009 г.

Работа почти завершает исследования типичных (с точки зрения математи-
ческой теории катастроф) особенностей решений одномерных однородных си-
стем уравнений газовой динамики и нелинейной геометрической оптики в случае
конечной точки градиентной катастрофы (при ограниченных значениях компо-
нент). Из нерешенных вопросов остаются, например, следующие: обоснование
непустоты множества гладких решений при описании провальной особенности
сборки для случая произвольного аналитического в окрестности нуля давления
(интенсивности), не решена проблема описания точки типичной градиентной
катастрофы, происходящей при трансформации слабых разрывов решений ги-
перболического варианта системы в их сильные разрывы.

Степень достоверности и апробация результатов. Достоверность ре-
зультатов обеспечена строгим доказательством теорем в соответствии с фунда-
ментальными результатами теории особенностей дифференцируемых отображе-
ний и теории уравнений с частными производными.

Основные результаты диссертационной работы докладывались и обсужда-
лись на заседаниях общегородского семинара им. А.М. Ильина по дифферен-
циальным уравнениям математической физики Института математики с вы-
числительным центром УФИЦ РАН (руководители: д.ф.-м.н., профессор Л.А.
Калякин и д.ф.-м.н., профессор В.Ю. Новокшенов; г. Уфа, 2021, 2022, 2025).

Результаты были так же представлены в ходе выступлений на следующих
конференциях: Всероссийская конференция-школа с международным участи-
ем «Электронные, спиновые и квантовые процессы в молекулярных и кри-
сталлических системах» (г. Уфа, 2019); Международная научная конференция
«Уфимская осенняя математическая школа» (г. Уфа, 2019, 2020, 2021, 2022,
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2023); Студенческая школа-конференция «Математическая весна» (г. Нижний
Новгород, 2020, 2021); Всероссийская научная конференция МФТИ (г. Москва,
2021); Международная конференция «Теория функций, теория операторов и
квантовая теория информации» (г. Уфа, 2020); Международная молодежная
школа-конференция «Фундаментальная математика и ее приложения в есте-
ствознании» (г. Уфа, 2020); Международная конференция студентов, аспиран-
тов и молодых ученых «Ломоносов» (г. Москва, 2020, 2021, 2022, 2023); Кон-
ференция международных математических центров мирового уровня (г. Со-
чи, 2021); Школа для молодых механиков и математиков SYMM (г. Москва,
2021, 2022, 2024); Международный дистанционный воркшоп «Online workshop on
PDEs in many body systems» (г. Прага, Чехия, 2021); Международная конферен-
ция «Комплексный анализ, математическая физика и нелинейные уравнения»
(оз. Банное, 2021, 2022); Международная конференция «Nonlinear Dynamics
and Integrability» (г. Ярославль, 2022); Международная конференция «O.A.
Ladyzhenskaya centennial conference on PDEs» (г. Санкт-Петербург, 2022).

Публикации. По результатам проведенных исследований опубликовано 5
работ в изданиях из перечня ВАК РФ, индексируемых в Web of Science и Scopus
и входящих в РИНЦ и 20 тезисов в сборниках по материалам докладов на кон-
ференциях.

Личный вклад. Результаты, выносимые на защиту, получены автором са-
мостоятельно. Задача 5 поставлена научным руководителем Б. И. Сулеймано-
вым. Задачи 1, 2, 6 были поставлены в ходе обсуждения с научным руководи-
телем. Задачи 3 и 4 поставлены автором перед собой самостоятельно. Анализ
полученных результатов и написание общих статей осуществлялись совместно
с научным руководителем. Все выносимые на защиту положения получены ав-
тором лично.

Работа [4] выполнена полностью самостоятельно. В совместных работах [1],
[2], [3], [5] автором проведены ключевые для описания особенностей выкладки
и рассуждения.

Вклад соавторов в совместные работы следующий. В работе [1] научным
руководителем Б. И. Сулеймановым отмечен «эталонный» характер одного из
найденных автором частных решений. Этому решению посвящен пункт диссер-
тации 2.1.1., служащий наглядным примером полученного результата. В рабо-
те [2] научным руководителем доказана лемма о гладкости решений линейного
уравнения (Лемма 1.1. Главы 1), получаемого из исходной системы после при-
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менения преобразования годографа и невырожденных замен. Лемма приведена
для обоснования гладкости применяемых далее преобразований. В работе [3] на-
учным руководителем замечено, что полученный результат применим как для
гиперболического, так и для эллиптического варианта уравнений. Соавтором
С. Н. Мелиховым в Теореме 2.1 доказана необходимость. В работе [5] науч-
ным руководителем со ссылкой на результат Эмиля Пикара обоснована необхо-
димость аналитичности решений линейного уравнения, получаемого из образа
годографа исходной системы после невырожденных преобразований.

Объем и структура работы. Диссертация состоит из введения, трех глав,
заключения и библиографии. Работа содержит 4 рисунка. Принята двойная ну-
мерация формул, замечаний, лемм и теорем: первое число соответствует номеру
главы, второе – номеру формулы, замечания, леммы и теоремы в главе. Полный
объем диссертации составляет 118 страниц. Список литературы содержит 141
наименование.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ
Во введении обоснована актуальность темы работы, сформулированы цель

и задачи исследования, приведены результаты работы с обоснованием их досто-
верности, указанием их научной новизны и практической значимости.

В первой главе, подпункте 1.1 описаны типичные (с точки зрения теории
катастроф) особенности решений квазилинейной системы уравнений идеальной
одномерной газовой динамики (1). В подпунктах 1.1, 1.2 и третьей главе без
ограничения общности (в силу возможности применить растяжение) считает-
ся, что 𝛼(𝜌*) = 𝛼* = 4 и что функция 𝛼(𝜌) раскладывается в сходящийся ряд
Тейлора (2). 𝜌* > 0 – значение плотности в конечной точке 𝑡*, 𝑥* градиентной
катастрофы, в которой первые производные решений (1) обращаются в беско-
нечность, а сами решения – конечны. Так же в подпунктах 1.1, 1.2 в ситуации
«общего положения» 𝛼1 ̸= −3𝛼*

𝜌*
= −12

𝜌*
. Это условие нарушается для газа Ча-

плыгина, который исследуется отдельно в подпункте 1.3.
Посредством инвариантов Римана (где 𝑟 ̸= 𝑙, иначе 𝜌 = 0) (9) система (1)

представляется как диагональная{︃
𝑟𝑡 + (𝑟+𝑙

2 + 𝑐)𝑟𝑥 = 0,

𝑙𝑡 + (𝑟+𝑙
2 − 𝑐)𝑙𝑥 = 0,

(14)

которую преобразование годографа переводит в линейную систему на функции

12



𝑡(𝑟, 𝑙), 𝑥(𝑟, 𝑙). Невырожденные замены (8) сводят систему (14) к одному линей-
ному гиперболическому уравнению (10), а систему (1) к линейному гиперболи-
ческому (при 𝜌 > 0) уравнению (7).

Для обоснования непустоты множества локально гладких решений уравне-
ния (10) и, как следствие, фигурирующих в дальнейшем функций (6) и (8),
необходима лемма 1.1., доказанная научным руководителем диссертанта Б. И.
Сулеймановым в совместной публикации [2].

Якобиан преобразования годографа принимает вид 𝑗 = −2𝑐𝑡𝑟𝑡𝑙. В точке ГК
обращения якобиана в нуль отображение (𝑢(𝑟, 𝑙), 𝜌(𝑟, 𝑙)) → (𝑡, 𝑥) перестает быть
взаимно однозначным и гладким. В окрестности точки ГК после использования
обратимых невырожденных гладких замен решения (1) локально описываются
в терминах канонических уравнений теории катастроф.

Пусть гладкое решение уравнения (10) представляется в окрестности точки
(𝑟*, 𝑙*) рядом Тейлора (∆𝑟 = 𝑟 − 𝑟*, ∆𝑙 = 𝑙 − 𝑙*)

𝐵 =
∑︁
𝑖+𝑗≥0

𝑏𝑖𝑗∆𝑟𝑖∆𝑙𝑗, (15)

В терминах коэффициентов 𝑏𝑖𝑗 обращение якобиана 𝑗 в нуль в точке (𝑟*, 𝑙*)

записывается как 𝑗(𝑟*, 𝑙*) = −4
√
𝜌*(2𝑏20 + 𝑏11)(𝑏11 + 2𝑏02) = 0.

Существуют три возможности обращения якобиана в нуль: 𝑏11 = −2𝑏20,
𝑏11 = −2𝑏02 и одновременно 𝑏11 = −2𝑏20 = −2𝑏02. Согласно идеологии теории
катастроф, возможно наложить не более двух ограничений в виде равенств на
коэффициенты 𝑏𝑖𝑗 разложения в ряд Тейлора решения уравнения (10) (кроме
тех, что следуют из уравнения), так как функция 𝐵(𝑟, 𝑙) зависит от двух пере-
менных. Выбор одного подходящего значения 𝑟* или 𝑙* реализует первую или
вторую возможности, выбор сразу двух подходящих значений 𝑟* и 𝑙* отвечает
третьей возможности. Любые дополнительные ниоткуда не следующие ограни-
чения в виде равенств на коэффициенты 𝑏𝑖𝑗 не относятся к ситуации «общего
положения». В подпункте 1.1 за счет возможности вариации 𝑟* и 𝑙* требуем
выполнения двойного равенства 𝑏11 = −2𝑏20 = −2𝑏02.

С учетом этого представление всех слагаемых уравнения (10) в виде степен-
ных рядов и приравнивание коэффициентов при линейно независимых членах
дает рекуррентную последовательность соотношений на коэффициенты 𝑏𝑖𝑗. Из
соотношений (8) в точке 𝜌 = 𝜌*, 𝑢 = 𝑢* = (𝑟* + 𝑙*)/2 (на 𝑡, 𝑥-плоскости ей соот-
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ветствует точка (𝑡*, 𝑥*)) следует, что 𝑡* = 𝑏10 + 𝑏01, 𝑥* = 𝑟*+𝑙*
2 (𝑏10 + 𝑏01) − 𝑏00 −

2
√
𝜌*(𝑏10 − 𝑏01).
Введем в рассмотрение локально гладкую потенциальную функцию (6)

𝐹 (𝜌, 𝑢; 𝑡, 𝑥) = 𝜌(𝑢𝑡−𝐵(𝜌, 𝑢)− 𝑥)

основных переменных 𝜌, 𝑢 и двух дополнительных параметров 𝑡, 𝑥 (называе-
мых в терминологии теории катастроф управляющими), которая определяется
локально гладкими решениями уравнения (7). При 𝜌 ̸= 0 соотношения (8) рав-
носильны равенству нулю производных 𝐹𝜌(𝜌, 𝑢; 𝑡, 𝑥) и 𝐹𝑢(𝜌, 𝑢; 𝑡, 𝑥) функции (6).
Следовательно, критические точки (6) суть решения образа годографа системы
(1). Обращение в нуль якобиана отображений (𝜌, 𝑢) → (𝑡, 𝑥) равносильно вы-
рожденности критических точек функции (6). Изучая критические точки функ-
ции (6), мы изучаем поведение решений (1) в окрестности точки ГК.

В окрестности точки ГК функция (6) раскладывается в ряд Тейлора

𝐹 = 2𝜌3/2* (𝑏10 − 𝑏01) + 𝜌*𝑧 +
𝜌*∆𝑡

2
(∆𝑟 +∆𝑙) +

√
𝜌*

4
𝑧(∆𝑟 −∆𝑙)+

+

√
𝜌*

8
∆𝑡((∆𝑟)2 − (∆𝑙)2) + 𝑧(∆𝑟 −∆𝑙)2+

+
4− 𝛼1𝜌*

512
∆𝑡(∆𝑟 −∆𝑙)2

∆𝑟 +∆𝑙

2
+ ℎ3𝑧(∆𝑟 −∆𝑙)3+

+𝐴+(∆𝑟)3 + 𝐴−(∆𝑙)3 +
∑︁
𝑖+𝑗≥4

(𝑓 0
𝑖𝑗 + 𝑓 1

𝑖𝑗∆𝑡+ 𝑓 2
𝑖𝑗𝑧)(∆𝑟)𝑖(∆𝑙)𝑗,

(16)

где в ситуации «общего положения» не равны нулю постоянные 𝐴+ и 𝐴−.
Заметим, что

𝐹 (𝑟, 𝑙; 𝑡*, 𝑥*) = 2𝜌3/2* (𝑏10 − 𝑏01) + 𝐴+(∆𝑟)3 + 𝐴−(∆𝑙)3 +
∑︁
𝑖+𝑗≥4

𝑓 0
𝑖𝑗(∆𝑟)𝑖(∆𝑙)𝑗.

Вид разложения Тейлора (16) позволяет сделать вывод о том, что росток
(В. Д. Седых «Математические методы теории катастроф», М.: МЦНМО, 2021
г., §5, стр. 37)) функции 𝐹 (𝑟, 𝑙; 𝑡, 𝑥) является 2 – деформацией ростка функции
𝐹 (𝑟, 𝑙; 𝑡*, 𝑥*). Данная 2 – деформация может быть получена из 𝑅−версальной
деформации (являющейся также и универсальной), описываемой трехпарамет-
рическим семейством функций

𝐺𝑘1,𝑘2,𝑘3(𝑦1, 𝑦2) =
𝑦31 + 𝑦32

3
− 𝑘3𝑦1𝑦2 − 𝑘2𝑦1 − 𝑘1𝑦2. (17)
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Это означает (В. Д. Седых «Математические методы теории катастроф», М.:
МЦНМО, 2021 г., §13), что в достаточно малой окрестности точки 𝑟 = 𝑟*, 𝑙 = 𝑙*,
𝑡 = 𝑡*, 𝑥 = 𝑥* функция 𝐹 (𝑟, 𝑙; 𝑡, 𝑥), которая является в этой точке гладкой и
обладает в ней разложением Тейлора (16), представима в виде

𝐹 (𝑟, 𝑙; 𝑡, 𝑥) =
𝑦31 + 𝑦32

3
− 𝑘3𝑦1𝑦2 − 𝑘2𝑦1 − 𝑘1𝑦2 + 𝛾, (18)

где 𝑘𝑗 = 𝑘𝑗(𝑡, 𝑥) (𝑗 = 1, 2, 3) и 𝛾 = 𝛾(𝑡, 𝑥) – гладкие в окрестности точ-
ки 𝑡 = 𝑡*, 𝑥 = 𝑥* функции; 𝑦1 = 𝑦1(𝑟, 𝑙, 𝑡, 𝑥), 𝑦2 = 𝑦2(𝑟, 𝑙, 𝑡, 𝑥) – зависящая
от параметров 𝑡 и 𝑥 гладкая локальная замена координат в R2: (𝑟, 𝑙, 𝑡, 𝑥) →
(𝑦1(𝑟, 𝑙, 𝑡, 𝑥), 𝑦2(𝑟, 𝑙, 𝑡, 𝑥)), которая при фиксированных 𝑡 и 𝑥 является локаль-
ным диффеоморфизмом. Все коэффициенты тейлоровских разложений функ-
ций 𝑘𝑗, 𝑦1, 𝑦2 в окрестности точки ГК определяются однозначно. В окрест-
ности точки (𝑡*, 𝑥*) отображение, описываемое функциями 𝑥1 = 𝑘2(𝑡, 𝑥) и
𝑥2 = 𝑘1(𝑡, 𝑥) является диффеоморфизмом, и что при 𝑥21+𝑥22 → 0 гладкая функ-
ция 𝑥3(𝑥1, 𝑥2) = 𝑘3(𝑡, 𝑥) имеет разложение Тейлора 𝑥3(𝑥1, 𝑥2) =

∑︀∞
𝑖+𝑗=1 𝑘𝑖𝑗𝑥

𝑖
1𝑥

𝑗
2,

в котором коэффициенты отличны от нуля.
В результате приведенных рассуждений и построений формулируется
Теорема 1.1. Существует гладкое преобразование, позволяющее локаль-

но представить функцию 𝐹 (𝑟, 𝑙; 𝑡, 𝑥) в форме (18), критические точки которой,
определяемые из корней системы

𝐹𝑦1 ≡ 𝑦21 − 𝑘3(𝑥1, 𝑥2)𝑦2 − 𝑘1 = 0, 𝐹𝑦2 ≡ 𝑦22 − 𝑘3(𝑥1, 𝑥2)𝑦1 − 𝑘2 = 0, (19)

задают решения исходной системы (1) в окрестности точки ГК.
В Замечании 1.3 с помощью представленного метода описаны особенности

складки и сборки решений системы (1).
В подпункте 1.2 представленный метод применяется к описанию особенно-

стей решений системы, эквивалентной волновому уравнению 𝑢𝑡𝑡 = 𝑢𝑥𝑥

𝑢𝑡 = 𝑣𝑥, 𝑣𝑡 = 𝑢𝑥 (20)

которая из линеаризованной системы газовой динамики получается после при-
менения линейных замен и переобозначений. Преобразование годографа систе-
му (20) переводит в линейную систему на функции 𝑡(𝑢, 𝑣) и 𝑥(𝑢, 𝑣). Якобиан
преобразования годографа имеет вид 𝑗 = (𝑡𝑣)

2 − (𝑡𝑢)
2.
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Аналогичные (8) подстановки 𝑡 = 𝐵𝑢, 𝑥 = 𝐵𝑣 позволяют выразить решения
линейной системы через общее решение 𝐵 = 𝑓(𝑢+𝑣)+𝑔(𝑢−𝑣), которое считаем
гладким и полагаем, что функции 𝑓 и 𝑔 раскладываются в ряды Тейлора 𝑓 =

𝑓0 +
∞∑︀
𝑗=1

𝑓𝑗
𝑗! (∆𝑢+∆𝑣)𝑗, 𝑔 = 𝑔0 +

∞∑︀
𝑗=1

𝑔𝑗
𝑗! (∆𝑢−∆𝑣)𝑗.

Рассмотрим аналог функции (6) – функцию

Ψ(𝑢, 𝑣; 𝑡, 𝑥) = 𝑢𝑡+ 𝑣𝑥−𝐵(𝑢, 𝑣). (21)

Соотношения 𝑡 = 𝐵𝑢, 𝑥 = 𝐵𝑣 равносильны системе двух уравнений Ψ𝑢 = 0,
Ψ𝑣 = 0 на критические точки данной функции. Обращение в нуль якобиана
преобразования годографа, соответствующее вырожденности данных критиче-
ских точек в точке (𝑢*, 𝑣*) равносильно равенству 𝑓2𝑔2 = 0. Тогда нормальные
канонические формы особенностей решений волнового уравнения имеют вид:

при 𝑔2 ̸= 0, 𝑓2 = 0, 𝑓3 ̸= 0 – особенности складки 𝐴2

Ψ = 𝑢31 − 𝑘2𝑢1 − 𝑘1, (22)

при 𝑔2 ̸= 0, 𝑓2 = 𝑓3 = 0, 𝑓4 ̸= 0 – особенности сечения сборки 𝐴3

Ψ = −𝑓4𝑢
4
1 + 𝑘2𝑢1 + 𝑘1, (23)

при 𝑓2 = 𝑔2 = 0, 𝑓3 ̸= 0, 𝑔3 ̸= 0 – особенности сечения гиперболической
омбилики 𝐷+

4

Ψ =
𝑢31 + 𝑢32

3
− 𝑘2𝑢1 − 𝑘1𝑢2 + 𝑘0. (24)

Растяжениями их генотипы сводятся к генотипам катастроф функций (6),
которым соответствуют все универсальные особенности решений системы (1).

Применение описанных методов и результатов позволяет сделать следующие
выводы в подпункте 1.3 о частных случаях Чаплыгина (𝑝 = 𝑝0 − 𝑚2

𝜌 , 𝑝0 > 0,
𝑚 > 0 – константы) {︃

𝑢𝑡 + 𝑢𝑢𝑥 +
𝑚2

𝜌3 𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0.
(25)

и Бехерта-Станюковича (𝑝 = 𝑎2

3 𝜌
3, 𝑎 > 0 – константа){︃

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑎2𝜌𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(26)
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используемых для аппроксимации течений.
Случай Чаплыгина нарушает условие сильной нелинейности(︀

𝑟+𝑙
2 + 𝑐

)︀
𝑟

(︀
𝑟+𝑙
2 − 𝑐

)︀
𝑙
̸= 0. Оба этих случая нарушают еще более сильное условие(︀

𝑟+𝑙
2 + 𝑐

)︀
𝑟

(︀
𝑟+𝑙
2 + 𝑐

)︀
𝑙

(︀
𝑟+𝑙
2 − 𝑐

)︀
𝑟

(︀
𝑟+𝑙
2 − 𝑐

)︀
𝑙
̸= 0. Эти условия были поставлены и не

нарушены в упомянутой работе А. Х. Рахимова 1993 г.
В случае Чаплыгина уравнение (10) сводится к волновому 𝐵𝑟𝑙 = 0 с общим

решением 𝐵 = 𝑓(𝑟) + 𝑔(𝑙), которое полагаем гладким и раскладывающимся в
ряд Тейлора 𝐵 =

∑︀
𝑖≥0

𝑓𝑖
𝑖! (∆𝑟)𝑖 +

∑︀
𝑗≥0

𝑔𝑗
𝑗! (∆𝑙)𝑗.

Обнуление якобиана 𝑗 в точке градиентной катастрофы (𝑡*, 𝑥*; 𝑟*, 𝑙*) означа-
ет, что 𝑓2𝑔2(𝑟* − 𝑙*) = 0 и, поскольку 𝑟* ̸= 𝑙*, можно без ограничения общности
считать, что 𝑔2 = 0, а 𝑓2 ̸= 0 (альтернатива рассматривается аналогично). Из
(8) следует, что 𝑡* = 𝑓1 + 𝑔1, 𝑥* = 𝑟*𝑓1 + 𝑙*𝑔1 − 𝑓0 − 𝑔0. Считаем, что 𝑟* ̸= 0.
Случай 𝑟* = 0 прокомментирован в замечании 1.6: в одном подслучае он да-
ет результат, аналогичный описанному ниже, в другом – следует, что тогда в
давлении газа Чаплыгина масса газа 𝑚 = 0, что противоречит постановке за-
дачи. Пусть также выполнен переход к новым переменным ∆𝑌 = ∆𝑥 + 𝑟*∆𝑡,
∆𝑍 = ∆𝑥− 𝑟*∆𝑡. В этих условиях справедлива

Теорема 1.2. Существует такая конечная последовательность гладких пре-
образований, что в окрестности точки ГК при 𝑔2 = 𝑔3 = 0 выводится уравнение
особенности сечения сборки

∆𝑍 = 𝑆3, (27)

корни которого локально выражают решения (25), а при 𝑔2 = 0, 𝑔3 ̸= 0 для
удобства делается растяжение 𝑊 = ∆𝑍( (𝑙*−𝑟*)𝑔3

2 )−1 и выводится уравнение осо-
бенности складки

𝑊 = 𝑆2,

корни которого локально выражают решения (25).
В данном случае, в отличие от более общего, происходит наследование не

только генотипа, но и всей нормальной формы особенностей 𝐴2 и 𝐴3, типичных
для решений волнового уравнения.

В случае Бехерта-Станюковича уравнение (10) сводится к уравнению типа
Эйлера-Пуассона-Дарбу 𝐵𝑟𝑙 =

𝐵𝑟−𝐵𝑙

𝑟−𝑙 с общим решением 𝐵 = 𝑓(𝑟)−𝑔(𝑙)
𝑟−𝑙 , которое

в окрестности точки (𝑟*, 𝑙*) будет удобно представить в виде ряда (15). Снова
задействуем обе возможности обнуления якобиана 𝑗, считая, что 𝑏11 = −2𝑏02 =

−2𝑏20. В этом случае справедлива
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Теорема 1.3. Существует такая конечная последовательность гладких пре-
образований, что в окрестности точки ГК аналог функции (6)

𝐹 =
𝑔 − 𝑓

2
− 𝑡

4
(𝑟2 − 𝑙2)− 𝑥(

𝑟 − 𝑙

2
)

приводится к нормальной форме сечения особенности 𝐷+
4

𝑊 =
𝑦31 + 𝑦32

3
− 𝑘2𝑦1 − 𝑘1𝑦2, (28)

чьи критические по 𝑦1, 𝑦2 точки представляются в виде системы

𝑦21 = 𝑘2, 𝑦22 = 𝑘1,

корни которой локально задают решения системы (26).
Во второй главе решения системы уравнений (1) и – при замене 𝜌 → −𝜌 –

решения системы НГО (3) при стремлении 𝜌 → 0 в окрестности типичной точки
ГК типа сборки (при одном ограничении на коэффициенты) заданы в терминах
решений канонического уравнения сборки

𝛿(𝑡, 𝑥) + 𝜎(𝑡)𝑆(𝑢, 𝜌) +
5

12
𝑏11𝑆(𝑢, 𝜌; 𝑡, 𝑥)

3 = 0

Научным руководителем диссертанта Б. И. Сулеймановым в совместной пуб-
ликации [5] на основе результатов Э. Пикара было доказано утверждение, обос-
новывающее необходимость аналитичности решений уравнения (11) и, как след-
ствие, фигурирующих в третьей главе функций (8) и (6). В этой главе о ти-
пичных особенностях решений системы уравнений НГО (3) доказана

Теорема 3.1. Существует конечная последовательность аналитических пре-
образований, локально сводящая (6) к нормальной канонической форме ката-
строфы типа сечения эллиптической омбилики

𝐺 = 𝑦21𝑦2 −
𝑦32
3
− 𝑘3𝑦

2
2 − 𝑘2𝑦1 − 𝑘1𝑦2 + 𝛾, (29)

критические по 𝑦1, 𝑦2 точки которой образуют систему квадратных уравнений,

𝑦21 − 𝑦22 = 𝑘1 + 2𝑘3(𝑘1, 𝑘2)𝑦2, 2𝑦1𝑦2 = 𝑘2, (30)

корни которых локально выражают решения системы уравнений НГО в окрест-
ности точки ГК. При этом управляющий параметр 𝑘3 представляется сходя-
щимся рядом по натуральным степеням управляющих параметров 𝑘1, 𝑘2.

18



Подобно гиперболическому случаю имеет место наследование особенностей:
с точностью до растяжений совпадают генотип только что описанной особенно-
сти и генотип особенности решения уравнения Лапласа.

Теорема 3.2. В условиях предыдущей теоремы, функция 𝑘3(𝑘1, 𝑘2), вооб-
ще говоря, не равна тождественно нулю. Представленное в тексте диссертации
доказательство опирается на контрпример – применение описанной техники к

точному решению уравнения (11) 𝐵 = 𝑢
4𝜌 −

𝑢
8𝜌

√︁
𝑢2

4 + 4𝜌+ ln(

√︁
𝑢2

4 +4𝜌−𝑢
2

2
√
𝜌 ).

В заключении приведены основные результаты работы:
1. Решения системы уравнений идеальной одномерной изоэнтропической га-

зовой динамики (1) в окрестности типичной омбилической точки градиентной
катастрофы (соответствующей ситуации с наложением двух ограничений на ко-
эффициенты разложения решения решения уравнения (10)) заданы в терминах
решений канонических уравнений сечения гиперболической омбилики (19).

2. Показано, что с точностью до растяжений генотипы трех типичных осо-
бенностей 𝐴2, 𝐴3, 𝐷+

4 решений линейного одномерного однородного волнового
уравнения (к которому сводится линеаризация системы уравнений идеальной
одномерной газовой динамики (1)) совпадают с генотипами трех типичных осо-
бенностей решений системы уравнений (1).

3. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения (10) при
𝑝 = 𝑝0 − 𝑚2

𝜌 ) решение системы уравнений идеальной одномерной газовой дина-
мики в случае Чаплыгина (25) (нарушающего условие сильной нелинейности)
описано в терминах решений канонического уравнения сечения сборки (27). До-
полнен результат статьи Б. И. Сулейманова и В. Р. Кудашева 2001 г. Отмечено,
что в данном случае, в отличие от более общего, происходит наследование не
только генотипа, но и всей канонической нормальной формы катастроф 𝐴2, 𝐴3,
типичных для решений волнового уравнения.

4. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения (10)
при 𝑝 = 𝑝0 − 𝑚2

𝜌 ) описаны решения системы уравнений идеальной одномерной
газовой динамики в случае Бехерта-Станюковича (26) (нарушающего условие
более сильное, чем условие сильной нелинейности) в терминах решений канони-
ческих уравнений сечения гиперболической омбилики (28). Отмечено, что в дан-
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ном случае один из управляющих параметров канонической нормальной формы
тождественно равен нулю.

5. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения (10)) ре-
шение системы уравнений идеальной одномерной газовой динамики (1) (и ре-
шение системы НГО (3) при замене 𝜌 → −𝜌) описано в терминах решений
канонического уравнения сборки (29) при стремлении 𝜌 → 0.

6. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения (11))
описаны решения системы уравнений нелинейной геометрической оптики (3) в
терминах решений канонических уравнений сечения эллиптической омбилики
(30). Показано, что с точностью до растяжений генотип типичной омбилической
особенности решения системы уравнений нелинейной геометрической оптики
совпадает с генотипом типичной омбилической особенности решения уравнения
Лапласа. Уточнен (по части неравенства нулю одного из управляющих пара-
метров) и выполнен не на формальном уровне, а на уровне сходящихся рядов
Тейлора аналитических функций, результат работы Б. А. Дубровина, Т. Гравы,
К. Клейна 2009 г.

Все результаты являются математически строгими: они получены с приме-
нением конечной последовательности бесконечно дифференцируемых (при ис-
следовании эллиптической системы уравнений НГО – аналитических) преобра-
зований, а не посредством использования формальных степенных рядов и их
усечений, как в значительной части более ранних работ предшественников.
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