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Введение
Актуальность темы исследования
Изучение различного рода сингулярностей решений уравнений с частными

производными – одна из актуальных задач математической физики, интерес к
которой вызван и поддерживается как потребностями теории, так и физически-
ми приложениями, в том числе в газовой динамике, гидродинамике и оптике.

В различных моделях внимание исследователей привлекали теряющие глад-
кость решения [1] – [4], многозначные решения [5], разрушение решений [6] – [9],
нормальные формы уравнений в окрестности особых точек [10] – [12]; особен-
ности решений параболических систем [13] – [15], особенности решений обыкно-
венных дифференциальных уравнений второго порядка [16], изучение особен-
ностей в медленно меняющихся положениях равновесия [17] – [20], лежандровы
особенности в быстро-медленных динамических системах [21], [22]; особенности
распространения коротких волн на плоскости [23], эффективные формулы для
выражения оператора Маслова в окрестности каустической точки [24] – [26]; спе-
циальные функции волновых катастроф [27] – [29]; особенности геодезических
потоков [30]; приложения к задачам теории управления и оптимизации [31]; мно-
гочисленные вопросы классификации ростков голоморфных отображений [32] –
[38]; коллапс в гидродинамике и газовой динамике [39] – [41], разрушение волн
[42] – [45], спектр вопросов о распространении особенностей для гидродинамиче-
ских уравнений и траекторий вихрей и связанная с ними гипотеза В. П. Маслова
о «глазе» тайфуна [46], [47], волны-убийцы [48] – [50], изменения потока воды
при добавлении примеси в мельницах [51], особенности на поверхностях жидких
металлов [52], жидкого гелия [53], жидких диэлектриков [54], [55], формирова-
ние особенностей на поверхности раздела жидкостей [56].

Значительное количество исследований посвящено ударным волнам, (тео-
ретически предсказанным еще в XIX веке Бернхардом Риманом [57]) вместе с
возникающими в решениях уравнений особенностями [58] – [76].

В целом, вырождения различных отображений и аспекты резкой качествен-
ной смены состояния той или иной системы или явления изучались еще со Сред-
них Веков [77, Лекция 1, пункт 2, стр. 5-9], [78, Добавление, стр. 93-97], в том
числе в оптике: рассматривались образования каустических поверхностей в по-
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токе световых лучей, коническая рефракция, двойное лучепреломление, пере-
стройки волновых фронтов, фазовые переходы и другие явления.

Активно развивавшаяся в XX веке усилиями в том числе Хасслера Уитни,
Рене Тома, Кристофера Зимана, Джона Мазера, Бернара Морена, Владимира
Игоревича Арнольда и многих других выдающихся специалистов математиче-
ская теория катастроф [77] – [96], понимаемая далее как теория особенностей
дифференцируемых отображений вместе с приложениями, дала мощный аппа-
рат для изучения поведения решений уравнений в окрестности точки гради-
ентной катастрофы – такой конечной точки области изменения независимых
переменных, в которой как минимум одна из первых производных решений об-
ращается в бесконечность, а сами решения при этом конечны.

Начиная с пионерских работ [97] и [98] А. Х. Рахимова (представителя шко-
лы В. И. Арнольда) с 1990-х годов начало формироваться направление иссле-
дований [5], [73] – [76], [97] – [107] типичных – в смысле математической теории
катастроф – особенностей решений квазилинейных систем двух уравнений на
две неизвестные функции. К этому направлению относятся и основные объекты
исследования настоящей диссертации: типичные особенности решений системы
уравнений идеальной одномерной изоэнтропической (т.е. без учета обмена газа
теплотой с окружающей средой) газовой динамики, далее сокращенно называ-
емой системой уравнений ГД или уравнениями газовой динамики{︃

𝑢𝑡 + 𝑢𝑢𝑥 + 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(0.1)

где 𝑢(𝑡, 𝑥) – скорость течения, 𝜌(𝑡, 𝑥) ≥ 0 – плотность, 𝑡 – время, 𝑥 – единствен-
ная пространственная координата, 𝛼(𝜌) = 𝑝′(𝜌)

𝜌 > 0 – аналитическая положи-
тельная в окрестности 𝜌 = 𝜌* функция с разложением в ряд Тейлора

𝛼(𝜌) = 4 +
∞∑︁
𝑖=1

𝛼𝑗

𝑗!
(Δ𝜌)𝑗 (Δ𝜌 = 𝜌− 𝜌*),

𝑝(𝜌) – давление газа, и типичные особенности решений системы уравнений од-
номерной нелинейной геометрической оптики (далее используется сокращение
НГО) {︃

𝑢𝑡 + 𝑢𝑢𝑥 − 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0.
(0.2)
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При этом в пунктах 1.1 и 1.2 в ситуации «общего положения» 𝛼1 ̸= −3𝛼*
𝜌*

=

−12
𝜌*

. В пунктах 1.3.1 и 1.3.2 рассматривается газ Чаплыгина, нарушающий это
условие.

Посредством инвариантов Римана (где 𝑟 ̸= 𝑙, иначе 𝜌 = 0)

𝑟 = 𝑢+

∫︁ 𝜌

𝑠

𝑐(𝑠)

𝑠
d𝑠,

𝑙 = 𝑢−
∫︁ 𝜌

𝑠

𝑐(𝑠)

𝑠
d𝑠,

𝑐2 = 𝑝𝜌 = 𝜌𝛼(𝜌),

(0.3)

где 𝑐(𝜌) > 0 – скорость звука, система уравнений газовой динамики (0.1) пред-
ставляется [108, Глава 2, §2, пункт 7, стр. 167-168] как диагональная:{︃

𝑟𝑡 + (𝑟+𝑙
2 + 𝑐)𝑟𝑥 = 0,

𝑙𝑡 + (𝑟+𝑙
2 − 𝑐)𝑙𝑥 = 0.

(0.4)

Вкратце опишем схему исследования и формулировку задачи на примере
системы уравнений ГД (0.1) (и получаемой из нее диагональной системы (0.4))
и системы уравнений НГО (0.2) при 𝜌* ̸= 0.

В одномерной изоэнтропической газовой динамике для исследования реше-
ний уравнений широко применяется преобразование годографа, меняющее ро-
лями зависимые (скорость и плотность) и независимые (время и единственная
пространственная координата) переменные [108, Глава 1, §4, стр. 33-34], [109,
Лекция 16, пункт 1, стр. 156-164]. Из формул для производных преобразования
годографа

𝑢𝑥 = 𝐽𝑡𝜌, 𝑢𝑡 = −𝐽𝑥𝜌,
𝜌𝑥 = −𝐽𝑡𝑢, 𝜌𝑡 = 𝐽𝑥𝑢,

𝐽 = 𝑢𝑥𝜌𝑡 − 𝑢𝑡𝜌𝑥, 𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢, 𝐽 = 𝑗−1,

(0.5)

следует, что система (0.1) переходит в систему{︃
𝑥𝜌 = 𝑢𝑡𝜌 − 𝛼(𝜌)𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌,

а система (0.2) – в систему {︃
𝑥𝜌 = 𝑢𝑡𝜌 + 𝛼(𝜌)𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌.
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Рассматриваются их гладкие (здесь и далее гладкие – бесконечно диффе-
ренцируемые) решения 𝑡(𝑢, 𝜌), 𝑥(𝑢, 𝜌), чьи первые производные не обращаются
в нуль одновременно в конечной точке (𝑢*, 𝜌*; 𝑡*, 𝑥*). Тогда обращение в нуль
якобиана преобразования годографа 𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢 в этой конечной точке
(𝑢*, 𝜌*; 𝑡*, 𝑥*) сопровождается обращением в бесконечность первых производных
решений систем (0.1) и (0.2) – происходит градиентная катастрофа. При этом
теряет гладкость и взаимную однозначность отображение из плоскости годогра-
фа на плоскость скорости и плотности течения (𝑡, 𝑥) → (𝑢, 𝜌). В диссертации
анализируются именно такие сингулярности решений систем (0.1) и (0.2).

Формулы для производных преобразования годографа в терминах инвари-
антов Римана

𝑟𝑥 = 𝐽𝑡𝑙, 𝑟𝑡 = −𝐽𝑥𝑙,
𝑙𝑥 = −𝐽𝑡𝑟, 𝑙𝑡 = 𝐽𝑥𝑟,

𝐽 = 𝑟𝑥𝑙𝑡 − 𝑟𝑡𝑙𝑥, 𝑗 = 𝑥𝑟𝑡𝑙 − 𝑥𝑙𝑡𝑟, 𝐽 = 𝑗−1,

позволяют свести квазилинейную систему (0.4) на функции 𝑟(𝑡, 𝑥), 𝑙(𝑡, 𝑥) к ли-
нейной системе на функции 𝑡(𝑟, 𝑙), 𝑥(𝑟, 𝑙){︃

𝑥𝑙 = 𝑡𝑙(
𝑟+𝑙
2 + 𝑐),

𝑥𝑟 = 𝑡𝑟(
𝑟+𝑙
2 − 𝑐),

(0.6)

решение которой задает решение изначальной системы уравнений ГД в неявном
виде в терминах инвариантов Римана (0.3).

Подстановка правых частей линейной системы в якобиан 𝑗 позволяет выра-
зить его через производные только лишь функции 𝑡. Таким образом,

𝑗 = −2𝑐𝑡𝑟𝑡𝑙.

Так как 𝐽 = 𝑗−1, то в применяемом преобразовании годографа обращение
в нуль якобиана 𝑗 = −2𝑐𝑡𝑟𝑡𝑙 при конечности первых производных решений 𝑡𝑟,
𝑡𝑙, 𝑥𝑟, 𝑥𝑙 в конечной точке (𝑟*, 𝑙*; 𝑡*, 𝑥*) сопровождается обращением в бесконеч-
ность как минимум одной из первых производных решений исходной системы
𝑟𝑥, 𝑟𝑡, 𝑙𝑥, 𝑙𝑡 – происходит градиентная катастрофа. Значения же самих решений
в точке (𝑟*, 𝑙*; 𝑡*, 𝑥*) конечны.

При этом теряет гладкость (здесь и далее гладкость – бесконечная диффе-
ренцируемость) и взаимную однозначность отображение из плоскости годогра-
фа на плоскость инвариантов Римана (зависящих от искомых скорости и плот-
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ности течения). Следовательно, отображение локально перестает быть диффео-
морфным.

Тем самым нами ставится вопрос о поведении решений исходной системы
уравнений ГД (0.1) в малой окрестности точки градиентной катастрофы. Для
системы уравнений нелинейной геометрической оптики задача формулируется
практически аналогично, но без инвариантов Римана и, следовательно, без све-
дения системы уравнений НГО (0.2) к диагональной – в силу эллиптичности
системы инварианты Римана (0.3) комплекснозначны.

Описанная ситуация может быть [101, Введение, стр. 18] сформулирована
как задача анализа критических точек локально гладкой функции

𝐹 = 𝜌(𝑢𝑡−𝐵(𝑢, 𝜌)− 𝑥), (0.7)

зависящей от двух основных переменных 𝑢, 𝜌 и параметров 𝑡, 𝑥. Ее критические
точки определяются равенствами 𝐹𝑢 = 0, 𝐹𝜌 = 0.

Здесь, при анализе особенностей решений системы уравнений ГД, функция
𝐵(𝑢, 𝜌) – локально гладкое решение гиперболического уравнения

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = 𝛼(𝜌)𝐵𝑢𝑢, (0.8)

получаемого из линейной системы на 𝑡 и 𝑥 (0.6) невырожденными заменами
[110, Глава I, §2, 2.1, формула 2.6, стр. 18] (эквивалентными условиям 𝐹𝑢 = 0,
𝐹𝜌 = 0)

𝑡 = 𝐵𝑢,

𝑥 = 𝑢𝐵𝑢 −𝐵 − 𝜌𝐵𝜌

(0.9)

или, что оказывается удобнее в силу перехода к инвариантам Римана, 𝐵(𝑟, 𝑙) –
решение уравнения

8𝛼𝐵𝑟𝑙 =

(︂
𝛼𝜌 + 3

𝛼

𝜌

)︂√︂
𝜌

𝛼
(𝐵𝑟 −𝐵𝑙) (0.10)

или
4𝑐𝐵𝑟𝑙 = (𝑐𝑟 − 𝑐𝑙 + 1)(𝐵𝑟 −𝐵𝑙). (0.11)

В основном тексте показано, что в случае газа Чаплыгина 𝑐𝑟 = −𝑐𝑙 = −1
2 и

уравнение (0.11) сводится к волновому уравнению 𝐵𝑟𝑙 = 0.
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Для анализа особенностей решений системы уравнений НГО используется
та же функция (0.7), где 𝐵(𝑢, 𝜌) – локально аналитическое решение эллиптиче-
ского уравнения

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = −𝛼(𝜌)𝐵𝑢𝑢. (0.12)

Непустота множества локально бесконечно дифференцируемых решений
уравнения (0.10) обоснована в Лемме 1.1. основного текста при помощи тео-
ремы Бореля и известного результата о разрешимости задачи Коши для линей-
ного гиперболического уравнения с бесконечно дифференцируемыми началь-
ными данными (Р. Курант «Уравнения с частными производными». М.: Мир,
1962, Глава V, §6, п.1–3). При 𝜌* ̸= 0 существование локально аналитических
решений обосновано при помощи теоремы Коши-Ковалевской. В Главе 3 для
обоснования непустоты множества решений (0.12) в силу результата Пикара
необходимо рассматривать лишь класс аналитических решений, существование
которых следует из теоремы Коши-Ковалевской.

Задача исследования вырожденных критических точек функции (0.7), ко-
торым соответствует точка ГК, решается с помощью результатов и методов
математической теории катастроф.

Один из фундаментальных результатов теории особенностей дифференци-
руемых отображений заключается в том, что существует [80, Часть I, Глава 2,
пункт 4], [81, Часть IV, Глава 21, пункт 5] конечный список нормальных канони-
ческих форм, к которым сводится локально гладкая (аналитическая) функция,
зависящая как от основных переменных, так и от так называемых управляющих
параметров в окрестности критической точки конечной кратности 𝜇 ∈ N при
𝜇 ∈ [2, 5] (далее используется 𝐴𝐷𝐸-классификация Арнольда):

𝐴±
2 : ±𝑥3 + 𝑘2𝑥+ 𝑘1,

𝐴±
3 : ±𝑥4 + 𝑘3𝑥

2 + 𝑘2𝑥+ 𝑘1,

𝐴±
4 : ±𝑥5 + 𝑘4𝑥

3 + 𝑘3𝑥
2 + 𝑘2𝑥+ 𝑘1,

𝐴±
5 : ±𝑥6 + 𝑘5𝑥

5 + 𝑘4𝑥
4 + 𝑘3𝑥

2 + 𝑘2𝑥+ 𝑘1,

𝐷−
4 : 𝑥2𝑦 − 𝑦3 + 𝑘4𝑦

2 + 𝑘3𝑦 + 𝑘2𝑥+ 𝑘1,

𝐷+
4 : 𝑥2𝑦 + 𝑦3 + 𝑘4𝑦

2 + 𝑘3𝑦 + 𝑘2𝑥+ 𝑘1,

𝐷±
5 : 𝑥2 ± 𝑦4 + 𝑘5𝑦

3 + 𝑘4𝑦
3 + 𝑘3𝑦 + 𝑘2𝑥+ 𝑘1.

Значения этих многочленов при всех 𝑘𝑖 = 0 называются генотипами соот-
ветствующих особенностей [93, §14]. Далее, если не оговорено противное, нами
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опускается верхний индекс «плюс»: подразумевается, что 𝐴𝑘 это 𝐴+
𝑘 . Также от-

метим, что линейными преобразованиями генотип особенности 𝐷+
4 может быть

сведен к виду 𝑢3+ 𝑣3, в котором эту катастрофу исследовал Рене Том. В Главе
1 используется данный вид.

В настоящей работе исследованы следующие особенности:

• 𝐴2 – особенность типа складки;

• 𝐴3 – особенность типа сборки;

• 𝐷+
4 – особенность типа гиперболической омбилики;

• 𝐷−
4 – особенность типа эллиптической омбилики.

Подчеркнем: нами рассматривается подмножество множества всех глад-
ких (аналитических) функций 𝐹 (𝑢, 𝜌; 𝑡, 𝑥), элементы которого задаются фор-
мулой (0.7) и гладкими (или аналитическими) решениями уравнения (0.8)
(или уравнения (0.12)). На всем множестве гладких (аналитических) функций
𝐹 (𝑢, 𝜌; 𝑡, 𝑥) функциям 𝑢(𝑡, 𝑥), 𝜌(𝑡, 𝑥), определяемым из анализа критических то-
чек 𝐹 (𝑢, 𝜌; 𝑡, 𝑥), должны быть присущи только особенности типа складки (𝐴2)
и сборки (𝐴3). По той причине, что изучается именно описанное подмножество,
оказывается, что решения систем (0.1) и (0.2) наряду с особенностями складки
(𝐴2) и сборки (𝐴3) имеют также типичные особенности сечения гиперболиче-
ской (𝐷+

4 ) и эллиптической (𝐷−
4 ) омбилики соответственно. Для этих сечений 𝑘3

является функцией двух других управляющих параметров, т.е. 𝑘3 = 𝑘3(𝑘1, 𝑘2).
Замечание 0.1. В работе А. Х. Рахимова [98] без анализа вырождений кри-

тических точек потенциальной функции были описаны типичные особенности
решений квазилинейной гиперболической системы более общего, чем (1.1) ви-
да при соблюдении условия более сильного, чем условие сильной нелинейности
(описание серии особенностей при соблюдении именно условия сильной нелиней-
ности дано в работе [5]). А. Х. Рахимов описал особенности складки (𝐴2), сборки
(𝐴3) и особенность 𝐶2

2 , локально определяемую корнями системы уравнений

𝑣21 = 𝑧1 + 𝑧2𝑣2,

𝑣22 = 𝑧1𝑣1 + 𝑧2.
(0.13)

.
В диссертационной работе подтвержден вывод о типичности особенностей

𝐴2 и 𝐴3 посредством изучения потенциальной функции, а также была описана
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типичная особенность 𝐷+
4 : было показано, что в окрестности точки ГК решения

системы ГД (1.1) локально выражаются через решения системы

𝑦21 − 𝑥3(𝑥1, 𝑥2)𝑦2 − 𝑥1 = 0,

𝑦22 − 𝑥3(𝑥1, 𝑥2)𝑦1 − 𝑥2 = 0,
(0.14)

определяющей критические точки кубической функции

𝐻(𝑦1, 𝑦2;𝑥1, 𝑥2) =
𝑦31 + 𝑦32

3
− 𝑥3(𝑥1, 𝑥2)𝑦1𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

основных переменных 𝑦1, 𝑦2 и двух управляющих параметров 𝑥1, 𝑥2. По-
видимому, с помощью локальных диффеоморфизмов решения системы (0.13)
возможно выразить через решения (0.14), но автору не удалось ни доказать это
строго, ни обнаружить такое доказательство в литературе.

По существу, описание типичных особенностей решений квазилинейных си-
стем дифференциальных уравнений сводится к их заданию в терминах корней
канонических уравнений теории катастроф, которые в главном порядке опре-
деляют вырождения критических точек локально гладких функций, зависящих
дополнительно от управляющих параметров – в данном случае, двух независи-
мых переменных решений соответствующих квазилинейных систем дифферен-
циальных уравнений. Анализ корней канонических уравнений позволяет делать
выводы о поведении решений исходных квазилинейных систем.

В рамках используемого подхода решение гиперболического уравнения (0.10)
(получаемого из системы уравнений ГД (0.1)) на функцию 𝐵(𝑟, 𝑙) ищется в виде
степенного ряда

𝐵 =
∑︁
𝑖+𝑗≥0

𝑏𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗,

а решение эллиптического уравнения (0.12) (получаемого из системы уравнений
НГО (0.2)) на функцию 𝐵(𝑢, 𝜌) – в виде степенного ряда

𝐵 =
∑︁
𝑖+𝑗≥0

𝑏𝑖𝑗(Δ𝑢)
𝑖(Δ𝜌)𝑗.

Тогда в гиперболическом случае условие обращения якобиана преобразова-
ния годографа в нуль в конечной точке (𝑟*, 𝑙*; 𝑡*, 𝑥*) принимает вид

𝑗(𝑟*, 𝑙*) = −4
√
𝜌*(2𝑏20 + 𝑏11)(𝑏11 + 2𝑏02) = 0.
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С точки зрения идеологии теории катастроф [80] в поставленной задаче в
ситуации «общего положения» возможно наложить не более двух ограничений
на коэффициенты разложения решения 𝐵(𝑟, 𝑙) (не следующих из факта удовле-
творения функции 𝐵(𝑟, 𝑙) уравнению (0.10)), поскольку функция 𝐵(𝑟, 𝑙) зависит
от двух переменных, которые, в свою очередь, при рассмотрении критических
точек функции (0.7) становятся функциями ровно двух управляющих парамет-
ров 𝑡 и 𝑥. Тем самым при 𝜌* ̸= 0 возможны три различные ситуации наложения
ограничений на коэффициенты разложения решения:

1) обращается в нуль только первая скобка, т.е. на коэффициенты наклады-
вается одно ограничение 2𝑏20 + 𝑏11 = 0;

2) либо только вторая скобка, т.е. на коэффициенты накладывается одно
ограничение 𝑏11 + 2𝑏02 = 0;

3) либо обе одновременно, т.е. на коэффициенты накладываются оба упомя-
нутых ограничения: 𝑏11 = −2𝑏20 = −2𝑏02.

Им соответствуют три различные точки градиентной катастрофы, в окрест-
ности которых для решений системы уравнений ГД (0.1) типичны особенности
складки, сборки (при одном ограничении) и сечения гиперболической омбилики
(при двух ограничениях).

В эллиптическом случае условие обращения якобиана преобразования годо-
графа в нуль в конечной точке (𝑢*, 𝜌*; 𝑡*, 𝑥*) принимает вид

𝑗(𝑢*, 𝜌*) = −𝜌*𝑏211 − 16𝑏220 = 0,

то есть при 𝜌* ̸= 0 реализуется лишь одна возможность: 𝑏20 = 𝑏11 = 0. В окрест-
ности точки градиентной катастрофы для решений системы уравнений НГО
(0.2) типична особенность сечения эллиптической омбилики.

Случаю 𝜌* = 0 отвечают так называемые «провальные особенности», кото-
рым посвящена Глава 2.

Функция 𝐹 (0.7) зависит от скорости и плотности течения (либо от инва-
риантов Римана (0.3), зависящих от скорости и плотности течения) как от ос-
новных переменных, а от времени и пространственной координаты как от до-
полнительных переменных (в терминологии теории катастроф – управляющих
параметров). Критические по основным переменным точки этой функции – суть
решения линейной системы на 𝑡 и 𝑥 (0.6), получаемой из исходной после приме-
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нения преобразования годографа в силу справедливости равенств (0.9)

𝐹𝑢 ≡ 𝑡−𝐵𝑢 = 0,

𝐹𝜌 ≡ 𝑢𝑡−𝐵 − 𝑥− 𝜌𝐵𝜌 = 0.

В итоге анализ критических точек локально гладкой (аналитической) функ-
ции 𝐹 (0.7) позволяет решить поставленную задачу о поведении решений систе-
мы уравнений ГД (НГО) в окрестности точки градиентной катастрофы.

Описанная выше задача может быть эффективно решена с помощью резуль-
татов и методов теории особенностей дифференцируемых отображений: после
конечной серии невырожденных обратимых преобразований функция 𝐹 приво-
дится к определенной нормальной форме в каждой из ситуаций обращения в
нуль якобиана преобразования годографа.

Тогда решения систем уравнений с частными производными (0.1) и (0.2)
в окрестности соответствующей рассматриваемой ситуации точки градиентной
катастрофы выражаются через корни канонических уравнений теории ката-
строф, получаемых из поиска критических точек функции 𝐹 .

Именно таким, в определенном смысле естественным для математической
теории катастроф, образом были формально описаны типичные особенности
типа сборки при стремлении плотности газа к нулю для, соответственно, эл-
липтического (НГО) [73] и гиперболического (ГД) [76] варианта квазилинейной
системы, то есть локально решения указанных систем задаются решениями ка-
нонического кубического уравнения вида

𝑆3 + 𝑝𝑆 + 𝑞 = 0,

где 𝑝 и 𝑞 зависят от 𝑡 и 𝑥, а 𝑆 зависит от 𝑢, 𝜌, 𝑡 и 𝑥.
Уже не формально, а в классе бесконечно дифференцируемых функций было

отмечено [103] наследование (совпадение с точностью до диффеморфизмов ка-
нонических форм уравнений) особенностей решений газодинамической системы
от особенностей решений волнового уравнения в образе годографа (к которому
сводится линеаризация системы уравнений идеальной одномерной газовой ди-
намики). Наследуются особенности, соответственно, складки, сборки и сечения
гиперболической омбилики:

𝑆2 + 𝑞 = 0,

𝑆3 + 𝑝𝑆 + 𝑞 = 0,

𝑆2
1 = 𝑝3(𝑝1, 𝑝2)𝑆2 + 𝑝2, 𝑆2

2 = 𝑝3(𝑝1, 𝑝2)𝑆1 + 𝑝1,
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где 𝑝𝑖 зависят от 𝑡 и 𝑥, а 𝑆𝑖 зависят от 𝑢, 𝜌, 𝑡 и 𝑥, 𝑖 = 1, 2. Как уже было отмечено
выше, список трех особенностей решений квазилинейной системы более общего,
чем (0.1) вида был получен в [98] А. Х. Рахимовым. При этом третья особен-
ность была представлена в другой форме, что более подробно комментируется
в пункте 1.1. основного текста.

Изучены [105] ранее не рассматриваемые частные случаи Чаплыгина

𝑝 = 𝑝0 −
𝑚2

𝜌

и Бехерта-Станюковича

𝑝 =
𝑎2

3
𝜌3,

где 𝑚 > 0 – постоянная положительная масса газа, 𝑎 > 0 и 𝑝0 > 0 – некоторые
положительные постоянные. В работе [98] при изучении системы (0.4) они были
исключены как нарушающие, соответственно, условие сильной нелинейности(︂

𝑟 + 𝑙

2
+ 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑙

̸= 0

и еще более сильное условие(︂
𝑟 + 𝑙

2
+ 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
+ 𝑐

)︂
𝑙

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑙

̸= 0.

Кроме того, как будет показано в основном тексте, случай Чаплыгина есте-
ственным образом возникает при нарушении условия 𝛼1 ̸= −3𝛼*

𝜌*
= −12

𝜌*
, постав-

ленного в работе [74].
Для случая Чаплыгина описаны особенности складки, сечения сборки и се-

чения гиперболической омбилики. Для случая Бехерта-Станюковича описана
особенность сечения гиперболической омбилики.

Отметим: условие сильной нелинейности нарушает только газ Чаплыгина.
Уже в классе аналитических функций для эллиптической системы уравне-

ний НГО описана омбилическая особенность решений

𝑆2
1 − 𝑆2

2 = 𝑝1 + 2𝑝3(𝑝1, 𝑝2)𝑆2,

2𝑆1𝑆2 = 𝑝2,

отмечено наследование особенности от решения уравнения Лапласа [106] и уточ-
нен результат работы [100].
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Полученные результаты и ранее установленная связь между зарождением
ударных волн в течении газа (или опрокидыванием волн на поверхности жид-
кости) и катастрофой типа сборки позволяют считать газовую динамику и гид-
родинамику естественным полем приложения теории особенностей.

Оптика – еще одна область физики, в которой возможно применить резуль-
таты теории особенностей в изучении дифракционных катастроф, радуги, мер-
цания света на водной ряби, самофокусировки [112] – [122]. Сингулярности си-
стемы уравнений нелинейной геометрической оптики изучались, например, А.
В. Гуревичем и А. Б. Шварцбургом [123] – [125], А. В. Талановым [117] и С. Л.
Ждановым и Б. А. Трубниковым [126].

Первые значимые результаты в изучении особенностей решений системы
нелинейной геометрической оптики именно с точки зрения теории катастроф
при 𝜌* ̸= 0 относятся к работам Б. А. Дубровина и его соавторов Т. Гравы и
К. Клейна. Так, в [100] формально и при учете лишь начальных отрезков сте-
пенных рядов описана омбилическая особенность эллиптического типа решений
системы одномерных уравнений нелинейной геометрической оптики. Впослед-
ствии этот результат автором настоящей диссертации был исправлен и уточнен
[106] именно в процессе анализа критических точек локально аналитической
функции, подобно тому, как это было сделано в [103]. Показано, что из-за учета
лишь начальных отрезков степенных рядов получается неверный вывод по части
описания управляющих параметров канонической формы: Б. А. Дубровиным,
Т. Гравой и К. Клейном утверждалось, что один из управляющих параметров
тождественно равен нулю. В [106] было показано отличие этого коэффициента
от нуля даже при рассмотрении приводимого в [100] примера.

Ранее особенность решений системы (0.2) при 𝜌* = 0 исследовалась В. Р.
Кудашевым и Б. И. Сулеймановым в работе [73] также лишь на уровне фор-
мальных решений.

По итогу написанного можно утверждать, что методы теории особенностей
дифференцируемых отображений находят весьма обширное применение в изу-
чении решений уравнений с частными производными в окрестности конечных
точек градиентных катастроф. Труды автора и его соавторов [76], [103], [104],
[105], [106] направлены на то, чтобы завершить программу описания соответ-
ствующих типичных особенностей решений одномерных однородных уравнений
ГД и НГО в классе бесконечно дифференцируемых или аналитических функ-
ций.
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Один из актуальных фронтов будущих работ – описание особенностей реше-
ния пространственно двумерного волнового уравнения и трехмерного уравнения
Лапласа. Следует проверить, что у многомерной квазилинейной системы суще-
ствуют решения с типичной особенностью, генотип [93, §14, стр. 105] которой
совпадает с генотипом соответствующей типичной особенности решений линеа-
ризации.

В пространственно двумерном случае на данный момент на уровне фор-
мальных преобразований описана особенность типа складки решений системы
уравнений мелкой воды [102]. В изучении двумерных моделей газовой динамики
или нелинейной геометрической оптики видится более методически удобным ис-
пользовать преобразование Лежандра вместо преобразования годографа. Полу-
чаемые образы уравнений уже не будут линейными, что, впрочем, по-видимому,
не должно стать принципиальной помехой для исследования.

Потенциал аппарата теории катастроф не исчерпан и для других одномер-
ных моделей типа газовой динамики. Например, квазилинейная система с пра-
выми частями, зависящими от плотности газа, может применяться во многих
моделях гемодинамики [127], некоторые из которых так же допускают зарож-
дение ударных волн при гладкости начальных данных [69], [128].

Интерес представляют системы с учетом диссипации и дисперсии, в которые
входят вторые и третьи производные скорости по пространственной координате.

Целью исследования является описание решений системы одномерных
уравнений изоэнтропической газовой динамики (0.1) и решений системы одно-
мерных уравнений нелинейной геометрической оптики (0.2) в окрестности ко-
нечной точки градиентной катастрофы через решения канонических уравнений
теории особенностей дифференцируемых отображений, получаемых в процес-
се анализа критических точек локально гладких (при изучении системы (0.2)
– аналитических) функций вида (0.7), зависящих от параметров. В настоящей
диссертации исследуются именно типичные с точки зрения теории катастроф
особенности решений.

Задачи исследования:
1. Описать омбилическую особенность решений системы уравнений идеаль-

ной одномерной газовой динамики.
2. Показать совпадение с точностью до растяжений генотипов всех трех осо-

бенностей решений линейного одномерного однородного волнового уравнения в
образе годографа (к которому сводится линеаризация системы уравнений иде-
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альной одномерной газовой динамики) и генотипов всех трех особенностей ре-
шений системы уравнений идеальной одномерной газовой динамики.

3. Описать особенность типа сечения сборки решений системы уравнений
идеальной одномерной газовой динамики в случае Чаплыгина, нарушающем
условие сильной нелинейности. Показать специфику данного случая.

4. Описать омбилическую особенность решений системы уравнений идеаль-
ной одномерной газовой динамики в случае Бехерта-Станюковича, нарушаю-
щем условие еще более сильное, чем условие сильной нелинейности. Показать
специфику данного случая.

5. Описать особенность типа сборки решений системы уравнений идеальной
одномерной газовой динамики и системы уравнений нелинейной геометрической
оптики при стремлении плотности газа (падении интенсивности) к нулю.

6. Описать омбилическую особенность решений системы уравнений нелиней-
ной геометрической оптики. Показать совпадение с точностью до растяжений
генотипа особенности решения уравнения Лапласа и генотипа особенности ре-
шения системы уравнений нелинейной геометрической оптики.

Научная новизна работы
Результаты работы являются новыми и были получены в 2019–2024 годах.
В окрестности типичной точки градиентной катастрофы описаны асимпто-

тики решений уравнений идеальной одномерной газовой динамики (гипербо-
лическая система) и решений системы уравнений нелинейной геометрической
оптики (эллиптическая система) для локально бесконечно дифференцируемых
(или, в случае системы уравнений нелинейной геометрической оптики, анали-
тических) функций давления (интенсивности) и при различных условиях обра-
щения якобиана в нуль.

Строго обоснованы формальные результаты предыдущих работ, дополнены
два результата предшественников: впервые описана особенность типа сборки
для газа Чаплыгина (оставленного за рамками анализа в работе В. Р. Куда-
шева и Б. И. Сулейманова 2001 г.) и уточнен вид сечения нормальной формы
особенности типа эллиптической омбилики решений системы уравнений нели-
нейной геометрической оптики (этим уточняется известная работа [100] Б. А.
Дубровина, Т. Гравы, К. Клейна 2009 г.).

Замечено совпадение с точностью до растяжений генотипов особенностей
складки, сборки и сечения гиперболической омбилики решений системы урав-
нений одномерной газовой динамики и генотипов особенностей складки, сборки
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и сечения гиперболической омбилики решений линейного волнового уравнения
в образе годографа, то есть явление наследования всех типичных особенностей
в гиперболическом случае.

Замечено совпадение с точностью до растяжений генотипа особенности эл-
липтической омбилики решения системы уравнений нелинейной геометрической
оптики и генотипа особенности эллиптической омбилики решения уравнения
Лапласа, то есть явление наследования особенностей в эллиптическом случае.

Теоретическая и практическая значимость
Работа носит теоретический характер и обладает теоретической значимо-

стью. Изучены решения квазилинейных систем уравнений первого порядка в
окрестности типичной конечной точки градиентной катастрофы. Представлен
конструктивный метод проведения подобного исследования на основе методов
теории особенностей с использованием преобразований в классе локально бес-
конечно дифференцируемых (для гиперболической системы уравнений ГД) или
аналитических (для эллиптической системы уравнений НГО) функций.

Методология и методы исследования
В работе используются классические результаты и методы теории особенно-

стей дифференцируемых отображений и теории уравнений с частными произ-
водными.

Основные положения, выносимые на защиту
Все задачи решены математически строго с применением конечной последо-

вательности бесконечно дифференцируемых (при исследовании эллиптической
системы уравнений НГО – аналитических) преобразований, а не посредством
использования формальных степенных рядов и их усечений, как это делалось в
значительной части более ранних работ предшественников (исключениями яв-
ляются, например, [5], [97], [98]). Все выносимые на защиту положения получены
автором лично.

1. В окрестности типичной омбилической точки градиентной катастрофы
(соответствующей ситуации с наложением двух ограничений на коэффициен-
ты разложения решения решения уравнения (0.10)) описаны решения системы
уравнений идеальной одномерной газовой динамики в терминах решений кано-
нических уравнений сечения гиперболической омбилики.

2. Показано, что с точностью до растяжений генотипы всех трех типичных
особенностей решений линейного одномерного однородного волнового уравне-
ния (к которому сводится линеаризация системы уравнений идеальной одно-
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мерной газовой динамики) совпадают с генотипами всех трех типичных особен-
ностей решений системы уравнений идеальной одномерной газовой динамики –
тем самым показано, что происходит наследование особенностей.

3. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения (0.10)
при 𝑝 = 𝑝0 − 𝑚2

𝜌 ) решение системы уравнений идеальной одномерной газовой
динамики в случае Чаплыгина (нарушающего условие сильной нелинейности)
описано в терминах решений канонического уравнения сечения сборки. Допол-
нен результат [74] Б. И. Сулейманова и В. Р. Кудашева 2001 г., в котором газ
Чаплыгина не рассматривался. Показано, что в данном случае, в отличие от
более общего, происходит наследование не только генотипа, но и всей канониче-
ской нормальной формы катастроф 𝐴2, 𝐴3, типичных для решений волнового
уравнения.

4. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения
(0.10) при 𝑝 = 𝑎2

3 𝜌
3) описаны решения системы уравнений идеальной одномерной

газовой динамики в случае Бехерта-Станюковича (нарушающего условие более
сильное, чем условие сильной нелинейности) в терминах решений канонических
уравнений сечения гиперболической омбилики, в котором тождественно равен
нулю один из управляющих параметров канонической нормальной формы. В
этом заключается специфика данного случая.

5. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения (0.10))
решение системы уравнений идеальной одномерной газовой динамики (и, при
замене 𝜌→ −𝜌, решение системы НГО) описано в терминах решений канониче-
ского уравнения сборки при стремлении плотности газа к нулю (в случае НГО
– падении интенсивности).

6. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения
(0.12)) описаны решения системы уравнений нелинейной геометрической оптики
в терминах решений канонических уравнений сечения эллиптической омбили-
ки. Показано, что с точностью до растяжений генотип омбилической особенно-
сти решения уравнения Лапласа совпадает с генотипом омбилической особен-
ности решения системы уравнений нелинейной геометрической оптики – тем са-
мым происходит наследование особенности. Дополнительно исправлен (по части
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неравенства нулю одного из управляющих параметров) и выполнен не на фор-
мальном уровне, а на уровне сходящихся рядов Тейлора аналитических функ-
ций, результат [100] Б. А. Дубровина, Т. Гравы, К. Клейна 2009 г.

Тем самым работа почти завершает исследования типичных (с точки зре-
ния математической теории катастроф) особенностей решений одномерных од-
нородных систем уравнений газовой динамики и нелинейной геометрической оп-
тики в случае конечной точки градиентной катастрофы (т.е. при ограниченных
значениях компонент). Например, во-первых, остается обоснование непустоты
множества гладких решений при описании провальной особенности сборки для
случая произвольного аналитического в окрестности нуля давления (интенсив-
ности). Эта задача на момент написания диссертации находится в процессе ре-
шения. Во-вторых, не решена проблема описания точки типичной градиентной
катастрофы, происходящей при трансформации слабых разрывов решений ги-
перболического варианта системы в их сильные разрывы. Эта задача в работе
[75] была решена на формальном уровне строгости.

Степень достоверности и апробация результатов
Достоверность результатов обеспечена строгим доказательством теорем в

соответствии с фундаментальными результатами теории особенностей диффе-
ренцируемых отображений и теории уравнений с частными производными.

Основные результаты диссертационной работы докладывались и обсужда-
лись на заседаниях общегородского семинара им. А.М. Ильина по дифферен-
циальным уравнениям математической физики Института математики с вы-
числительным центром УФИЦ РАН (руководители: д.ф.-м.н., профессор Л.А.
Калякин и д.ф.-м.н., профессор В.Ю. Новокшенов; г. Уфа, 2021, 2022, 2025).

Результаты были так же представлены в ходе выступлений на следующих
конференциях: Всероссийская конференция школа с международным участи-
ем «Электронные, спиновые и квантовые процессы в молекулярных и кри-
сталлических системах» (г. Уфа, 2019); Международная научная конференция
«Уфимская осенняя математическая школа» (г. Уфа, 2019, 2020, 2021, 2022,
2023); Студенческая школа-конференция «Математическая весна» (г. Нижний
Новгород, 2020, 2021); Всероссийская научная конференция МФТИ (г. Москва,
2021); Международная конференция «Теория функций, теория операторов и
квантовая теория информации» (г. Уфа, 2020); Международная молодежная
школа-конференция «Фундаментальная математика и ее приложения в есте-
ствознании» (г. Уфа, 2020); Международная конференция студентов, аспиран-
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тов и молодых ученых «Ломоносов» (г. Москва, 2020, 2021, 2022, 2023); Кон-
ференция международных математических центров мирового уровня (г. Со-
чи, 2021); Школа для молодых механиков и математиков SYMM (г. Москва,
2021, 2022, 2024); Международный дистанционный воркшоп «Online workshop on
PDEs in many body systems» (г. Прага, Чехия, 2021); Международная конферен-
ция «Комплексный анализ, математическая физика и нелинейные уравнения»
(оз. Банное, 2021, 2022); Международная конференция «Nonlinear Dynamics
and Integrability» (г. Ярославль, 2022); Международная конференция «O.A.
Ladyzhenskaya centennial conference on PDEs» (г. Санкт-Петербург, 2022).

Публикации
По результатам проведенных исследований опубликованы 5 работ в издани-

ях из перечня ВАК РФ, индексируемых в Web of Science и Scopus и входящих
в РИНЦ и 20 тезисов в сборниках по материалам докладов на конференциях.

Личный вклад автора
Выносимые на защиту положения получены автором самостоятельно. Зада-

ча 5 поставлена научным руководителем Б. И. Сулеймановым. Задачи 1, 2, 6
были поставлены в ходе обсуждения с научным руководителем. Задачи 3 и 4 по-
ставлены автором перед собой самостоятельно. Анализ полученных результатов
и написание общих статей осуществлялись совместно с научным руководителем.

Работа [105] выполнена полностью самостоятельно. В совместных работах
[76], [103], [104], [106] автором проведены ключевые для описания особенностей
выкладки и рассуждения.

Вклад соавторов в совместные работы следующий.
В работе [76] научным руководителем Б. И. Сулеймановым отмечен «эталон-

ный» характер одного из найденных автором частных решений. Этому решению
посвящен пункт диссертации 2.1.1., служащий наглядным примером получен-
ного результата.

В работе [103] научным руководителем доказана лемма о гладкости решений
линейного уравнения (Лемма 1.1. Главы 1), получаемого из исходной системы
после применения преобразования годографа и невырожденных замен. Лемма
приведена для обоснования гладкости применяемых далее преобразований.

В работе [104] научным руководителем замечено, что полученный результат
применим как для гиперболического, так и для эллиптического варианта урав-
нений. Соавтором С. Н. Мелиховым в Теореме 2.1 доказана необходимость.

В работе [106] научным руководителем со ссылкой на [111] обоснована необ-

20



ходимость аналитичности решений линейного уравнения, получаемого из образа
годографа исходной системы после невырожденных преобразований.

Объем и структура диссертации
Диссертационная работа объемом 118 страниц состоит из введения, трех

глав, заключения и списка литературы из 141 наименования. Работа содержит 4
рисунка. Принята двойная нумерация формул, замечаний, лемм и теорем: пер-
вое число соответствует номеру главы, второе – номеру формулы, замечания,
леммы и теоремы в главе.

Во введении показана актуальность темы работы, сформулированы цель и
задачи исследования, приведены результаты работы с обоснованием их досто-
верности, указанием их научной новизны и практической значимости.

В первой главе описаны типичные с точки зрения теории катастроф особен-
ности решений квазилинейной системы уравнений идеальной одномерной га-
зовой динамики. В первом подпункте описана типичная особенность сечения
гиперболической омбилики для всех случаев бесконечно дифференцируемого
давления газа, кроме течений газа Чаплыгина и Бехерта-Станюковича, особен-
ностям решений которых посвящен третий подпункт. Второй подпункт демон-
стрирует наследование типичных особенностей решений газодинамической си-
стемы от типичных особенностей решений линейного однородного одномерного
волнового уравнения с постоянными коэффициентами, к которому сводится ли-
неаризация системы уравнений идеальной одномерной газовой динамики.

Во второй главе описана типичная особенность сборки решений системы
уравнений газовой динамики при стремлении плотности (или, в частном случае
уравнений мелкой воды, толщины слоя жидкости) к нулю. Во втором подпункте
обоснованы формальные провальные асимптотики для гиперболического и эл-
липтического варианта системы при аналитичности начальных данных образа
годографа данных уравнений в окрестности точки провального самообострения.

В третьей главе описана единственная типичная особенность решений ом-
билического типа для эллиптической квазилинейной системы нелинейной гео-
метрической оптики. Особенность описана посредством применения конечной
последовательности преобразований в классе аналитических функций.

В заключении сформулированы основные результаты, полученные в ходе
исследований.
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1 Особенности решений
гиперболической системы уравнений

одномерной газовой динамики

1.1 Особенность сечения катастрофы гиперболической
омбилики 𝐷+

4

На предмет типичных (с точки зрения теории катастроф) особенностей реше-
ний исследуется квазилинейная система уравнений с частными производными
первого порядка {︃

𝑢𝑡 + 𝑢𝑢𝑥 + 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(1.1)

моделирующая одномерное течение газа и жидкости. Здесь 𝑡 – время, 𝑥 ∈ R –
пространственная координата, 𝑢(𝑡, 𝑥) – скорость потока, 𝜌(𝑡, 𝑥) > 0 – плотность
газа (или толщина слоя жидкости),

𝛼(𝜌) =
𝑝′(𝜌)

𝜌
> 0

есть локально аналитическая (в окрестности точки 𝜌*, смысл которой проясня-
ется далее) функция, где 𝑝(𝜌) – давление. В этом и следующем подпунктах без
ограничения общности (в силу возможности применить растяжение) считается,
что 𝛼(𝜌*) = 𝛼* = 4 и что функция 𝛼(𝜌) раскладывается в ряд Тейлора

𝛼(𝜌) = 4 +
∞∑︁
𝑖=1

𝛼𝑗

𝑗!
(Δ𝜌)𝑗 (Δ𝜌 = 𝜌− 𝜌*). (1.2)

Здесь 𝜌* > 0 – значение плотности в конечной точке 𝑡*, 𝑥* градиентной
катастрофы, в которой первые производные решений (1.1) обращаются в беско-
нечность, а сами решения – конечны. В этом пункте рассматривается ситуация
«общего положения», в которой

𝛼1 ̸= −3𝛼*

𝜌*
= −12

𝜌*
. (1.3)
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В пункте 1.3 это условие нарушается для газа Чаплыгина, который иссле-
дуется отдельно. В случае Чаплыгина особенность решения обладает своей спе-
цификой.

За счет возможных растяжений постоянную 𝛼(𝜌*) можно без ограничения
общности считать любым положительным числом. Нами значение 𝛼(𝜌*) = 4

выбрано по той причине, что случай постоянной функции 𝛼(𝜌) ≡ 4 соответ-
ствует квазиклассическому приближению к решениям интегрируемого мето-
дом обратной задачи рассеяния НУШ, которое чаще всего записывают в виде
−𝑖𝜀Ψ𝑡 = 𝜀2Ψ𝑥𝑥 − 2|Ψ|2Ψ. Оно получается после перехода к (1.1) от нелинейного
уравнения Шрёдингера

−𝑖𝜀Ψ𝑡 = 𝜀2Ψ𝑥𝑥 +𝐾(|Ψ|2)Ψ (𝛼(𝜌) = −2𝐾 ′(𝜌), 0 < 𝜀 << 1)

при помощи анзаца
Ψ =

√
𝜌 exp(𝑖

𝜙

𝜀
),

дальнейшего разбиения вещественной и мнимой частей{︃
𝜌𝑡 + 2(𝜌𝜙𝑥)𝑥 = 0,

𝜙𝑡 + (𝜙𝑥)
2 −𝐾(𝜌) = 𝜀2

(
√
𝜌)𝑥𝑥√
𝜌 ,

дифференцирования второго уравнения по 𝑥, замены

𝑢 = 2𝜙𝑥,

устремления 𝜀→ 0 в получаемой системе{︃
𝜌𝑡 + (𝜌𝑢)𝑥 = 0,

𝑢𝑡 + 𝑢𝑢𝑥 − 2𝐾 ′(𝜌)𝜌𝑥 = 2𝜀2
(︁√

𝜌
𝑥𝑥√
𝜌

)︁
𝑥

и обозначении −2𝐾 ′(𝜌) = 𝛼(𝜌).
Посредством инвариантов Римана (где 𝑟 ̸= 𝑙, иначе 𝜌 = 0)

𝑟 = 𝑢+

∫︁ 𝜌

𝑠

𝑐(𝑠)

𝑠
d𝑠,

𝑙 = 𝑢−
∫︁ 𝜌

𝑠

𝑐(𝑠)

𝑠
d𝑠,

𝑐2 = 𝑝𝜌 = 𝜌𝛼(𝜌),

(1.4)
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где 𝑐(𝜌) > 0 – скорость звука, система (1.1) представляется [108, Глава 2, §2,
пункт 7, стр. 167-168] как диагональная{︃

𝑟𝑡 + (𝑟+𝑙
2 + 𝑐)𝑟𝑥 = 0,

𝑙𝑡 + (𝑟+𝑙
2 − 𝑐)𝑙𝑥 = 0.

(1.5)

Политропным течениям соответствует (например, [108, Глава 2, §1, пункт 4,
стр. 144]) давление вида

𝑝 =
𝑎2

𝑛
𝜌𝑛, 𝑛 ̸= 0,

где 𝑛 – показатель адиабаты.
Случаи 𝑛 = −1 (случай Чаплыгина) и 𝑛 = 3 (случай Бехерта-Станюковича)

рассматриваются в отдельном пункте 1.3 как исключительные в смысле нару-
шения условия(︂

𝑟 + 𝑙

2
+ 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
+ 𝑐

)︂
𝑙

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑙

̸= 0, (1.6)

еще более сильного, чем условие сильной нелинейности(︂
𝑟 + 𝑙

2
+ 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑙

̸= 0, (1.7)

нарушаемое при 𝑛 = −1.
В настоящем же пункте считается, что условия (1.6) и (1.7) не нарушаются.

В основополагающей работе А. Х. Рахимова [98, §1, стр. 46] и работе [5], посвя-
щенным изучению особенностей квазилинейных систем вида более общего, чем
(1.5), ставились условия (1.6) и (1.7) соответственно.

В одномерной изоэнтропической газовой динамике для исследования реше-
ний уравнений широко применяется преобразование годографа (например, [109,
Лекция 16, пункт 1, стр. 156-164] или [108, Глава 1, §4, пункт 2, стр. 33-34]),
меняющее ролями зависимые и независимые переменные. Из формул для про-
изводных преобразования годографа

𝑟𝑥 = 𝐽𝑡𝑙, 𝑟𝑡 = −𝐽𝑥𝑙,
𝑙𝑥 = −𝐽𝑡𝑟, 𝑙𝑡 = 𝐽𝑥𝑟,

𝐽 = 𝑟𝑥𝑙𝑡 − 𝑟𝑡𝑙𝑥, 𝑗 = 𝑥𝑟𝑡𝑙 − 𝑥𝑙𝑡𝑟, 𝐽 = 𝑗−1,

(1.8)
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следует, что квазилинейная система (1.5) на функции 𝑟(𝑡, 𝑥) и 𝑙(𝑡, 𝑥) переводится
в линейную систему {︃

𝑥𝑙 = 𝑡𝑙(
𝑟+𝑙
2 + 𝑐),

𝑥𝑟 = 𝑡𝑟(
𝑟+𝑙
2 − 𝑐)

(1.9)

на функции 𝑡(𝑟, 𝑙) и 𝑥(𝑟, 𝑙), невырожденные замены [110, Глава I, §2, 2.1, формула
2.6, стр. 18],

𝑡 = 𝐵𝑢,

𝑥 = 𝑢𝐵𝑢 −𝐵 − 𝜌𝐵𝜌

(1.10)

сводят систему (1.5) к одному линейному гиперболическому уравнению

8𝛼𝐵𝑟𝑙 =

(︂
𝛼𝜌 + 3

𝛼

𝜌

)︂√︂
𝜌

𝛼
(𝐵𝑟 −𝐵𝑙), (1.11)

а систему (1.1) к одному линейному гиперболическому (при 𝜌 > 0) уравнению
[110, Глава I, §2, 2.1, формула 2.7, стр. 18]

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = 𝛼(𝜌)𝐵𝑢𝑢. (1.12)

Для рассматриваемых конечных значений 𝑢*, 𝜌* и 𝑟* = 𝑟(𝑢*, 𝜌*), 𝑙* = 𝑙(𝑢*, 𝜌*)

из (1.4) следует справедливость соотношения (Δ𝑟 = 𝑟 − 𝑟*, Δ𝑙 = 𝑙 − 𝑙*)

𝑢 = 𝑢* +Δ𝑢 =
𝑟* + 𝑙*

2
+

Δ𝑟 +Δ𝑙

2
,

и задание для малых Δ𝜌 разности Δ𝑟 −Δ𝑙 сходящимся разложением Тейлора

Δ𝑟 −Δ𝑙 =
4

√
𝜌*
Δ𝜌+

𝜌*𝛼1 − 4

4(𝜌*)3/2
(Δ𝜌)2+

+
48− 𝜌2*𝛼

2
1 + 8𝜌*(𝜌*𝛼2 − 𝛼1)

96(𝜌*)5/2
(Δ𝜌)3 +

∑︁
𝑖>3

𝐼𝑖(Δ𝜌)
𝑖,

где коэффициенты 𝐼𝑖 однозначно выписываются через постоянные 𝛼𝑖 и 𝜌*. По-
этому при достаточно малых значениях Δ𝑟 − Δ𝑙 плотность 𝜌 представляется
также сходящимся рядом

𝜌 = 𝜌* +Δ𝜌 = 𝜌* +

√
𝜌*

4
(Δ𝑟 −Δ𝑙)+

+ℎ2(Δ𝑟 −Δ𝑙)2 + ℎ3(Δ𝑟 −Δ𝑙)3 +
∑︁
𝑖>3

ℎ𝑖(Δ𝑟 −Δ𝑙)𝑖,
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где

ℎ2 =
(4− 𝜌*𝛼1)

256
, ℎ3 =

(𝜌
3/2
* (𝛼2

1 − 2𝛼2)− 4
√
𝜌*𝛼1)

6144
,

а остальные ℎ𝑖 – константы, однозначно определяемые через 𝜌*, 𝛼𝑖.
Обоснуем то, что всякий формальный степенной ряд решения

𝐵 =
∑︁
𝑖+𝑗≥0

𝑏𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗. (1.13)

представляет собой ряд Тейлора в окрестности 𝑟 = 𝑟*, 𝑙 = 𝑙* некоторого истин-
ного локально бесконечно дифференцируемого решения уравнения (1.11).

Для обоснования непустоты множества локально гладких решений уравне-
ния (1.11) и, как следствие, фигурирующих в дальнейшем функций (1.10) и
(0.7), необходима следующая лемма, доказанная научным руководителем дис-
сертанта Б. И. Сулеймановым в совместной публикации [103].

Лемма 1.1. Пусть точка 𝑟 = 𝑟*, 𝑙 = 𝑙*, такова, что 𝜌* > 0 и сходящееся
в малой окрестности этой точки разложение Тейлора функции 𝛼(𝜌) имеет вид
(1.2). Тогда любое формальное решение (1.13) уравнения (1.11) в достаточно
малой окрестности точки 𝑟 = 𝑟*, 𝑙 = 𝑙* совпадает с разложением в ряд Тейлора
некоторого истинного бесконечно дифференцируемого решения этого линейного
уравнения.

Доказательство. Между формальными решениями (1.13) уравнения (1.11)
и формальными решениями уравнения (1.12) в виде рядов

𝐵 =
∑︁
𝑖+𝑗≥0

̃︀𝑏𝑖𝑗(Δ𝜌)𝑖(Δ𝑢)𝑗. (1.14)

с постоянными коэффициентами ̃︀𝑏𝑖𝑗 существует взаимно однозначное соответ-
ствие, осуществляемое разложениями Тейлора локального диффеоморфизма
(1.4). Непосредственная подстановка (1.14) в (1.12) показывает, что это фор-
мальное решение однозначно определяется двумя произвольными наборами ко-
эффициентов ̃︀𝑏0𝑗 и ̃︀𝑏1𝑗 с 𝑗 ≥ 0.

В свою очередь, в силу известной теоремы Бореля [79, раздел 4.9], [84, Гла-
ва 5, пункт 5.3, стр. 56] при 𝑢 = 𝑢* ряд (1.14) и его формальная производная
по 𝑢 совпадают с рядами Тейлора в точке 𝜌 = 𝜌* некоторых бесконечно диф-
ференцируемых функций в этой точке функций 𝑃 (𝜌) и, соответственно, 𝑄(𝜌).
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Тогда обоснованность утверждения данной леммы следует из локальной 𝐶∞-
гладкости решения задачи Коши для гиперболического уравнения (1.12) с на-
чальными условиями 𝐵(𝜌, 𝑢*) = 𝑃 (𝜌), 𝐵𝑢(𝜌, 𝑢*) = 𝑄(𝜌) – см. [129, Глава V, §6,
п.1 – 3].

Замечание 1.1. При 𝜌 = 𝜌* ̸= 0 применение теоремы Коши-Ковалевской к
уравнению (1.12) позволяет обосновать непустоту множества его аналитических
решений.

Вне прямой 𝜌 = 0 уравнение (1.12) представимо в виде уравнения с анали-
тическими коэффициентами

𝐵𝜌𝜌 =
𝛼(𝜌)

𝜌
𝐵𝑢𝑢 −

2

𝜌
𝐵𝜌

и в правой части уравнения старшая производная того же (второго) порядка,
что и старшая производная в левой части.

Пусть при 𝜌* ̸= 0 заданы начальные условия

𝐵(𝑢, 𝜌*) = 𝐵0(𝑢), 𝐵𝜌(𝑢, 𝜌*) = 𝐵1(𝑢),

где 𝐵0(𝑢) и 𝐵1(𝑢) – аналитические в некоторой окрестности точки 𝑢 = 𝑢* функ-
ции.

Следовательно, правая часть уравнения - аналитическая функция. Тогда
применима теорема Коши-Ковалевской: если правая часть локально аналити-
ческая и начальные данные аналитические, то у задачи Коши локально суще-
ствует единственное в классе аналитических функций решение.

Этим доказана непустота множества аналитических решений уравнения
(1.12) вне прямой 𝜌 = 0.

Якобиан преобразования (1.8) принимает вид

𝑗 = −2𝑐𝑡𝑟𝑡𝑙. (1.15)

Методы и результаты теории особенностей дифференцируемых отображе-
ний позволяют локально описать поведение решения (1.1) в окрестности точки
градиентной катастрофы – конечной точки (𝑡*, 𝑥*;𝑢*(𝑟*, 𝑙*), 𝜌*(𝑟*, 𝑙*)), в которой
первые производные решения обращаются в бесконечность (при этом значения
решений в этой точке конечны). В этой же точке обращается в нуль якобиан
преобразования годографа (1.15).
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Следовательно, отображение (𝑢(𝑟, 𝑙), 𝜌(𝑟, 𝑙)) → (𝑡, 𝑥) перестает быть взаимно
однозначным и гладким (гладкость здесь и далее понимается как бесконечная
дифференцируемость). В окрестности указанной точки после использования об-
ратимых невырожденных гладких замен решения (1.1) локально описываются
в терминах канонических уравнений теории катастроф.

В терминах коэффициентов 𝑏𝑖𝑗 обращение якобиана (1.15) в нуль в точке
(𝑟*, 𝑙*) записывается как

𝑗(𝑟*, 𝑙*) = (𝐵𝑟𝑟(𝑟*, 𝑙*) +𝐵𝑙𝑟(𝑟*, 𝑙*))(𝐵𝑟𝑙(𝑟*, 𝑙*) +𝐵𝑙𝑙(𝑟*, 𝑙*)) =

= −4
√
𝜌*(2𝑏20 + 𝑏11)(𝑏11 + 2𝑏02) = 0.

(1.16)

Согласно идеологии теории катастроф [80] в поставленной задаче при рас-
смотрении ситуации «общего положения» возможно наложение не более двух
ограничений на коэффициенты разложения решения 𝐵(𝑟, 𝑙) (кроме тех, что
следуют из уравнения (1.11)), поскольку функция 𝐵(𝑟, 𝑙) зависит от двух пе-
ременных.

Существуют три возможности обращения якобиана в нуль: 𝑏11 = −2𝑏20, 𝑏11 =
−2𝑏02 и одновременно 𝑏11 = −2𝑏20 = −2𝑏02. Выбор одного подходящего значения
𝑟* или 𝑙* реализует первую или вторую возможности (исследуемые одинаково),
выбор сразу двух подходящих значений 𝑟* и 𝑙* отвечает третьей возможности.
Любые дополнительные, ниоткуда не следующие, ограничения в виде равенств
на коэффициенты 𝑏𝑖𝑗 мы не будем относить к ситуации «общего положения».

В настоящем подпункте выбором 𝑟* и 𝑙* мы требуем выполнения двойного
равенства

𝑏11 = −2𝑏20 = −2𝑏02. (1.17)

Тогда представление всех слагаемых уравнения (1.11) в виде степенных ря-
дов и приравнивание коэффициентов при линейно независимых членах опреде-
ляют рекуррентную последовательность соотношений на коэффициенты 𝑏𝑖𝑗:

𝑏20 = −(𝑏10 − 𝑏01)(𝛼1𝜌* + 12)

128
√
𝜌*

,

𝑏21 = −𝑏12 =
(𝑏10 − 𝑏01)(2𝜌

2
*𝛼2 − 8𝜌*𝛼1 − 𝜌2*𝛼

2
1 − 48)

1024𝜌*
, ....

(1.18)

Подчеркнем, что ранее были исчерпаны возможности наложения ограниче-
ний на коэффициенты 𝑏𝑖𝑗 и считается, что 𝑏20 ̸= 0, ибо 𝛼1𝜌* ̸= −12. Это условие
нарушается для газа Чаплыгина 𝛼(𝜌) = 𝑚2𝜌−3.
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Коэффициенты 𝑏30 и 𝑏03 по коэффициентам 𝑏𝑖𝑗, 𝑖 + 𝑗 < 3 не определяются.
Рассматриваем разложение (1.13) с пока произвольными постоянными 𝑏30 и 𝑏03.

Кроме того, из соотношений (1.10) в точке 𝜌 = 𝜌*, 𝑢 = 𝑢* = (𝑟* + 𝑙*)/2 (на
𝑡, 𝑥-плоскости ей соответствует точка (𝑡*, 𝑥*)) следует, что

𝑡* = 𝑏10 + 𝑏01,

𝑥* =
𝑟* + 𝑙*

2
(𝑏10 + 𝑏01)− 𝑏00 − 2

√
𝜌*(𝑏10 − 𝑏01).

(1.19)

Следуя [101, Введение, стр. 18], рассмотрим теперь локально гладкую «еди-
ную» потенциальную функцию

𝐹 (𝜌, 𝑢; 𝑡, 𝑥) = 𝜌(𝑢𝑡−𝐵(𝜌, 𝑢)− 𝑥) (1.20)

основных переменных 𝜌, 𝑢 и двух дополнительных параметров 𝑡, 𝑥, которая
определяется локально гладкими решениями дифференциального уравнения
(1.12). Как было отмечено в Замечании 1.1 по теореме Коши-Ковалевской
при аналитических начальных данных для уравнения (1.12) все его решения
аналитичны и в таком случае «единая» функция (1.20) уже является локально
аналитической функцией. Результаты и методы теории катастроф применимы
и в классе аналитических функций.

При 𝜌 ̸= 0 соотношения (1.10) равносильны равенству нулю производных
𝐹𝜌(𝜌, 𝑢; 𝑡, 𝑥) и 𝐹𝑢(𝜌, 𝑢; 𝑡, 𝑥) функции (1.20):

𝐹𝑢 ≡ 𝑡−𝐵𝑢 = 0,

𝐹𝜌 ≡ 𝑢𝑡−𝐵 − 𝑥− 𝜌𝐵𝜌 = 0.

Следовательно, критические точки (1.20) суть решения образа годографа
системы (1.1).

Обращение в нуль якобиана отображений (𝑢, 𝜌) → (𝑡, 𝑥), которые формулами
(1.10) определяются через локально гладкие решения дифференциального урав-
нения (1.12), равносильно вырожденности критических точек функции (1.20).
Подобные же особенности гладких функций 𝐹 (𝑢, 𝜌; 𝑡, 𝑥), которые помимо двух
основных переменных 𝜌 и 𝑢 зависят еще от двух параметров 𝑡, 𝑥, как раз и мо-
гут быть описаны с помощью идеологии и методики теории катастроф. Иными
словами, изучая критические точки (1.20), мы изучаем поведение решений (1.1)
в окрестности точки градиентной катастрофы.

29



На множестве всех таких гладких функций 𝐹 (𝜌, 𝑢; 𝑡, 𝑥) (не только вида
(1.20)) согласно выводам теории особенностей дифференцируемых отображе-
ний [80, Главы 2-4] вырожденные критических точек в ситуации «общего по-
ложения» соответствуют лишь двум каноническим сингулярностям складки и
сборки. Резонно предполагать, что среди сингулярностей решений уравнений
(1.1) должны встречаться и отвечающие данным двум особенностям.

Автор основополагающих работ по теории катастроф Рене Том даже исполь-
зовал [82, Глава 5, 5.3, стр. 57-58] в качестве синонима сборки термин «ката-
строфа Римана – Гюгонио», подразумевая то, что возникновение ударных волн
при течении газа (теоретически предсказанных Риманом в классической статье
[57] как раз в результате анализа поведения решений (1.1) еще до эксперимен-
тального их обнаружения) должно соответствовать этой типичной особенности
гладких отображений.

При этом до 1990-х годов связь между процессом возникновения ударных
волн из решений уравнений газовой динамики и типичной особенностью сборки
гладких отображений, судя по всему, точно нигде не была описана. Именно для
решений (1.1) такое описание этой связи было дано в [74] – по сути оно в дан-
ной публикации свелось к повторению рассуждений и выкладок, изложенных
в [80, Главы 2 – 4], и проверке того факта, что ограничения, накладываемые
конкретным видом функции (1.20), не искажают стандартного вывода теории
катастроф об универсальности канонической особенности сборки.

Но еще в 1993 г. А. Х. Рахимовым в [98] типичность особенности сборки была
установлена для решений более общей 2 × 2 квазилинейной гиперболической
системы

𝑈𝑡 + 𝐴(𝑈, 𝑡, 𝑥)𝑈𝑥 = Φ(𝑈, 𝑡, 𝑥), (1.21)

в которой 𝑈 = (𝑢1, 𝑢2), Φ = (𝜙1, 𝜙2) – вектор-функции, a 𝐴(𝑈, 𝑡, 𝑥) есть 2 × 2

матрица с двумя различными вещественными собственными значениями 𝜆, 𝜇,
удовлетворяющими неравенству

𝜆𝑟𝜆𝑙𝜇𝑟𝜇𝑙 ̸= 0,

которое является условием еще более сильным, чем условие сильной нелиней-
ности 𝜆𝑟𝜇𝑙 ̸= 0. Эти условия не будут выполняться для газов Чаплыгина и
Бехерта-Станюковича, изучаемых в следующем подпункте.

Типичность особенности складки для решений общей системы (1.21) А. Х.
Рахимовым в [98] также была установлена. Но наиболее ценным результатом
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статьи [98] является классификация сингулярностей решений (1.21), которые
типичны в смысле математической теории катастроф. Согласно [98] список этих
типичных сингулярностей описывается в терминах решений трех систем урав-
нений:

системы, отвечающей особенности 𝐴2 (особенности складки)

𝑥1 = 𝑦21,

𝑥2 = 𝑦2;
(1.22)

системы, отвечающей особенности 𝐴3 (особенности сборки)

𝑥1𝑦1 + 𝑦31 + 𝑦1𝑦2 = 0,

𝑥2 = 𝑦2;
(1.23)

системы, отвечающей так называемой [107, особенность 2𝐶1,1
2,2 таблицы 8] осо-

бенности 𝐶2,2

𝑣21 = 𝑧1 + 𝑧2𝑣2,

𝑣22 = 𝑧1𝑣1 + 𝑧2.
(1.24)

Если не принимать во внимание то обстоятельство, что система (1.1) есть
лишь частный случай квазилинейной системы (1.21), то, согласно этой клас-
сификации А. Х. Рахимова, естественно ожидать, что наряду с вырождениями
складки и сборки, на подмножестве функций (1.20), определяемых гладкими ре-
шениями уравнений (1.12), типичным должно быть еще ровно одно вырождение
критических точек, которое описывается решениями системы (1.24).

Мы показываем, что типичная с точки зрения теории катастроф особен-
ность этого подмножества локально гладких функций, отличная от особенно-
стей складки и сборки локально описывается уравнениями

𝐻𝑦1 ≡ 𝑦21 − 𝑥3(𝑥1, 𝑥2)𝑦2 − 𝑥1 = 0,

𝐻𝑦2 ≡ 𝑦22 − 𝑥3(𝑥1, 𝑥2)𝑦1 − 𝑥2 = 0,
(1.25)

определяющими критические точки кубической функции

𝐻(𝑦1, 𝑦2;𝑥1, 𝑥2) =
𝑦31 + 𝑦32

3
− 𝑥3(𝑥1, 𝑥2)𝑦1𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

основных переменных 𝑦1, 𝑦2 и двух управляющих параметров 𝑥1, 𝑥2. Здесь ко-
эффициент 𝑥3(𝑥1, 𝑥2) для достаточно малых значениях 𝑥1 и 𝑥2 является гладкой
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функцией этих аргументов и при 𝑥21 + 𝑥22 → 0 имеет разложение Тейлора

𝑥3(𝑥1, 𝑥2) =
∞∑︁

𝑖+𝑗=1

𝑘𝑖𝑗𝑥
𝑖
1𝑥

𝑗
2. (1.26)

В терминологии теории катастроф тогда уместно говорить о сечении канониче-
ских уравнений особенности гиперболической омбилики 𝐷4+, локально описы-
ваемой системой уравнений 𝐻𝑦1 = 0, 𝐻𝑦2 = 0 на критические точки функции

𝐻(𝑦1, 𝑦2;𝑥1, 𝑥2, 𝑥3) =
𝑦31 + 𝑦32

3
− 𝑥3𝑦1𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

двух основных переменных 𝑦1, 𝑦2 и трех независимых управляющих параметров
𝑥1, 𝑥2, 𝑥3. Поэтому соответствующую особенность решений уравнений газовой
динамики называем омбилической.

По-видимому, с помощью локальных диффеоморфизмов решения системы
(1.25) через решения системы (1.24) выразить можно. Однако, как уже было
сказано во Введении, автору не удалось найти публикацию, на которую можно
было бы сослаться как на содержащую строгое доказательство этой возможно-
сти. Не удалось это доказать и самостоятельно. К тому же, на взгляд автора,
форма (1.25) удобнее формы системы (1.24) при описании асимптотик решений
системы (1.25) при (𝑥1)

2 + (𝑥2)
2 → 0, что будет пояснено далее.

Основной результат главы заключается в том, что для всех трех типичных
вырождений критических точек функций (1.20) генотипы особенностей [91, §9],
[93, §14] этих функций совпадают с тремя генотипами особенностей аналогич-
ных функций, соответствующих решениям линеаризации системы (1.1){︃

𝑈𝑥 + 𝛼(𝜌*)𝑉𝑥 = 0,

𝑉𝑡 + 𝜌*𝑈𝑥 + 𝑢*𝑉𝑥 = 0
(1.27)

на ее постоянном решении 𝑢 = 𝑢*, 𝜌 = 𝜌*. Эта система очевидным образом
сводится к линейному однородному волновому уравнению с постоянными коэф-
фициентами, описание трех типичных (в смысле теории катастроф) сингуляр-
ностей решений которого дается в пункте 1.2.

Учитывая соотношения (1.17) – (1.19) на коэффициенты ряда Тейлора 𝑏𝑖𝑗
гладкого в окрестности точки 𝑟*, 𝑙* решения 𝐵(𝑟, 𝑙) линейного гиперболического
уравнения (1.11), получаем, что функция (1.20), определяемая данным решени-
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ем 𝐵(𝑟, 𝑙), в окрестности этой точки имеет разложение в ряд Тейлора

𝐹 = 2𝜌3/2* (𝑏10 − 𝑏01) + 𝜌*𝑧 +
𝜌*Δ𝑡

2
(Δ𝑟 +Δ𝑙) +

√
𝜌*

4
𝑧(Δ𝑟 −Δ𝑙)+

+

√
𝜌*

8
Δ𝑡(Δ𝑟2 −Δ𝑙2) + 𝑧(Δ𝑟 −Δ𝑙)2+

+
4− 𝛼1𝜌*

512
Δ𝑡(Δ𝑟 −Δ𝑙)2

Δ𝑟 +Δ𝑙

2
+ ℎ3𝑧(Δ𝑟 −Δ𝑙)3+

+𝐴+(Δ𝑟)
3 + 𝐴−(Δ𝑙)

3+

+
∑︁
𝑖+𝑗≥4

(𝑓 0𝑖𝑗 + 𝑓 1𝑖𝑗Δ𝑡+ 𝑓 2𝑖𝑗𝑧)(Δ𝑟)
𝑖(Δ𝑙)𝑗,

(1.28)

коэффициенты которого линейны по параметрам

Δ𝑡 = 𝑡− 𝑡*,

𝑧 = (𝑟* + 𝑙*)Δ𝑡/2− 𝑥+ 𝑥*,

постоянные коэффициенты

𝐴+ =
(𝑏10 − 𝑏01)[8𝜌*𝛼1 + 48− 2𝜌2*𝛼2 + 𝜌2*𝛼

2
1]

3072
− 𝜌*𝑏30,

𝐴− = −(𝑏10 − 𝑏01)[8𝜌*𝛼1 + 48− 2𝜌2*𝛼2 + 𝜌2*𝛼
2
1]

3072
− 𝜌*𝑏03,

(1.29)

а постоянные 𝑓 0𝑖𝑗, 𝑓 1𝑖𝑗, 𝑓 2𝑖𝑗 однозначно определяются коэффициентами ряда (1.13)..
Заметим, что

𝐹 (𝑟, 𝑙; 𝑡*, 𝑥*) = 2𝜌3/2* (𝑏10 − 𝑏01) + 𝐴+(Δ𝑟)
3 + 𝐴−(Δ𝑙)

3 +
∑︁
𝑖+𝑗≥4

𝑓 0𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗.

Вид разложения Тейлора (1.28) позволяет сделать вывод о том, что росток
функции 𝐹 (𝑟, 𝑙; 𝑡, 𝑥) является так называемой 2-деформацией ростка функции
𝐹 (𝑟, 𝑙; 𝑡*, 𝑥*) [77, Лекция 7, Определение 2], [93, §13]. Поэтому [77, Лекция 7,
раздел 4, пример], [93, §13] данная 2-деформация может быть получена из так
называемой 𝑅−версальной деформации (являющейся также и универсальной
или, иначе, миниверсальной), описываемой трехпараметрическим семейством
функций

𝐺𝑘1,𝑘2,𝑘3(𝑦1, 𝑦2) =
𝑦31 + 𝑦32

3
− 𝑘3𝑦1𝑦2 − 𝑘2𝑦1 − 𝑘1𝑦2. (1.30)
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Это означает, что в достаточно малой окрестности точки 𝑟 = 𝑟*, 𝑙 = 𝑙*, 𝑡 = 𝑡*,
𝑥 = 𝑥* функция 𝐹 (𝑟, 𝑙; 𝑡, 𝑥), которая является в этой точке гладкой и обладает
в ней разложением Тейлора (1.28), представима в виде

𝐹 (𝑟, 𝑙; 𝑡, 𝑥) =
𝑦31 + 𝑦32

3
− 𝑘3𝑦1𝑦2 − 𝑘2𝑦1 − 𝑘1𝑦2 + 𝛾, (1.31)

где 𝑘𝑗 = 𝑘𝑗(𝑡, 𝑥) (𝑗 = 1, 2, 3) и 𝛾 = 𝛾(𝑡, 𝑥) – гладкие в окрестности точ-
ки 𝑡 = 𝑡*, 𝑥 = 𝑥* функции; 𝑦1 = 𝑦1(𝑟, 𝑙, 𝑡, 𝑥), 𝑦2 = 𝑦2(𝑟, 𝑙, 𝑡, 𝑥) – зависящая
от параметров 𝑡 и 𝑥 гладкая локальная замена координат в R2: (𝑟, 𝑙, 𝑡, 𝑥) →
(𝑦1(𝑟, 𝑙, 𝑡, 𝑥), 𝑦2(𝑟, 𝑙, 𝑡, 𝑥)), которая при фиксированных 𝑡 и 𝑥 является локальным
диффеоморфизмом.

Подставляя в левую часть (1.31) разложение (1.28), видно, что 𝑘𝑗(𝑡*, 𝑥*) = 0

(𝑗 = 1, 2, 3), и что при достаточно малых Δ𝑟 и Δ𝑙

𝑦1(𝑟, 𝑙, 𝑡*, 𝑥*) = (3𝐴+)
1/3Δ𝑟 +𝑂((Δ𝑟)2 + (Δ𝑙)2),

𝑦2(𝑟, 𝑙, 𝑡*, 𝑥*) = (3𝐴−)
1/3Δ𝑙 +𝑂((Δ𝑟)2 + (Δ𝑙)2).

Поэтому при Δ𝑟2+Δ𝑙2+Δ𝑡2+(𝑥−𝑥*)
2 → 0 справедливы разложения Тейлора

𝑘𝑗(𝑡, 𝑥) = 𝑘𝑗,10Δ𝑡+ 𝑘𝑗,01𝑧 +
∑︁

𝑛+𝑚>1

𝑘𝑗,𝑛𝑚(Δ𝑡)
𝑛𝑧𝑚 (𝑗 = 1, 2, 3), (1.32)

𝑦1(𝑡, 𝑥) =
∑︁

𝑛+𝑚>0

𝑎𝑛𝑚,00(Δ𝑡)
𝑛𝑧𝑚 +Δ𝑟[(3𝐴+)

1/3 +
∑︁

𝑛+𝑚>0

𝑎𝑛𝑚,10(Δ𝑡)
𝑛𝑧𝑚]+

+Δ𝑙
∑︁

𝑛+𝑚>0

𝑎𝑛𝑚,01(Δ𝑡)
𝑛𝑧𝑚 +

∑︁
𝑖+𝑗>1

∞∑︁
𝑛+𝑚=0

𝑎𝑛𝑚,𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗(Δ𝑡)𝑛𝑧𝑚,

(1.33)

𝑦2(𝑡, 𝑥) =
∑︁

𝑛+𝑚>0

𝑏𝑛𝑚,00(Δ𝑡)
𝑛𝑧𝑚 +Δ𝑙[(3𝐴−)

1/3 +
∞∑︁

𝑛+𝑚>0

𝑏𝑛𝑚,01(Δ𝑡)
𝑛𝑧𝑚]+

+Δ𝑟
∑︁

𝑛+𝑚>0

𝑏𝑛𝑚,10(Δ𝑡)
𝑛𝑧𝑚

∑︁
𝑖+𝑗>1

∞∑︁
𝑛+𝑚=0

𝑏𝑛𝑚,𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗(Δ𝑡)𝑛𝑧𝑚.

(1.34)

Непосредственная подстановка рядов (1.32) – (1.34) в правую часть ра-
венства (1.31) и приравнивание результата подстановки разложению Тейлора
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(1.28) левой части этого равенства, позволяет прийти к заключению о том, что
𝛾 = 2𝜌

3/2
* (𝑏10 − 𝑏01) + 𝜌*𝑧 и справедливы равенства

𝑎00,20 =
𝑓 040

(3𝐴+)2/3
, 𝑎00,11 =

𝑓 031
(3𝐴+)2/3

, 𝑏00,11 =
𝑓 013

(3𝐴−)2/3
, 𝑏00,02 =

𝑓 004
(3𝐴−)2/3

,

𝑘2,10 = − 𝜌*
2(3𝐴+)2/3

, 𝑘2,01 = −
√
𝜌*

4(3𝐴+)2/3
,

𝑘1,10 = − 𝜌*
2(3𝐴−)2/3

, 𝑘2,01 =

√
𝜌*

4(3𝐴−)2/3
,

𝑘3,10 = −𝑘2,10𝑎00,11 + 𝑘1,10𝑏00,11
(9𝐴+𝐴−)1/3

, 𝑘3,10 = −𝑘2,01𝑎00,11 + 𝑘1,01𝑏00,11 − 2

(9𝐴+𝐴−)1/3
, ...

Из них следует, что в окрестности точки (𝑡*, 𝑥*) отображение, описываемое
функциями 𝑥1 = 𝑘2(𝑡, 𝑥) и 𝑥2 = 𝑘1(𝑡, 𝑥) является диффеоморфизмом, и что при
𝑥21 + 𝑥22 → 0 гладкая функция 𝑥3(𝑥1, 𝑥2) = 𝑘3(𝑡, 𝑥) имеет разложение Тейлора
(1.26), в котором

𝑘10 = − 1

(3𝐴−)1/3

[︂
4

𝜌*
+

𝑓 031
3𝐴+

]︂
, 𝑘01 =

1

(3𝐴+)1/3

[︂
4

𝜌*
− 𝑓 013

3𝐴−

]︂
. (1.35)

(На 𝑡, 𝑥-плоскости в точке 𝑡 = 𝑡*, 𝑥 = 𝑥* кривые 𝑥1 = 0 и 𝑥2 = 0 касаются
характеристик системы (1.5), вдоль которых 𝑙 ≡ 𝑙* и, соответственно, 𝑟 ≡ 𝑟*.)

Как уже отмечалось выше, никаких ограничений в виде равенств на коэф-
фициенты рядов Тейлора (1.13) гладких решений 𝐵(𝑟, 𝑙) уравнения (1.11) (а
значит, и коэффициенты 𝑓 0𝑖𝑗), кроме равенств (1.17) и тех, что следуют из ви-
да этого уравнения, при рассмотрении ситуации «общего положения» с точки
зрения математической теории катастроф накладывать недопустимо. По этой
причине при рассмотрении ситуации «общего положения» можно считать, что
обе постоянные 𝑘10 и 𝑘01 в равенстве (1.35) отличны от нуля.

Сформулируем строго доказанный выше результат.
Теорема 1.1. Пусть аналитическая в точке 𝜌 = 𝜌* > 0 функция 𝛼(𝜌) рас-

кладывается в сходящийся ряд Тейлора (1.2), коэффициенты которого удовле-
творяют неравенству 𝛼1𝜌* ̸= 3𝛼* = −12.

Возьмем гладкую в окрестности точки (𝑟*, 𝑙*) функцию 𝐵(𝑟, 𝑙), являющуюся
таким решением уравнения (1.11), что коэффициенты 𝑏20, 𝑏11 и 𝑏02 ее ряда Тей-
лора (1.13) не равны нулю и имеет место двойное равенство (1.17). Допустим
также, что коэффициенты этого ряда таковы, что отличны от нуля постоян-
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ные 𝐴±, задаваемые равенствами (1.29), и постоянные 𝑘10, 𝑘01, определяемые по
формулам (1.35).

Рассмотрим решения системы (1.1), которые в некоторой малой окрестности
точек 𝑡*, 𝑥*, 𝑢* = 𝑢(𝑡*, 𝑥*), 𝜌* = 𝜌(𝑡*, 𝑥*) через инварианты Римана (1.4) и эту
функцию 𝐵(𝑟, 𝑙) определяются соотношениями (1.18), (1.19) и равенствами 𝑟* =
𝑟(𝑢*, 𝜌*), 𝑙 = 𝑙*(𝑢*, 𝜌*). Тогда в достаточно малой окрестности точки (𝑟*, 𝑙*, 𝑡*, 𝑥*)

существуют три такие гладкие функции 𝑘𝑗(𝑡, 𝑥) (𝑗 = 1, 2, 3) и две такие гладкие
функции 𝑦1(𝑟, 𝑙; 𝑡, 𝑥), 𝑦2(𝑟, 𝑙; 𝑡, 𝑥), что:

1) они имеют разложения Тейлора (1.32) – (1.34);
2) функции 𝑥1 = 𝑘2(𝑡, 𝑥) и 𝑥2 = 𝑘1(𝑡, 𝑥) описывают локальный диффеомор-

физм R2 → R2 и гладкая при малых значениях 𝑥1 и 𝑥2 функция 𝑥3(𝑥1, 𝑥2) =

𝑘3(𝑡, 𝑥) при 𝑥21 + 𝑥22 → 0 раскладывается в ряд Тейлора (1.26) с отличными от
нуля коэффициентами (1.35);

3) соотношения (1.25) и замены (1.4) задают эти решения системы (1.1).
Замечание 1.2. Вне некоторых фиксированных окрестностей точек 𝜙 =

𝜋𝑘/2 (𝑘 = 0, 1, 2, 3) коэффициенты асимптотического решения

𝑦1 = 𝑟1/2
∞∑︁
𝑗=0

𝑌𝑗1(𝜙)𝑟
𝑗/2,

𝑦2 = 𝑟1/2
∞∑︁
𝑗=0

𝑌𝑗2(𝜙)𝑟
𝑗/2

по степеням радиальной переменной 𝑟 представления в полярных координатах

𝑥1 = 𝑟 cos𝜙, 𝑥2 = 𝑟 sin𝜙,

управляющих параметров 𝑥1 и 𝑥2 особенностей не имеют. В силу отличия от ну-
ля постоянных 𝑘10 и 𝑘01 в асимптотике (1.26) размеры этих окрестностей можно
считать такими, что в них отделены от нуля функция

𝑎0(𝜙) = 𝑘10 cos(𝜙) + 𝑘01 sin(𝜙),

а также – при достаточно малых 𝑟 ̸= 0 – функция 𝑥3(𝑥1, 𝑥2)𝑟−1 и якобиан отоб-
ражения (𝑟, 𝜙) → (̃︀𝑟, 𝜙), где ̃︀𝑟 = 𝑟−1𝑥3(𝑥1, 𝑥2)

2.
Поэтому вопрос об асимптотике при 𝑟 → 0 решений системы (1.25) в таких

малых окрестностях точек 𝜙 = 𝜋𝑘/2 (𝑘 = 0, 1, 2, 3) после замен 𝑦𝑗 = 𝑥3(𝑥1, 𝑥2)𝑌𝑗
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(𝑗 = 1, 2) сводится к вопросу о поведении при 𝑋2
1+𝑋

2
2 → ∞ решений 𝑌𝑗(𝑋1, 𝑋2)

системы {︃
(𝑌1)

2 −𝑋1 = 𝑌2,

(𝑌2)
2 −𝑋2 = 𝑌1,

где
𝑋1 =

cos𝜙̃︀𝑟 , 𝑋2 =
sin𝜙̃︀𝑟 .

Эта система даже компактнее, чем система (1.24). Именно это имелось ввиду
ранее, когда велась речь о некоторой предпочтительности системы (1.25) по
отношению к системе (1.24).

Из нее следует, что 𝑌2 есть решение уравнения четвертой степени

(𝑌2)
4 − 2𝑋2𝑌2 − 𝑌2 + (𝑋2)

2 −𝑋1 = 0. (1.36)

Согласно известной подстановке Декарта – Эйлера корни этого уравнения равны
одному из следующих выражений ±

√
𝑍1 ±

√
𝑍2 ±

√
𝑍3, в которых знаки перед

квадратными корнями таковы, что выполнено равенство

(±
√︀
𝑍1)(±

√︀
𝑍2)(±

√︀
𝑍3) = 1/8,

а 𝑍𝑗 – три решения кубического уравнения

𝑍3 −𝑋2𝑍
2 +

𝑋1𝑍

4
=

1

64
(1.37)

Посредством сдвига 𝑍 = 𝑋2

3 + 𝑉 это уравнение переходит в нормальную форму
уравнения катастрофы сборки

𝑉 3 − 𝜏𝑉 + 𝜈 = 0, (1.38)

управляющие параметры которой

𝜏 =
(𝑋2)

2

3
− 𝑋1

4
,

𝜈 =
𝑋1𝑋2

12
− 2(𝑋2)

3

27
− 1

64

таковы, что условия (𝑋1)
2 + (𝑋2)

2 → ∞ и 𝜏 2 + 𝜈2 → ∞ эквивалентны.
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Четыре решения уравнения (1.36) явно выражаются через решения уравне-
ния (1.37) следующим образом:

𝑌2,1 =
√︀
𝑍1 +

√︀
𝑍2 +

√︀
𝑍3,

𝑌2,2 =
√︀
𝑍1 −

√︀
𝑍2 −

√︀
𝑍3,

𝑌2,3 = −
√︀
𝑍1 +

√︀
𝑍2 −

√︀
𝑍3,

𝑌2,4 = −
√︀
𝑍1 −

√︀
𝑍2 +

√︀
𝑍3

Здесь при 𝜏 ≤ 0 и при 𝜏 > 0 в области |𝜈| >
(︁
4𝜏3

27

)︁1/2

𝑉1 есть единственный
вещественный корень уравнения (1.38), а 𝑉2 и 𝑉3 – его комплексно сопряженные
корни

−
𝑉1 ± 𝑖

√︀
3(𝑉1)2 − 4𝜏

2
.

Замечание 1.3. С помощью использованного в настоящей главе метода
можно описать так же типичные особенности складки (𝐴2) и сборки (𝐴3) реше-
ний системы уравнений газовой динамики (1.1) и тем самым подтвердить вывод
статьи А. Х. Рахимова [98].

В самом деле, пусть теперь соотношение (1.16) выполняется за счет един-
ственного ограничения на коэффициенты тейлоровского разложения 𝑏𝑖𝑗 реше-
ния уравнения (1.11). Пусть якобиан преобразования годографа обращается в
нуль при единственном условии, например,

2𝑏20 + 𝑏11 = 0, (1.39)

при этом
𝑏11 + 2𝑏02 ̸= 0,

следовательно, 𝑏20 ̸= 𝑏02. Альтернативная ситуация 2𝑏20 + 𝑏11 ̸= 0, 𝑏11 + 2𝑏02 = 0

рассматривается аналогично.
Тогда из уравнения (1.11) получаем следующие соотношения на коэффици-

енты 𝑏𝑖𝑗, причем, очевидно, первое из них совпадает с первым из соотношений
(1.18):

𝑏20 = −(𝑏10 − 𝑏01)(𝛼1𝜌* + 12)

128
√
𝜌*

,
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𝑏21 = (𝑏10 − 𝑏01)
8𝛼2𝜌

2
* + 𝜌2*𝛼

2
1 − 8𝛼1𝜌* − 48

1024𝜌*
,

𝑏12 = (𝑏10 − 𝑏01)(
−64𝛼2𝜌

2
* − 9𝛼2

1𝜌
2
* + 43𝛼1𝜌* + 240

8192𝜌*
)− (

𝜌*𝛼1 + 12

64
√
𝜌*

)𝑏02, ...

Тогда в терминах отклонений инвариантов Римана разложения функций
𝑡(𝑢, 𝜌), 𝑥(𝑢, 𝜌) (получаемых из анализа критических точек «единой» функции
(1.20) и определяющих в неявном виде решение системы (1.1)) в ряды Тейлора
в окрестности (𝑟*, 𝑙*; 𝑡*, 𝑥*) принимают вид

𝑡* +Δ𝑡 = 𝑏10 + 𝑏01 + (2𝑏02 +
(𝑏10 − 𝑏01)(𝛼1𝜌* + 12)

64
√
𝜌*

)Δ𝑙 +
∑︁
𝑖+𝑗≥2

𝑡𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗,

𝑥* +Δ𝑥 =
𝑟* + 𝑙*

2
(𝑏10 + 𝑏01)− 2

√
𝜌* − 𝑏00+

+(𝑟* + 𝑙* + 4
√
𝜌*)[𝑏02 +

(𝜌*𝛼1 + 12)

128
√
𝜌*

(𝑏10 − 𝑏01)]Δ𝑙 +
∑︁
𝑖+𝑗≥2

𝑥𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗,

где постоянные коэффициенты 𝑡𝑖𝑗, 𝑥𝑖𝑗 однозначно определяются через 𝜌*, 𝑟*, 𝑙*,
𝛼𝑖, 𝑏𝑖𝑗 и, вообще говоря, не равны нулю в ситуации «общего положения».

Заметим, что Δ𝑡Δ𝑙(𝑟*, 𝑙*) ̸= 0. Следовательно, по теореме о неявной функции
и в силу бесконечной дифференцируемости функции Δ𝑡, представленной в виде
степенного ряда, функция Δ𝑙 представима как гладкая функция аргументов Δ𝑡

и Δ𝑟 с разложением в ряд Тейлора

Δ𝑙 =
1

𝑡01
Δ𝑡− 𝑡02

𝑡301
(Δ𝑡)2 − 𝑡11

𝑡201
Δ𝑡Δ𝑟 − 𝑡20

𝑡01
(Δ𝑟)2 +

∑︁
𝑖+𝑗≥3

𝑙𝑖𝑗(Δ𝑡)
𝑖(Δ𝑟)𝑗.

Введем новую координату

𝑦 = Δ𝑥− 𝑥01
𝑡01

Δ𝑡,

представление которой в виде степенного ряда гладкой функции которой не
содержит линейных членов:

𝑦(Δ𝑟; Δ𝑙) = 𝑦20(Δ𝑟)
2 + 𝑦11Δ𝑟Δ𝑙 + 𝑦02(Δ𝑙)

2+

+𝑦30(Δ𝑟)
3 + 𝑦21(Δ𝑟)

2Δ𝑙 + 𝑦12Δ𝑟(Δ𝑙)
2 + 𝑦03(Δ𝑙)

3 +
∑︁
𝑖+𝑗≥4

𝑦𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗.
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Заменяя теперь Δ𝑙, получим

𝑦(Δ𝑟; Δ𝑡) = [
1

𝑡01
Δ𝑡+

∑︁
𝑗≥2

𝑌1𝑗(Δ𝑡)
𝑗]Δ𝑟 + [𝑦20 +

∑︁
𝑗≥1

𝑌2𝑗(Δ𝑡)
𝑗](Δ𝑟)2+

+[𝑦30 +
∑︁
𝑗≥1

𝑌3𝑗(Δ𝑡)
𝑗](Δ𝑟)3 +

∑︁
𝑖+𝑗≥4

[𝑦𝑖0 + 𝑌𝑖(Δ𝑡)](Δ𝑟)
𝑖,

где 𝑌𝑖(Δ𝑡) =
∑︀

𝑗≥1 𝑌𝑖𝑗(Δ𝑡)
𝑗.

Рассмотрим два случая, отвечающих ситуации «общего положения»:
1) без наложения какого-либо второго (вдобавок к равенству (1.39)) ограни-

чения в виде равенства на коэффициенты 𝑏𝑖𝑗, то есть 𝑦20 ̸= 0 и 𝑦30 ̸= 0;
2) со вторым ограничением в виде равенства на коэффициенты 𝑏𝑖𝑗, таким,

что 𝑦20 = 0, но 𝑦30 ̸= 0.
Рассмотрим сначала первый случай. Применение леммы Адамара и введение

новой переменной с разложением

Δ𝑟 = 𝑄+ 𝑞2𝑄
2 + 𝑞3𝑄

3 +
∑︁
𝑖≥4

𝑞𝑖𝑄
𝑖,

где коэффициенты 𝑞𝑖 определяются однозначно

𝑞2 = − 𝑦30
2𝑦20

, 𝑞3 = −(𝑦20𝑞
2
2 + 3𝑦30𝑞2 + 𝑦40)

2𝑦20
, ...

позволяет исключить постоянные члены 𝑦𝑖0 при 𝑖 ≥ 3:

𝑦(𝑄; Δ𝑡) = [
1

𝑡01
Δ𝑡+

∑︁
𝑗≥2

𝑌1𝑗(Δ𝑡)
𝑗]𝑄+ [𝑦20 +

∑︁
𝑗≥1

𝑌2𝑗(Δ𝑡)
𝑗]𝑄2+

+
∑︁
𝑗≥1

𝑌3𝑗(Δ𝑡)
𝑗𝑄3 +

∑︁
𝑖≥4

𝑌𝑖(Δ𝑡)𝑄
𝑖,

(1.40)

где 𝑌𝑖(Δ𝑡) =
∑︀

𝑗≥1 𝑌𝑖𝑗(Δ𝑡)
𝑗.

Для удобства выполним растяжение 𝑊 = 𝑦
𝑦20

. Из того, что 𝑊 (𝑄; 0) = 𝑄2

заключаем [93, §13], что росток функции 𝑊 (𝑄; Δ𝑡) есть деформация с парамет-
ром Δ𝑡 ростка монома𝑄2, обладающего𝑅-универсальной (значит, и версальной)
деформацией, являющейся ростком в нуле квадратичного двучлена

𝑄2 + 𝑒1,
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и существуют два локальных диффеоморфизма

𝑆(Δ𝑡, 𝑄) =
∑︁
𝑗≥1

𝑆0𝑗(Δ𝑡)
𝑗 +𝑄[1 +

∑︁
𝑗≥1

𝑆1𝑗(Δ𝑡)
𝑗] +

∑︁
𝑘≥2,𝑗≥1

𝑆𝑘𝑗𝑄
𝑘(Δ𝑡)𝑗 : 𝑆(0, 𝑄) = 𝑄,

𝑒1(Δ𝑌 ) =
∑︁
𝑗≥1

𝑒𝑖𝑗(Δ𝑡)
𝑗 : 𝑒1(0) = 0.

таких, что
𝑊 (𝑄; Δ𝑡) = 𝑆(𝑄; Δ𝑡)2 + 𝑒1(Δ𝑡). (1.41)

Подстановка в (1.41) и приравнивание коэффициентов при линейно незави-
симых слагаемых однозначно определяет все коэффициенты

𝑒11 = 0, 𝑒12 = −𝑆2
01, 𝑆01 =

1

2𝑦20𝑡01
, 𝑆11 =

1

2𝑦20
𝑌21, ...

так, что получается каноническое уравнение складки (𝐴2)

𝑆(𝑄; Δ𝑡)2 + 𝑃 (Δ𝑡,Δ𝑥) = 0, (1.42)

решения которого локально задают решения (1.1) в окрестности точки ГК.
Второй случай рассматривается аналогично. Если 𝑦20 = 0, то разложение

𝑦(Δ𝑟; Δ𝑡) принимает вид

𝑦(Δ𝑟; Δ𝑡) = [
1

𝑡01
Δ𝑡+

∑︁
𝑗≥2

𝑌1𝑗(Δ𝑡)
𝑗]Δ𝑟 +

∑︁
𝑗≥1

𝑌2𝑗(Δ𝑡)
𝑗(Δ𝑟)2+

+[𝑦30 +
∑︁
𝑗≥1

𝑌3𝑗(Δ𝑡)
𝑗](Δ𝑟)3 +

∑︁
𝑖+𝑗≥4

[𝑦𝑖0 + 𝑌𝑖(Δ𝑡)](Δ𝑟)
𝑖

и выполнение по лемме Адамара замены

Δ𝑟 = 𝑦
−1/3
30 𝑄+ 𝑞2𝑄

2 + 𝑞3𝑄
3 +

∑︁
𝑖≥4

𝑄𝑖,

где

𝑞2 = − 𝑦40

3𝑦
5/3
30

, 𝑞3 = −
(3𝑦

2/3
30 𝑞

2
2 + 𝑦40

4𝑞2
𝑦30

+ 𝑦50𝑦
−5/3
30 )

3𝑦
1/3
30

, ...

позволяет исключить только постоянные члены 𝑦𝑖0 при 𝑖 ≥ 4:

𝑦(𝑄; Δ𝑡) = 𝑦
−1/3
30 [

1

𝑡01
Δ𝑡+

∑︁
𝑗≥2

𝑌1𝑗(Δ𝑡)
𝑗]𝑄+ 𝑌2(Δ𝑡)𝑄

2+

+[1 + 𝑌3(Δ𝑡)]𝑄
3 +

∑︁
𝑖≥4

𝑌𝑖(Δ𝑡)𝑄
𝑖,
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где 𝑌𝑖(Δ𝑡) =
∑︀

𝑗≥1 𝑌𝑖𝑗(Δ𝑡)
𝑗.

Из того, что 𝑦(𝑄; 0) = 𝑄3 делаем вывод [93, §13] о том, что росток функции
𝑦(𝑄; Δ𝑡) есть деформация с параметром Δ𝑡 ростка монома 𝑄3, обладающего
𝑅-универсальной (значит, и версальной) деформацией, являющейся ростком в
нуле кубического многочлена

𝑄3 + 𝑒1𝑄+ 𝑒2

и существуют три локальных диффеоморфизма

𝑆(Δ𝑡, 𝑄) : 𝑆(0, 𝑄) = 𝑄,

𝑒1(Δ𝑡) : 𝑒1(0) = 0,

𝑒2(Δ𝑡) : 𝑒2(0) = 0,

таких, что
𝑦(Δ𝑡, 𝑄) = 𝑆(Δ𝑡, 𝑄)3 + 𝑒1(Δ𝑡)𝑆(Δ𝑡, 𝑄) + 𝑒2(Δ𝑡). (1.43)

Подстановка

𝑒𝑖(Δ𝑡) =
∑︁
𝑗≥1

𝑒𝑖𝑗(Δ𝑡)
𝑗, 𝑖 = 1, 2,

𝑆(Δ𝑡, 𝑄) =
∑︁
𝑗≥1

𝑆0𝑗(Δ𝑡)
𝑗 +𝑄[1 +

∑︁
𝑗≥1

𝑆1𝑗(Δ𝑡)
𝑗] +

∑︁
𝑘≥2,𝑗≥1

𝑆𝑘𝑗𝑄
𝑘(Δ𝑡)𝑗

(1.44)

в (1.43) и приравнивание коэффициентов при линейно независимых слагаемых
однозначно определяет все коэффициенты

𝑒11 = 𝑦
−1/3
30

1

𝑡01
, 𝑆01 =

𝑌21
3
, 𝑆11 =

𝑦
−1/3
30 𝑌12 − 3𝑆2

01

𝑒11
,

𝑒21 = 𝑒22 = 0, 𝑒23 = −𝑆3
01

так, что получается каноническое уравнение сборки (𝐴3)

𝑆(Δ𝑡, 𝑄)3 + 𝑃1(Δ𝑡)𝑆(Δ𝑡, 𝑄) + 𝑃2(Δ𝑡,Δ𝑥) = 0, (1.45)

решения которого локально задают решения (1.1) в окрестности точки ГК.

1.2 Типичные сингулярности решений волнового уравне-
ния

Метод анализа типичных с точки зрения теории катастроф сингулярностей,
описанный ранее на примере системы уравнений газовой динамики (1.1), в этом
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разделе мы применим к решениям линейного волнового уравнения

𝑢𝑡𝑡 = 𝑢𝑥𝑥. (1.46)

Перепишем (1.46) в виде системы двух уравнений первого порядка{︃
𝑢𝑡 = 𝑣𝑥,

𝑣𝑡 = 𝑢𝑥,
(1.47)

которая из линеаризованной системы (1.27) возникает после применения пре-
образования Галилея 𝑥 → 𝑥′ = 𝑥 − 𝑢*𝑡 с последующим растяжением новой
независимой пространственной переменной 𝑥′ =

√︀
𝛼(𝜌*)𝜌*𝑥 и переобозначения

𝑈 = 𝑢, 𝑉 = −
√︀
𝜌*/𝛼(𝜌*)𝑣.

Преобразование годографа уравнения (1.47) переводит в систему{︃
𝑡𝑣 = 𝑥𝑢,

𝑡𝑢 = 𝑥𝑣,
(1.48)

из вида которой следует, что якобиан 𝑗 преобразования годографа имеет вид

𝑗 = (𝑡𝑣)
2 − (𝑡𝑢)

2. (1.49)

Аналогичные (1.10) подстановки

𝑡 = 𝐵𝑢,

𝑥 = 𝐵𝑣

(1.50)

позволяют выразить решения системы (1.48) через общее решение

𝐵 = 𝑓(𝑢+ 𝑣) + 𝑔(𝑢− 𝑣) (1.51)

волнового уравнения
𝐵𝑢𝑢 = 𝐵𝑣𝑣. (1.52)

В рамках применяемого метода рассматриваются лишь бесконечно диффе-
ренцируемые в окрестностях точек (𝑢 = 𝑢*, 𝑣 = 𝑣*) функции 𝑓 и 𝑔, которые
представляются в них разложениями Тейлора

𝑓 = 𝑓0 +
∞∑︁
𝑗=1

𝑓𝑗
𝑗!
(Δ𝑢+Δ𝑣)𝑗,

𝑔 = 𝑔0 +
∞∑︁
𝑗=1

𝑔𝑗
𝑗!
(Δ𝑢−Δ𝑣)𝑗.

(1.53)
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Здесь Δ𝑢 = 𝑢− 𝑢*, Δ𝑣 = 𝑣 − 𝑣*, а 𝑓𝑗 и 𝑔𝑗 – постоянные.
Рассмотрим аналог функции (1.20) – функцию

Ψ(𝑢, 𝑣; 𝑡, 𝑥) = 𝑢𝑡+ 𝑣𝑥−𝐵(𝑢, 𝑣) (1.54)

основных переменных 𝑢, 𝑣 и управляющих параметров 𝑡, 𝑥, определяемую таки-
ми гладкими решениями (1.51) волнового уравнения (1.52). Соотношения (1.50)
в точности равносильны системе двух уравнений Ψ𝑢 = 0, Ψ𝑣 = 0 на критиче-
ские точки данной функции. В силу формул (1.49) – (1.51) обращение в нуль
якобиана преобразования годографа, соответствующее вырожденности данных
критических точек, в точке (𝑢*, 𝑣*), равносильно равенству

𝑓2𝑔2 = 0. (1.55)

Согласно соотношениям (1.50) и виду разложений (1.53) на 𝑡, 𝑥 – плоскости
точке (𝑢*, 𝑣*) соответствует точка 𝑡* = 𝑓1 + 𝑔1, 𝑥* = 𝑓1 − 𝑔1. Тогда разложение
Тейлора функции (1.54) в точке (𝑢*, 𝑣*; 𝑡*, 𝑥*) имеет вид

Ψ = (𝑓1 + 𝑔1)𝑢* + (𝑓1 − 𝑔1)𝑣* − (𝑓0 + 𝑔0) + 𝑢*Δ𝑡+ 𝑣*Δ𝑥+

(Δ𝑡+Δ𝑥)

2
̃︀𝑢+ (Δ𝑡−Δ𝑥)

2
̃︀𝑣 − ∞∑︁

𝑖=2

𝑓𝑖
𝑖!
(̃︀𝑢)𝑖 − ∞∑︁

𝑗=2

𝑔𝑗
𝑗!
(̃︀𝑣)𝑗,

где ̃︀𝑢 = (Δ𝑢 +Δ𝑣), ̃︀𝑣 = (Δ𝑢−Δ𝑣). Критические точки данной функции нахо-
дятся из уравнений

Ψ̃︀𝑢 ≡ (Δ𝑡+Δ𝑥)

2
+ ℎ1(𝑢) = 0,

Ψ̃︀𝑣 ≡ (Δ𝑡−Δ𝑥)

2
+ ℎ2(̃︀𝑣) = 0,

(1.56)

определяемых гладкими при малых значениях переменных ̃︀𝑢 и ̃︀𝑣 функциями
ℎ1(̃︀𝑢) и, соответственно, ℎ2(̃︀𝑣), которые представляются разложениями в ряды
Тейлора

ℎ1(̃︀𝑢) = −𝑓2̃︀𝑢− ∞∑︁
𝑖=1

𝑓𝑖+1

𝑖!
(̃︀𝑢)𝑖 (̃︀𝑢→ 0),

ℎ2(̃︀𝑣) = −𝑔2̃︀𝑣 − ∞∑︁
𝑖=1

𝑔𝑖+1

𝑖!
(̃︀𝑣)𝑖 (̃︀𝑣 → 0).
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Допустим сначала, что вырождение при ̃︀𝑢 = 0, ̃︀𝑣 = 0 критических точек
функции Ψ, соответствующее равенству (1.55), происходит в случае 𝑓2 = 0,
𝑔2 ̸= 0 (симметричная ситуация 𝑔2 = 0, 𝑓2 ̸= 0 рассматривается совершенно
аналогично). При этом, если коэффициент 𝑓3 отличен от нуля, то для достаточно
малых ̃︀𝑢 и ̃︀𝑣 существует [92, Глава 4, §3, Теорема 4.4] диффеоморфная замена
координат

𝑦1 = 𝑦1(̃︀𝑢),
𝑦2 = 𝑦2(̃︀𝑣), (1.57)

которая функции ℎ1(̃︀𝑢) и ℎ2(̃︀𝑣) приводят к виду{︃
ℎ1(̃︀𝑢) = −𝑓3(𝑦1)

2

2 ,

ℎ2(̃︀𝑣) = −𝑔2𝑦2.
(1.58)

Тогда из (1.56), (1.58) и замены 𝑦1 = −61/3𝑓
−1/3
3 𝑢1 следует локальное пред-

ставление функции (1.54) в виде канонической нормальной формы особенности
складки 𝐴2

Ψ = 𝑢31 − 𝑘2𝑢1 − 𝑘1, (1.59)

где 𝑘2 = 61/3𝑓
−1/3
3

(Δ𝑡+Δ𝑥)
2 , 𝑘1 = −[−1

2𝑔2𝑦
2
2 + 𝑦2

(Δ𝑡−Δ𝑥)
2 + 𝜓0], 𝜓0 – произвольная

постоянная интегрирования.
Поскольку у функции (1.54) имеются два управляющих параметра, то ситу-

ации «общего положения» помимо равенства 𝑓2 = 0 отвечает также рассмотре-
ние подслучая, когдав разложении Тейлора 𝑓3 = 0, 𝑓4 ̸= 0. В этом подслучае
согласно [92, Глава 4, §3, Теорема 4.4] в малой окрестности точки (̃︀𝑢 = 0, ̃︀𝑣 = 0)

существует такая локально диффеоморфная замена (1.57), что{︃
ℎ1(̃︀𝑢) = −𝑓4(𝑦1)

3

6 ,

ℎ2(̃︀𝑣) = −𝑔2𝑦2.
(1.60)

Тогда из (1.56), (1.58) и замены 𝑦1 = 241/4𝑢1 следует локальное представле-
ние функции (1.54) в виде канонической нормальной формы особенности сече-
ния сборки 𝐴3

Ψ = −𝑓4𝑢41 + 𝑘2𝑢1 + 𝑘1, (1.61)

где 𝑘2 = 241/4(Δ𝑡+Δ𝑥)
2 , 𝑘1 = (Δ𝑡−Δ𝑥)

2 𝑦2 − 1
2𝑔2𝑦

2
2 + 𝜓0, 𝜓0 – произвольная постоян-

ная интегрирования. Отметим отсутствие в (1.61) квадратичного слагаемого.
По этой причине выше было сказано именно о сечении особенности 𝐴3.
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Опять же из-за наличия двух управляющих параметров ситуации «общего
положения» отвечает и двойное равенство 𝑓2 = 𝑔2 = 0 вкупе с неравенствами
𝑓3 ̸= 0, 𝑔3 ̸= 0. В такой ситуации в силу все той же Теоремы 4.4 из [92, Глава
4, §3] имеется такая локально диффеоморфная замена (1.57), что в переменных
𝑦1 и 𝑦2 {︃

ℎ1(̃︀𝑢) = −𝑓3(𝑦1)
2

2 ,

ℎ2(̃︀𝑣) = −𝑔3(𝑦2)
2

2 .
(1.62)

Тогда из (1.56), (1.58) и замен 𝑦1 = 21/3𝑓
−1/3
3 𝑢1, 𝑦2 = 21/3𝑔

−1/3
3 𝑢2 следует ло-

кальное представление функции (1.54) в виде канонической нормальной формы
особенности сечения гиперболической омбилики 𝐷+

4

Ψ =
𝑢31 + 𝑢32

3
− 𝑘2𝑢1 − 𝑘1𝑢2 + 𝑘0, (1.63)

где 𝑘2 = − (Δ𝑡+Δ𝑥)
2 21/3𝑓

−1/3
3 , 𝑘1 = − (Δ𝑡−Δ𝑥)

2 21/3𝑔
−1/3
3 , 𝑘0 – постоянная интегриро-

вания. В силу отсутствия в (1.63) говорится именно о сечении омбилической
особенности.

Таким образом, у системы (1.47) имеется ровно три сингулярности, типич-
ных в том же смысле, что и ровно три сингулярности решений системы урав-
нений течения одномерного изоэнтропического газа (1.1). После локально диф-
феоморфных переходов от функций ℎ1(̃︀𝑢) и ℎ2(̃︀𝑢) к правым частям равенств
(1.58) – (1.62) система (1.56) принимает одну из трех форм, лишь первая из
которых эквивалентна одной из трех систем (1.22) – (1.24) ((1.25)) – системе
(1.22). Две оставшиеся из этих форм эквивалентны лишь укороченным верси-
ям систем (1.23) и (1.24) ((1.25)). Тем не менее, изложенные в данном разделе
результаты анализа типичных особенностей решений волнового уравнения, да-
ют основания говорить о том, что именно они наследуются тремя типичными
особенностями решений нелинейной системы (1.1) – генотипы [93, §14, стр. 105]
катастроф функций (1.54) имеют, соответственно, следующий вид:

при 𝑔2 ̸= 0, 𝑓2 = 0, 𝑓3 ̸= 0

−𝑓3
(̃︀𝑢)3
6

;

при 𝑔2 ̸= 0, 𝑓2 = 𝑓3 = 0, 𝑓4 ̸= 0

−𝑓4
(̃︀𝑢)4
4!

;
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при 𝑓2 = 𝑔2 = 0, 𝑓3 ̸= 0, 𝑔3 ̸= 0

−𝑓3
(̃︀𝑢)3
6

− 𝑔3
(̃︀𝑣)3
6
.

Простыми растяжениями эти генотипы сводятся к генотипам катастроф
функций (1.20), которым соответствуют все три универсальные особенности ре-
шений системы (1.1). Тем самым происходит наследование генотипов особенно-
стей. Как будет показано в следующем пункте настоящей главы, в случае газа
Чаплыгина совпадает не только генотип, но и вся нормальная форма особенно-
сти 𝐴3, а в случае газа Бехерта-Станюковича полностью наследуется нормаль-
ная форма особенности 𝐷+

4 .
Замечание 1.4. Несколько особняком среди исследований типичных в

смысле математической теории катастроф сингулярностей решений квазили-
нейных уравнений стоят результаты статей [73] и [76] касательно провальной
(𝜌* = 0) особенности сборки, характерной для решений эллиптического и, со-
ответственно, гиперболического вариантов системы (1.1). Данные особенности,
соответствующие малым значениям 𝜌, из решений линейных систем уравнений
не наследуются. Довольно естественно предположить, что подобные и более
сложные провальные сингулярности должны быть типичны для решений урав-
нений движения изоэнтропического газа (а также их эллиптических аналогов)
и в пространственно неодномерных случаях.

1.3 Случаи газов Чаплыгина и Бехерта-Станюковича

Рассмотрим два частных случая давления: случай Чаплыгина

𝑝 = 𝑝0 −
𝑚2

𝜌
(1.64)

и случай Бехерта-Станюковича

𝑝 =
𝑎2

3
𝜌3, (1.65)

где 𝑚 > 0 – постоянная положительная масса газа, 𝑎 > 0 и 𝑝0 > 0 – некоторые
положительные постоянные. Оба случая служат для аппроксимаций течения
изоэнтропического газа, описываемого системой (1.1).
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Покажем, что лишь эти два газа нарушают условие (1.6), еще более сильное,
чем условие сильной нелинейности (1.7):(︂

𝑟 + 𝑙

2
+ 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
+ 𝑐

)︂
𝑙

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑟

(︂
𝑟 + 𝑙

2
− 𝑐

)︂
𝑙

=(︂
1

4
− 𝑐2𝑟

)︂(︂
1

4
− 𝑐2𝑙

)︂
= 0.

Из вида инвариантов Римана (1.4) следует, что

𝜕

𝜕𝑢
=

𝜕

𝜕𝑟
+
𝜕

𝜕𝑙
,

а так, как скорость звука 𝑐(𝜌) не зависит от скорости течения 𝑢, то 𝑐𝑢 ≡ 0, то
есть для всякого газа справедливо тождество

𝑐𝑟 ≡ −𝑐𝑙. (1.66)

Из тождества (𝑐𝑟)
2 ≡ (𝑐𝑙)

2 и того, что 𝑐𝑟 = ±1
2 , следует, что 𝑐 = ±𝑟

2+𝑘(𝑙), где
𝑘(𝑙) – подлежащая определению бесконечно дифференцируемая в окрестности
𝑙* функция. Так как 𝑐𝑙 = −𝑐𝑟, то 𝑘 = ∓ 𝑙

2 + 𝑐0, то есть

𝑐 =
±𝑟 ∓ 𝑙

2
+ 𝑐0.

С точностью до аддитивной постоянной 𝑐0 (которую можно принять нулевой,
поскольку в терминах плотности функция скорости звука 𝑐(𝜌) не зависит от
аддитивных постоянных) последовательный выбор знаков «плюс» и «минус»
дает скорость звука для газа Бехерта-Станюковича, а последовательный выбор
знаков «минус» и «плюс» дает скорость звука для газа Чаплыгина. В самом
деле, из (1.4) следует, что

𝜕

𝜕𝜌
=
𝑐(𝜌)

𝜌
(
𝜕

𝜕𝑟
− 𝜕

𝜕𝑙
) =

√︃
𝛼(𝜌)

𝜌
(
𝜕

𝜕𝑟
− 𝜕

𝜕𝑙
),

откуда, в силу того, что 𝑐(𝜌) =
√︀
𝜌𝛼(𝜌) и ранее полученного тождества (1.66),

𝜌𝛼′(𝜌)

𝜌
+ 1 = ±2.

Решая полученное обыкновенное дифференциальное уравнение со знаком
«плюс», получаем 𝛼 = 𝑐1𝜌, то есть в силу равенства 𝛼(𝜌) = 𝜌−1𝑝′(𝜌), получаем
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давление газа Бехерта-Станюковича 𝑝 = 𝑐1𝜌
3

3 + 𝑐0, если принять 𝑐1 = 𝑎2. Выбор
знака «минус» дает 𝛼 = 𝑐1𝜌, то есть давление газа Чаплыгина 𝑝 = 𝑝0 − 𝑐1

𝜌 , если
принять 𝑐1 = 𝑚2.

В газовой динамике особо рассматривается давление политропного газа вида
𝑝 = 𝑎2

𝑛 𝜌
𝑛. Ему соответствует скорость звука

𝑐 =
√
𝑝𝜌 = 𝑎𝜌

𝑛−1
2

и соотношение на инварианты Римана (1.4)

𝑟 − 𝑙

2
=

∫︁ 𝜌

0

𝑐(ℎ)

ℎ
dℎ =

2𝑎

𝑛− 1
𝜌

𝑛−1
2 ,

откуда следует представление скорости звука в виде

𝑐 =
(𝑛− 1)(𝑟 − 𝑙)

4
.

Тогда из (1.6) следует, что 𝑛 = 3 (случай Бехерта-Станюковича) при со-
блюдении условий 𝑐𝑟 = 1/2, 𝑐𝑙 = −1/2 и 𝑛 = −1 (случай Чаплыгина) при
соблюдении условий 𝑐𝑟 = −1/2 и 𝑐𝑙 = 1/2. Случай Чаплыгина (и только он)
также возникает из нарушения условия сильной нелинейности (1.7).

Кроме того, газ Чаплыгина возникает [74] как газ, не являющийся газом
«общего положения» в силу нарушения наложенного в Пункте 1.1 условия

𝛼′(𝜌*) +
3𝛼(𝜌*)

𝜌*
̸= 0

.
Поскольку 𝜌* зависит от 𝑡*, 𝑥* разумно рассматривать 𝜌* как переменную

и искать решение ОДУ 𝜌𝛼′(𝜌) = −3𝛼(𝜌). В силу равенства 𝛼(𝜌) = 𝑝𝜌𝜌
−1 его

решение 𝛼(𝜌) = 𝑐1𝜌
−3 дает давление 𝑝 = 𝑝0 − 𝑐1𝜌

−1, отвечающее случаю газа
Чаплыгина при выборе 𝑐1 = 𝑚2 > 0.

1.3.1 Случай Чаплыгина. Особенность сечения сборки 𝐴3

С. А. Чаплыгин ввел давление вида 𝑝 = 𝑝0− 𝑚2

𝜌 как аппроксимирующее дав-
ление реальных газов. Хотя оно не соответствует реальным газам, отвечающая
такому давлению система (1.1) интегрируется с помощью преобразования годо-
графа. Случай Бехерта-Станюковича 𝑝 = 𝑎2

3 𝜌
3 тоже может использоваться для
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аппроксимации и, согласно комментарию К. П. Станюковича, в определенном
физическом и математическом смысле лучше [130, Глава IV, §13, стр. 129-130],
чем приближение, описываемое газом Чаплыгина.

В работе [74] ограничение 𝛼′(𝜌*) +
3𝛼(𝜌*)
𝜌*

̸= 0 возникло как условие неравен-
ства нулю в точке (𝑢*, 𝜌*; 𝑡*, 𝑥*) второй производной по 𝑢 решения 𝐵(𝑟, 𝑙) урав-
нения (1.11). Нарушение этого условия является дополнительным ограничением
в виде равенства на коэффициенты 𝑏𝑖𝑗, помимо тех, что следуют из обращения
в нуль якобиана 𝑗(𝑢*, 𝜌*; 𝑡*, 𝑥*) в ситуации «общего положения». В самом деле,
в ситуации «общего положения» из уравнения (1.11) следует, что

𝑏20 = −(𝑏10 − 𝑏01)(𝛼1𝜌* + 3𝛼*)

16𝜌*𝛼*
√︁

𝛼*
𝜌*

̸= 0

и считается, что 𝑏10 ̸= 𝑏01. Тогда в случае Чаплыгина 𝑏20 = 0. Это не газ «общего
положения».

Сумма 𝛼1𝜌* + 3𝛼* входит как множитель в управляющий параметр особен-
ности типа сборки (𝐴3) решений (1.1) и исследованной в работе [74]:

𝛿(𝑌, 𝑍) + 𝜎(𝑍)𝑅0 + 𝑘𝑅3
0 = 0, 𝛿(𝑌, 𝑍) = 𝑌 +

∑︁
𝑗≥2

𝛿0𝑗𝑍
𝑗 +

∑︁
𝑗≥1

𝛿1𝑗𝑌 𝑍
𝑗,

𝜎(𝑍) = −
√
𝜌*

64
(
𝛼1𝜌* + 3𝛼*

𝜌*
)𝑍 +

∑︁
𝑗≥2

𝜎𝑗𝑍
𝑗.

Отсюда можно – ошибочно – сделать вывод, что тогда в случае Чаплыгина
линейный член разложения 𝜎(𝑍) обращается в нуль, и тогда по лемме Адамара,
уравнение сборки сводится к более простому уравнению

𝛿(𝑌, 𝑍) +
𝜎2
𝑘
𝑍2𝑅0 +𝑅3

0 = 0,

решения которого зависят от знака 𝜎2

𝑘 и отвечают «точечной сборке» (или «полу-
сборке»). Ниже мы покажем, что этот вывод неверен, и на самом деле в случае
Чаплыгина в уравнении типичной особенности сборки управляющий параметр
𝜎(𝑍) ≡ 0. По этой причине в дальнейшем будем говорить об уравнении особен-
ности типа сечения сборки или просто об уравнении особенности типа 𝐴3.

Неточность в интерпретации результатов работы [74] возникает из-за того,
что для анализа особенностей решений следует использовать полное разложение
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Δ𝜌 по натуральным степеням инвариантов Римана, а не ограничиваться только
линейными членами, как было сделано в [74].

Давление 𝑝 = 𝑝0 − 𝑚2

𝜌 соответствует системе{︃
𝑢𝑡 + 𝑢𝑢𝑥 +

𝑚2

𝜌3 𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0.
(1.67)

Перейдя к инвариантам Римана

𝑟 = 𝑢− 𝑚

𝜌
,

𝑙 = 𝑢+
𝑚

𝜌
,

(1.68)

перепишем (1.67) в виде {︃
𝑟𝑡 + 𝑙𝑟𝑥 = 0,

𝑙𝑡 + 𝑟𝑙𝑥 = 0.
(1.69)

Производные преобразования годографа

𝑢𝑥 = 𝐽𝑡𝜌, 𝑢𝑡 = −𝐽𝑥𝜌,
𝜌𝑥 = −𝐽𝑡𝑢, 𝜌𝑡 = 𝐽𝑥𝑢,

𝐽 = 𝑢𝑥𝜌𝑡 − 𝑢𝑡𝜌𝑥, 𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢, 𝐽 = 𝑗−1.

(1.70)

с якобианом
𝑗 =

𝑚2

𝜌3
𝑡2𝑢 − 𝜌𝑡2𝜌

сводят (1.69) к линейной системе{︃
𝑥𝜌 = 𝑢𝑡𝜌 − 𝑚2

𝜌3 𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌,

а замены (1.10) дают единственное линейное гиперболическое (при 𝜌 > 0) урав-
нение второго порядка

𝑚2

𝜌3
𝐵𝑢𝑢 = 𝜌𝐵𝜌𝜌 + 2𝐵𝜌

с общим решением
𝐵 = 𝐹1(

𝑚

𝜌
+ 𝑢) + 𝐹2(

𝑚

𝜌
− 𝑢), (1.71)

инвариантным относительно отражений 𝑢→ −𝑢, 𝜌→ −𝜌.
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Из формул (1.8) на производные преобразования годографа с якобианом

𝑗 = 𝑡𝑙𝑡𝑟(𝑟 − 𝑙) (1.72)

следует, что (1.69) сводится к линейной системе{︃
𝑙𝑡𝑙 = 𝑥𝑙,

𝑟𝑡𝑟 = 𝑥𝑟,

а замены (1.10) дают линейное волновое уравнение с постоянными коэффици-
ентами в его второй канонической форме

𝐵𝑟𝑙 = 0, (1.73)

с общим решением
𝐵 = 𝑓(𝑟) + 𝑔(𝑙), (1.74)

совпадающим с (1.71). Считаем произвольные функции 𝑓(𝑟) и 𝑔(𝑙) бесконечно
дифференцируемыми в окрестности точек 𝑟 = 𝑟* и 𝑙 = 𝑙* и разложение решения
(1.74) имеет вид

𝐵 =
∑︁
𝑖≥0

𝑓𝑖
𝑖!
(Δ𝑟)𝑖 +

∑︁
𝑗≥0

𝑔𝑗
𝑗!
(Δ𝑙)𝑗, (1.75)

где 𝑓𝑖 = 𝑑𝑖𝑓
𝑑𝑟𝑖 |𝑟=𝑟*, 𝑔𝑗 =

𝑑𝑗𝑔
𝑑𝑙𝑗 |𝑙=𝑙*.

Теперь соотношения (1.10) записываются в виде

𝑡 = 𝑓𝑟 + 𝑔𝑙,

𝑥 = 𝑟𝑓𝑟 + 𝑙𝑔𝑙 − 𝑓 − 𝑔,
(1.76)

откуда следуют равенства

𝑡* = 𝑓1 + 𝑔1,

𝑥* = 𝑟*𝑓1 + 𝑙*𝑔1 − 𝑓0 − 𝑔0.
(1.77)

Обнуление якобиана (1.72) в точке ГК (𝑡*, 𝑥*; 𝑟*, 𝑙*) означает, что

𝑗(𝑟*, 𝑙*) = 𝑓2𝑔2(𝑟* − 𝑙*) = 0

и, поскольку 𝑟* ̸= 𝑙*, можно без ограничения общности считать, что 𝑔2 = 0,
а 𝑓2 ̸= 0 (альтернатива рассматривается аналогично). Считаем, что 𝑟* ̸= 0.
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Случай 𝑟* = 0 будет прокомментирован в Замечании 1.6 в конце данного
пункта.

Учитывая соотношения (1.77), получаемые из (1.76) запишем теперь разло-
жения функций 𝑡(𝑟, 𝑙) и 𝑥(𝑟, 𝑙):

Δ𝑡 = 𝑓2Δ𝑟 + 𝑔2Δ𝑙 +
∑︁
𝑖≥2

𝑓𝑖+1

𝑖!
(Δ𝑟)𝑖 +

∑︁
𝑗≥2

𝑔𝑗+1

𝑗!
(Δ𝑙)𝑗,

Δ𝑥 = 𝑟*𝑓2Δ𝑟 + 𝑙*𝑔2Δ𝑙+

+
∑︁
𝑖≥2

(
𝑟*𝑓𝑖+1 + (𝑖− 1)𝑓𝑖

𝑖!
)(Δ𝑟)𝑖 +

∑︁
𝑗≥2

(
𝑙*𝑔𝑗+1 + (𝑗 − 1)𝑔𝑗

𝑗!
)(Δ𝑙)𝑗.

(1.78)

Удобно перейти к новым переменным

Δ𝑌 = Δ𝑥+ 𝑟*Δ𝑡

Δ𝑍 = Δ𝑥− 𝑟*Δ𝑡
(1.79)

подобно тому, как это было сделано в работе [74]. Заметим, что если левые
части равны, то новые переменные определяют перпендикулярные прямые на
плоскости (𝑡, 𝑥), и вторая из них – характеристическая.

Согласно идеологии теории катастроф (например, [80]), можем теперь нало-
жить еще только одно ограничение в виде равенства на коэффициенты рядов
Тейлора 𝑓(𝑟) и 𝑔(𝑙), ибо изначально было лишь две независимые переменные 𝑡
и 𝑥 функций 𝑢(𝑡, 𝑥) и 𝜌(𝑡, 𝑥). Воспользуемся этой возможностью впоследствии,
выбрав, что 𝑔3 = 0. В последующих нумерованных формулах (1.80) и (1.81)
пока принято 𝑔3 ̸= 0.

Запишем теперь разложения 𝑌 и 𝑍:

Δ𝑌 = 2𝑟*𝑓2Δ𝑟+

+(𝑟*𝑓3 +
𝑓2
2
)(Δ𝑟)2 +

(𝑟* + 𝑙*)𝑔3
2

(Δ𝑙)2+

+
∑︁
𝑖≥3

𝑦𝑟𝑖(Δ𝑟)
𝑖 +

∑︁
𝑗≥3

𝑦𝑙𝑗(Δ𝑙)
𝑗,

Δ𝑍 =
𝑓2
2
(Δ𝑟)2 +

(𝑙* − 𝑟*)𝑔3
2

(Δ𝑙)2 +
∑︁
𝑖≥3

𝑧𝑟𝑖(Δ𝑟)
𝑖 +

∑︁
𝑗≥3

𝑧𝑙𝑗(Δ𝑙)
𝑗.

(1.80)

Так как (Δ𝑌 )Δ𝑟(𝑟*, 𝑙*) = 2𝑟*𝑓2 ̸= 0, по теореме о неявной функции выразим
теперь Δ𝑟 как бесконечно дифференцируемую функцию переменных Δ𝑌 и Δ𝑙
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из первого уравнения (1.80) с рядом Тейлора:

Δ𝑟 =
1

2𝑟*𝑓2
Δ𝑌 −

(𝑟*𝑓3 +
𝑓2
2 )

8𝑟3*𝑓
3
2

(Δ𝑌 )2 − (𝑟* + 𝑙*)𝑔3
4𝑟*𝑓2

(Δ𝑙)2+

+
3(𝑟*𝑓3 +

𝑓2
2 )

2 − 𝑟*𝑓2(𝑟*𝑓4 + 𝑓3)

48𝑟5*𝑓
5
2

(Δ𝑌 )3−

−(𝑟* + 𝑙*)𝑔4
12𝑟*𝑓2

(Δ𝑙)3 +
∑︁
𝑖≥4

𝑟𝑦𝑖(Δ𝑌 )𝑖 +
∑︁
𝑗≥4

𝑟𝑙𝑗(Δ𝑙)
𝑗.

(1.81)

Отметим отсутствие в (1.81) смешанных слагаемых, что естественно, ведь их
не было и не могло быть в (1.80), поскольку их нет в самом решении волнового
уравнения (1.73).

Примем теперь в (1.80) и (1.81) 𝑔3 = 0, исчерпав этим обе возможности на-
ложения ограничений в виде равенств на коэффициенты тейлоровского разло-
жения решения (1.74) волнового уравнения (1.73). Подставляя (1.81) во второе
уравнение (1.80), получаем разложение в ряд Тейлора

Δ𝑍 = (Δ𝑙)3[
(𝑙* − 𝑟*)𝑔4

6
− (𝑟* + 𝑙*)𝑔4

24𝑟2*𝑓2
Δ𝑌 + 𝑙32(Δ𝑌 )2 +

∑︁
𝑚≥3

𝑙3𝑚(Δ𝑌 )𝑚]+

+(Δ𝑙)4[
(𝑙* − 𝑟*)𝑔5

24
+
𝑔4
8
+ 𝑙41Δ𝑌 +

∑︁
𝑚≥2

𝑙4𝑚(Δ𝑌 )𝑚]+

+
∑︁
𝑗≥5

(Δ𝑙)𝑗
∑︁
𝑚≥0

𝑙𝑗𝑚(Δ𝑌 )𝑚

(1.82)

без линейного слагаемого, так как его изначально не было во втором уравнении
(1.80), ибо условие 𝑔2 = 0 исключает член с Δ𝑙, а знак минус в Δ𝑍 = 𝑥 − 𝑟*𝑡

исключает член с Δ𝑟.
Представим теперь (1.82) в виде

Δ𝑍 = (Δ𝑙)3𝑍1(Δ𝑙; Δ𝑌 ),

где гладкая в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* функция 𝑍1(Δ𝑙; Δ𝑌 ) представляется
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рядом Тейлора

𝑍1 =
(𝑙* − 𝑟*)𝑔4

6
− (𝑟* + 𝑙*)𝑔4

24𝑟2*𝑓2
Δ𝑌 +

∑︁
𝑚≥2

𝑙3𝑚(Δ𝑌 )𝑚+

+Δ𝑙[
(𝑙* − 𝑟*)𝑔5

24
+
𝑔4
8
+ 𝑙41Δ𝑌 +

∑︁
𝑚≥2

𝑙4𝑚(Δ𝑌 )𝑚]+

+
∑︁
𝑗≥5

(Δ𝑙)𝑗−3
∑︁
𝑚≥0

𝑙𝑗𝑚(Δ𝑌 )𝑚.

Выполним замену
𝑆 = Δ𝑙𝑍

1/3
1 , (1.83)

обратимую и дифференцируемую в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* в силу выпол-
нения условия теоремы о неявной функции 𝑆Δ𝑙(0, 0) ̸= 0. Тогда (1.82) локально
представляется в виде сечения канонического уравнения сборки (𝐴3)

Δ𝑍 = 𝑆3, (1.84)

решения которого локально задают решения (1.69) в окрестности точки гради-
ентной катастрофы. Таким образом, в случае Чаплыгина, в отличие от рассмат-
риваемых в первом подпункте настоящей работы, происходит полное наследо-
вание нормальной формы особенности 𝐴3, а не только ее генотип.

Замечание 1.5. Применение леммы Адамара позволяет построить гладкую
обратимую в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* замену с разложением в ряд Тейлора
Δ𝑙 = (𝑙30)

−1/3𝑄+
∑︀

𝑖≥2 𝑞2𝑄
𝑖, коэффициенты которого однозначно определяются

через 𝑟*, 𝑙*, 𝑔𝑖, 𝑙𝑗𝑚 так, чтобы исключить в (1.82) лишь постоянные слагаемые в
коэффициентах при (Δ𝑙)𝑗, 𝑗 ≥ 4. Тогда Δ𝑍(0, 𝑄) = 𝑄3. Откуда следует вывод
[93, §13] о том, что росток функции Δ𝑍(Δ𝑌,𝑄) есть деформация с параметром
Δ𝑌 ростка монома 𝑄3, обладающего 𝑅-универсальной (значит, и версальной)
деформацией, являющейся ростком в нуле кубического многочлена

𝑄3 + 𝑒1𝑄+ 𝑒2

и существуют три локальных диффеоморфизма

𝑆(Δ𝑌,𝑄) : 𝑆(0, 𝑄) = 𝑄,

𝑒1(Δ𝑌 ) : 𝑒1(0) = 0,

𝑒2(Δ𝑌 ) : 𝑒2(0) = 0,
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таких, что

Δ𝑍(Δ𝑌,𝑄) = 𝑆(Δ𝑌,𝑄)3 + 𝑒1(Δ𝑌 )𝑆(Δ𝑌,𝑄) + 𝑒2(Δ𝑌 ). (1.85)

Подстановка рядов Тейлора

𝑒𝑖(Δ𝑌 ) =
∑︁
𝑗≥1

𝑒𝑖𝑗(Δ𝑌 )𝑗, 𝑖 = 1, 2,

𝑆(Δ𝑌,𝑄) =
∑︁
𝑗≥1

𝑆0𝑗(Δ𝑌 )𝑗 +𝑄[1 +
∑︁
𝑗≥1

𝑆1𝑗(Δ𝑌 )𝑗] +
∑︁

𝑘≥2,𝑗≥1

𝑆𝑘𝑗𝑄
𝑘(Δ𝑌 )𝑗

(1.86)

в (1.85) и приравнивание коэффициентов при линейно независимых слагаемых
однозначно определяет все коэффициенты этих рядов:

𝑒1𝑗 = 0, 𝑒2𝑗 = 0, 𝑆01 = 0, 𝑆11 = −(𝑟* + 𝑙*)𝑔4
72𝑟2*𝑓2

, ...

Вообще говоря, обращение в нуль всех коэффициентов 𝑒𝑖𝑗 не означает тож-
дественного равенства нулю функций 𝑒𝑖. Однако в данном случае это действи-
тельно так в силу приведенного перед данным замечанием рассуждения.

Результат согласуется с уже известными. Как было доказано в [108, Глава 1,
§10, пункт 2] решения (и их первые производные) слабо-нелинейных систем (к
которым относится и система уравнений газовой динамики в случае Чаплыгина)
остаются ограниченными, если в начальный момент были ограничены функции,
задающие начальные условия и их первые производные.

Замечание 1.6. Выше считалось, что 𝑟* ̸= 0. Пусть теперь 𝑟* = 0 или, что
равносильно в силу инвариантов Римана, 𝑢* = 𝑚

𝜌*
. В ситуации «общего поло-

жения» это первое из дополнительных допустимых двух ограничений в виде
равенств, не следующих из того, что образ преобразования годографа сводится
к волновому уравнению (1.73).

В таком случае условие обращения в нуль якобиана (1.72) преобразования
годографа в точке градиентной катастрофы (𝑡*, 𝑥*; 𝑟*, 𝑙*) принимает вид

𝑗(𝑟*, 𝑙*) = −𝑙*𝑓2𝑔2 = 0.

Это равенство выполняется в одном (и только в одном – ведь уже наложено
одно из двух допустимых ограничений) из двух случаев.

Случай 1. 𝑙* = 0 и 𝑓2 ̸= 0, 𝑔2 ̸= 0;
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Случай 2. 𝑓2 = 0 (либо 𝑔2 = 0 – случаи рассматриваются одинаково) и 𝑙* ̸= 0.
Наложив одно ограничение 𝑟* = 0, нельзя не наложить второе.
Случай 1. Если 𝑟* = 𝑙* = 0, то 𝑢* = 𝑚

𝜌*
= −𝑚

𝜌*
, то есть 𝑚 = −𝑚. Значит,

𝑚 = 0. Это противоречит изначальной постановке задачи, поскольку 𝑚 > 0,
следовательно, данный случай, дающий систему{︃

𝑢𝑡 + 𝑢𝑢𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,

не реализуется. Тем не менее, мы исследуем получаемую систему на предмет
особенностей решений в пункте 2.3 как из этих, так и из других соображений.

Случай 2. В таком случае справедливы разложения в ряды Тейлора

Δ𝑡 = 𝑔2Δ𝑙 +
∑︁
𝑖≥2

𝑓𝑖+1

𝑖!
(Δ𝑟)𝑖 +

∑︁
𝑗≥2

𝑔𝑗+1

𝑗!
(Δ𝑙)𝑗,

Δ𝑥 = 𝑙*𝑔2Δ𝑙 +
𝑙*𝑔3 + 𝑔2

2
(Δ𝑙)2+

+
∑︁
𝑖≥3

(𝑖− 1)𝑓𝑖
𝑖!

(Δ𝑟)𝑖 +
∑︁
𝑗≥3

(
𝑙*𝑔𝑗+1 + (𝑗 − 1)𝑔𝑗

𝑗!
)(Δ𝑙)𝑗

и вместо переменных (1.79) следует перейти к переменным

Δ𝑌 = Δ𝑥+ 𝑙*Δ𝑡,

Δ𝑍 = Δ𝑥− 𝑙*Δ𝑡

Тогда в разложении Δ𝑍 исключается линейное слагаемое, а в разложении
Δ𝑌 , напротив, присутствует:

Δ𝑌 = 2𝑙*𝑔2Δ𝑙+

+𝑙*
𝑓3
2
(Δ𝑟)2 +

2𝑙*𝑔3 + 𝑔2
2

(Δ𝑙)2+

+[
𝑓3
3
+ 𝑙*

𝑓4
6
](Δ𝑟)3 + (

2𝑙*𝑔4
6

+
𝑔3
3
)(Δ𝑙)3+

+
∑︁
𝑖≥4

(𝑖− 1)𝑓𝑖 + 𝑙*𝑓𝑖+1

𝑖!
(Δ𝑟)𝑖 +

∑︁
𝑗≥4

2𝑙*𝑔𝑗+1 + (𝑗 − 1)𝑔𝑗
𝑗!

(Δ𝑙)𝑗,
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Δ𝑍 = −𝑙*
𝑓3
2
(Δ𝑟)2 +

𝑔2
2
(Δ𝑙)2+

+(
𝑓3
3
− 𝑙*

𝑓4
6
)(Δ𝑟)3 +

𝑔3
3
)(Δ𝑙)3+

+
∑︁
𝑖≥4

(
(𝑖− 1)𝑓𝑖 − 𝑙*𝑓𝑖+1

𝑖!
)(Δ𝑟)𝑖 +

∑︁
𝑗≥4

(
(𝑗 − 1)𝑔𝑗

𝑗!
)(Δ𝑙)𝑗.

Эта ситуация принципиально не отличается от изученной в этом пункте ра-
нее. Дальнейшие выкладки по существу аналогичны уже проделанным и поз-
воляют снова описать особенность типа 𝐴3.

1.3.2 Случай Чаплыгина. Особенность складки 𝐴2

В этом подпункте ограничимся единственным ограничением в виде равенств
на коэффициенты тейлоровского разложения решения (1.74) волнового уравне-
ния (1.73): пусть по-прежнему 𝑔2 = 0, но теперь 𝑔3 ̸= 0.

В таком случае подстановка (1.81) во второе уравнение (1.80) дает

Δ𝑍 = (Δ𝑙)2[
(𝑙* − 𝑟*)𝑔3

2
− (𝑟* + 𝑙*)𝑔3

8𝑟2*𝑓2
Δ𝑌 +

∑︁
𝑚≥2

𝑙2𝑚(Δ𝑌 )𝑚]+

+(Δ𝑙)3[
(𝑙* − 𝑟*)𝑔4

6
+
𝑔3
3
− (𝑟* + 𝑙*)𝑔4

24𝑟2*𝑓2
Δ𝑌 +

∑︁
𝑚≥2

𝑙3𝑚(Δ𝑌 )𝑚]+

+(Δ𝑙)4[
(𝑙* − 𝑟*)𝑔5

24
+
𝑔4
8
+

(𝑟* + 𝑙*)
2𝑔23

32𝑟2*𝑓2
+

∑︁
𝑚≥1

𝑙4𝑚(Δ𝑌 )𝑚]+

+
∑︁
𝑗≥5

(Δ𝑙)𝑗
∑︁
𝑚≥0

𝑙𝑗𝑚(Δ𝑌 )𝑚.

(1.87)

Для удобства выполним растяжение 𝑊 = Δ𝑍( (𝑙*−𝑟*)𝑔3
2 )−1 и представим тей-

лоровское разложение функции 𝑊 (Δ𝑌 ; Δ𝑙) в виде

𝑊 = Δ𝑙2𝑊1(Δ𝑌 ; Δ𝑙), (1.88)

где гладкая в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* функция 𝑊1(Δ𝑌 ; Δ𝑙) имеет разложе-
ние в ряд Тейлора

𝑊1 = 1 +
∑︁
𝑚≥1

𝑤2𝑚(Δ𝑌 )𝑚 +Δ𝑙
∑︁
𝑚≥1

𝑤3𝑚(Δ𝑌 )𝑚 +
∑︁
𝑗≥4

(Δ𝑙)𝑗−2
∑︁
𝑚≥0

𝑙𝑗𝑚(Δ𝑌 )𝑚.
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Выполним замену
𝑆 = Δ𝑙

√︀
𝑊1, (1.89)

обратимую и дифференцируемую в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* в силу вы-
полнения условия теоремы о неявной функции 𝑆Δ𝑙(0, 0) = 1 ̸= 0. Тогда (1.88)
локально представляется в виде канонического уравнения складки (𝐴2)

𝑊 = 𝑆2. (1.90)

Теорема 1.2. Рассмотрим такое бесконечно дифференцируемое в окрестно-
сти точки (𝑟*, 𝑙*) решение 𝐵(𝑟, 𝑙) волнового уравнения (1.73), что коэффициенты
его тейлоровского разложения (1.75) в окрестности точки (𝑟*, 𝑙*) удовлетворя-
ют равенствам (1.77). Рассмотрим решения системы (1.67), которые в некоторой
малой окрестности точек 𝑡*, 𝑥*, 𝑢* = 𝑢(𝑡*, 𝑥*), 𝜌* = 𝜌(𝑡*, 𝑥*) определяются через
инварианты Римана (1.68), равенства 𝑟* = 𝑟(𝑢*, 𝜌*), 𝑙 = 𝑙*(𝑢*, 𝜌*) и функцию
𝐵(𝑟, 𝑙). Пусть выполнен переход к новым переменным (1.79). Тогда:

1) при 𝑔2 = 𝑔3 = 0 гладкая обратимая в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* замена
(1.83) позволяет локально задать решения (1.67) в терминах корней уравнения
особенности сечения сборки (1.84);

2) при 𝑔2 = 0, 𝑔3 ̸= 0 гладкая обратимая в окрестности Δ𝑌 = 0, 𝑙 = 𝑙* замена
(1.89) позволяет локально задать решения (1.67) в терминах корней уравнения
особенности складки (1.90).

1.3.3 Случай Бехерта-Станюковича. Особенность сечения гипербо-
лической омбилики 𝐷+

4

При рассмотрении давления газа Бехерта-Станюковича

𝑝 =
𝑎2

3
𝜌3

без ограничения общности – в силу возможности применить преобразование
растяжения 𝜌 – примем 𝑎 = 1. Тогда система (1.1) принимает вид{︃

𝑢𝑡 + 𝑢𝑢𝑥 + 𝜌𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(1.91)

а система (1.5) в терминах инвариантов Римана (1.4)

𝑟 = 𝑢+ 𝜌,

𝑙 = 𝑢− 𝜌
(1.92)
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становится системой уравнений Хопфа{︃
𝑟𝑡 + 𝑟𝑟𝑥 = 0,

𝑙𝑡 + 𝑙𝑙𝑥 = 0,
(1.93)

с известным общим решением{︃
𝑥− 𝑟(𝑡− 𝑡0) = 𝑓(𝑟),

𝑥− 𝑙(𝑡− 𝑡0) = 𝑔(𝑙),
(1.94)

где функции 𝑓(𝑟) и 𝑔(𝑙) локально бесконечно дифференцируемые и в момент
𝑡 = 𝑡0 для всякого 𝑥 из области определения выполнено условие 𝑓−1(𝑥) > 𝑔−1(𝑥),
т.е. разница обратных функций строго положительна. В силу теоремы об об-
ратной функции эти ограничения обеспечивают гладкость начальных условий
и положительную плотность газа в постановке задачи Коши.

Уравнение (1.11) становится частным случаем интегрируемого уравнения
типа Эйлера-Пуассона-Дарбу

𝐵𝑟𝑙 =
𝐵𝑟 −𝐵𝑙

𝑟 − 𝑙
(1.95)

с общим решением

𝐵 =
𝑓(𝑟)− 𝑔(𝑙)

𝑟 − 𝑙
. (1.96)

В рамках используемого нами подхода мы считаем функции 𝑓(𝑟) и 𝑔(𝑙) бес-
конечно дифференцируемыми в окрестностях точек, соответственно, 𝑟* и 𝑙* и
обладающими разложениями в ряды Тейлора

𝐵 =
∑︁
𝑖≥0

𝑓𝑖
𝑖!
(Δ𝑟)𝑖 +

∑︁
𝑗≥0

𝑔𝑗
𝑗!
(Δ𝑙)𝑗, (1.97)

где 𝑓𝑖 = 𝑑𝑖𝑓
𝑑𝑟𝑖 |𝑟=𝑟*, 𝑔𝑗 =

𝑑𝑗𝑔
𝑑𝑙𝑗 |𝑙=𝑙*.

Решение (1.96) в окрестности точки (𝑟*, 𝑙*) удобно представить в виде ряда

𝐵 = 𝑏00+𝑏10Δ𝑟+𝑏01Δ𝑙+𝑏20(Δ𝑟)
2+𝑏11Δ𝑟Δ𝑙+𝑏02(Δ𝑙)

2+
∑︁
𝑖+𝑗≥3

(Δ𝑟)𝑖(Δ𝑙)𝑗, (1.98)

постоянные коэффициенты 𝑏𝑖𝑗 которого однозначно выражаются через 𝑟*, 𝑙*, 𝑓𝑖,
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𝑔𝑗. В частности,

𝑏20 =
2(𝑔0 − 𝑓0) + 2(𝑟* − 𝑙*)𝑓1 − (𝑙* − 𝑟*)

2𝑓2
2(𝑙* − 𝑟*)3

,

𝑏11 =
2(𝑓0 − 𝑔0) + (𝑙* − 𝑟*)(𝑓1 + 𝑔1)

(𝑙* − 𝑟*)3
,

𝑏02 =
2(𝑔0 − 𝑓0) + 2(𝑟* − 𝑙*)𝑔1 + (𝑙* − 𝑟*)

2𝑔2
2(𝑙* − 𝑟*)3

,

𝑏30 =
6(𝑔0 − 𝑓0) + 6(𝑟* − 𝑙*)𝑓1 − 3(𝑙* − 𝑟*)

2𝑓2 − (𝑙* − 𝑟*)
3𝑓3

6(𝑙* − 𝑟*)4
,

𝑏03 =
6(𝑓0 − 𝑔0) + 6(𝑙* − 𝑟*)𝑔1 − 3(𝑙* − 𝑟*)

2𝑔2 + (𝑙* − 𝑟*)
3𝑔3

6(𝑙* − 𝑟*)4
.

С учетом того, что 𝑢 = 𝑟+𝑙
2 (что справедливо для всех одномерных течений в

модели вида (1.1)), 𝜌 = 𝑟−𝑙
2 и 𝑐 = 𝑟−𝑙

2 условие обращения якобиана (1.15) в нуль
принимает вид

𝑗(𝑟*, 𝑙*) = (𝑙* − 𝑟*)(𝐵𝑟𝑟(𝑟*, 𝑙*) +𝐵𝑙𝑟(𝑟*, 𝑙*))(𝐵𝑟𝑙(𝑟*, 𝑙*) +𝐵𝑙𝑟(𝑟*, 𝑙*))

= (𝑙* − 𝑟*)(2𝑏20 + 𝑏11)(𝑏11 + 2𝑏02) = 0,

и мы снова задействуем обе возможности обнуления якобиана, считая, что

𝑏11 = −2𝑏02 = −2𝑏20 (1.99)

или
𝑔1 − 𝑓1
𝑙* − 𝑟*

= 𝑓2 = 𝑔2.

В случае газа Бехерта-Станюковича «единая функция» (1.20) принимает вид

𝐹 =
𝑔 − 𝑓

2
− 𝑡

4
(𝑟2 − 𝑙2)− 𝑥(

𝑟 − 𝑙

2
), (1.100)

откуда очевидно, что в разложении в окрестности точки (𝑡*, 𝑥*; 𝑟*, 𝑙*)

𝐺 = 2𝐹 = −𝑏20(𝑟* − 𝑙*)
3 +

Δ𝑡(𝑟2* − 𝑙2*)

2
− (𝑟* − 𝑙*)Δ𝑥+

+Δ𝑟(𝑟*Δ𝑡−Δ𝑥) + Δ𝑙(−𝑙*Δ𝑡+Δ𝑥)+

+
Δ𝑡

2
((Δ𝑟)2 − (Δ𝑙)2)

+(Δ𝑟)3(−𝑏20 − (𝑟* − 𝑙*)𝑏30) + (Δ𝑙)3(𝑏20 − (𝑟* − 𝑙*)𝑏03)+

+
∑︁
𝑖,𝑗>3

(𝑓𝑖0(Δ𝑟)
𝑖 + 𝑓0𝑗(Δ𝑙)

𝑗).

(1.101)
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отсутствуют смешанные слагаемые, а коэффициенты 𝑓𝑖 и 𝑓𝑗 не зависят от Δ𝑡 и
Δ𝑥. В силу этого представим (1.101) в виде

𝐻 = 𝐺+ 𝑏20(𝑟* − 𝑙*)
3 = 𝐺1(Δ𝑡,Δ𝑥; Δ𝑟) +𝐺2(Δ𝑡,Δ𝑥; Δ𝑙),

где

𝐺1(Δ𝑡,Δ𝑥; Δ𝑟) =
𝑟2*Δ𝑡

2
− 𝑟*Δ𝑥+Δ𝑟(𝑟*Δ𝑡−Δ𝑥)+

+
Δ𝑡

2
(Δ𝑟)2 + (Δ𝑟)3(−𝑏20 − (𝑟* − 𝑙*)𝑏30) +

∑︁
𝑖>3

(𝑓𝑖0(Δ𝑟)
𝑖,

𝐺2(Δ𝑡,Δ𝑥; Δ𝑙) =
−𝑙2*Δ𝑡

2
+ 𝑙*Δ𝑥+Δ𝑙(−𝑙*Δ𝑡+Δ𝑥)−

−Δ𝑡

2
(Δ𝑙)2 + (Δ𝑙)3(𝑏20 − (𝑟* − 𝑙*)𝑏03) +

∑︁
𝑗>3

𝑓0𝑗(Δ𝑙)
𝑗.

(1.102)

Заметим, что

𝐺1(𝑡*, 𝑥*; Δ𝑟) = (Δ𝑟)3(−𝑏20 − (𝑟* − 𝑙*)𝑏30) +
∑︁
𝑖>3

(𝑓𝑖0(Δ𝑟)
𝑖,

𝐺2(𝑡*, 𝑥*; Δ𝑙) = (Δ𝑙)3(𝑏20 − (𝑟* − 𝑙*)𝑏03) +
∑︁
𝑗>3

𝑓0𝑗(Δ𝑙)
𝑗,

следовательно, функция𝐺1(Δ𝑡,Δ𝑥; Δ𝑟) является [93, §13] 2-деформацией функ-
ции 𝐺1(𝑡*, 𝑥*; Δ𝑟) и может быть получена из 𝑅-версальной деформации, описы-
ваемой двухпараметрическим семейством функций

𝐻1(𝑒11, 𝑒12;𝑅) = 𝑅3 + 𝑒11𝑅 + 𝑒12.

Так же функция 𝐺2(Δ𝑡,Δ𝑥; Δ𝑙) является 2-деформацией функции 𝐺2(𝑡*, 𝑥*; Δ𝑙)

и может быть получена из 𝑅-версальной деформации, описываемой двухпара-
метрическим семейством функций

𝐻2(𝑒21, 𝑒22;𝐿) = 𝐿3 + 𝑒21𝐿+ 𝑒22,

что по существу позволяет нам локально представить функции 𝐺1(Δ𝑡,Δ𝑥; Δ𝑟)

и 𝐺2(Δ𝑡,Δ𝑥; Δ𝑙) в виде канонических уравнений типа сборки посредством глад-
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ких в окрестности 𝑡 = 𝑡*, 𝑥 = 𝑥*, 𝑟 = 𝑟*, 𝑙 = 𝑙* замен в виде рядов Тейлора

𝑅(Δ𝑡,Δ𝑥; Δ𝑟) =
∑︁

𝑛+𝑚>0

𝑎𝑛𝑚,00(Δ𝑡)
𝑛(Δ𝑥)𝑚+

+Δ𝑟[(−𝑏20 − (𝑟* − 𝑙*)𝑏30)
1/3 +

∑︁
𝑛+𝑚>0

𝑎𝑛𝑚,10(Δ𝑡)
𝑛(Δ𝑥)𝑚]+

+
∑︁
𝑖≥2

∞∑︁
𝑛+𝑚=0

𝑎𝑛𝑚,𝑖(Δ𝑟)
𝑖(Δ𝑡)𝑛(Δ𝑥)𝑚,

𝐿(Δ𝑡,Δ𝑥; Δ𝑟) =
∑︁

𝑛+𝑚>0

𝑏𝑛𝑚,00(Δ𝑡)
𝑛(Δ𝑥)𝑚+

+Δ𝑙[(𝑏20 − (𝑟* − 𝑙*)𝑏03)
1/3 +

∞∑︁
𝑛+𝑚>0

𝑏𝑛𝑚,01(Δ𝑡)
𝑛(Δ𝑥)𝑚]+

+
∑︁
𝑗≥2

∞∑︁
𝑛+𝑚=0

𝑏𝑛𝑚,𝑗(Δ𝑙)
𝑗(Δ𝑡)𝑛(Δ𝑥)𝑚,

(1.103)

𝑒11(Δ𝑡,Δ𝑥) = 𝑒11,10Δ𝑡+ 𝑒11,01Δ𝑥+
∑︁
𝑖+𝑗≥2

𝑒11,𝑖𝑗Δ𝑡
𝑖Δ𝑥𝑗,

𝑒12(Δ𝑡,Δ𝑥) = 𝑒12,10Δ𝑡+ 𝑒12,01Δ𝑥+
∑︁
𝑖+𝑗≥2

𝑒12,𝑖𝑗Δ𝑡
𝑖Δ𝑥𝑗,

𝑒21(Δ𝑡,Δ𝑥) = 𝑒21,10Δ𝑡+ 𝑒21,01Δ𝑥+
∑︁
𝑖+𝑗≥2

𝑒21,𝑖𝑗Δ𝑡
𝑖Δ𝑥𝑗,

𝑒22(Δ𝑡,Δ𝑥) = 𝑒22,10Δ𝑡+ 𝑒22,01Δ𝑥+
∑︁
𝑖+𝑗≥2

𝑒22,𝑖𝑗Δ𝑡
𝑖Δ𝑥𝑗

(1.104)

коэффициенты которых определяются однозначно:

𝑒11,10 = 𝑟*(−𝑏20 − (𝑟* − 𝑙*)𝑏30)
−1/3, 𝑒11,01 = −(−𝑏20 − (𝑟* − 𝑙*)𝑏30)

−1/3, ...

𝑒21,10 = −𝑙*(𝑏20 − (𝑟* − 𝑙*)𝑏03)
−1/3, 𝑒21,01 = (𝑏20 − (𝑟* − 𝑙*)𝑏03)

−1/3, ...

𝑒12,10 =
𝑟2*
2
, 𝑒12,01 = −𝑟*, 𝑒22,10 = −𝑙

2
*
2
, 𝑒22,01 = 𝑙*, ...(1.105)

𝑎00,2 =
𝑓40

3(−𝑏20 − (𝑟* − 𝑙*)𝑏30)2/3
, 𝑏00,2 =

𝑓04
3(𝑏20 − (𝑟* − 𝑙*)𝑏03)2/3

, ...

𝑎10,00 =
1
2 − 𝑎00,2𝑒11,10

3(−𝑏20 − (𝑟* − 𝑙*)𝑏30)2/3
, 𝑎01,00 =

−𝑎00,2𝑒11,01
3(−𝑏20 − (𝑟* − 𝑙*)𝑏30)2/3

, ...,

𝑏10,00 =
−1

2 − 𝑏00,2𝑒21,10

3(𝑏20 − (𝑟* − 𝑙*)𝑏03)2/3
, 𝑏01,00 =

−𝑏00,2𝑒21,01
3(𝑏20 − (𝑟* − 𝑙*)𝑏03)2/3

, ...

(1.106)
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Следовательно, справедливо представление

𝐻 = 𝑅3 + 𝐿3 + 𝑒11𝑅 + 𝑒21𝐿+ 𝑒12 + 𝑒22

или, после замен 𝑅 = 𝑦1
31/3

, 𝐿 = 𝑦2
31/3

, 𝑒21
31/3

= −𝑘1, 𝑒11
31/3

= −𝑘2, 𝑒12 + 𝑒22 = 𝑘0
и 𝐻 − 𝑘0 = 𝑊 представление в виде нормальной формы особенности сечения
гиперболической омбилики 𝐷+

4 :

𝑊 =
𝑦31 + 𝑦32

3
− 𝑘2𝑦1 − 𝑘1𝑦2, (1.107)

критические точки которой определяются из системы квадратных уравнений

𝑦21 = 𝑘2,

𝑦22 = 𝑘1,

решения которой локально задают решения системы (1.91).
Таким образом, в случае газа Бехерта-Станюковича происходит наследова-

ние не только генотипа, но и всей нормальной формы особенности 𝐷+
4 .

Теорема 1.3. Рассмотрим такое бесконечно дифференцируемое в окрест-
ности точки (𝑟*, 𝑙*) решение 𝐵(𝑟, 𝑙) уравнения типа Эйлера-Пуассона-Дарбу
(1.95), что коэффициенты его тейлоровского разложения (1.98) в окрестности
точки (𝑟*, 𝑙*) удовлетворяют двойному равенству (1.99). Рассмотрим решения
системы (1.91) (получаемой из системы (1.1) в частном случае давления газа
Бехерта-Станюковича (1.65)), которые в некоторой малой окрестности точек
𝑡*, 𝑥*, 𝑢* = 𝑢(𝑡*, 𝑥*), 𝜌* = 𝜌(𝑡*, 𝑥*) определяются через инварианты Римана
(1.92), равенства 𝑟* = 𝑟(𝑢*, 𝜌*), 𝑙 = 𝑙*(𝑢*, 𝜌*) и функцию 𝐵(𝑟, 𝑙). Локально глад-
кая функция (1.20) (критические точки которой определяют решения (1.91))
принимает вид (1.100). Существуют локально гладкие обратимые замены в ви-
де рядов Тейлора (1.103), (1.104) с коэффициентами (1.105), (1.106) которые
позволяют локально свести (1.100) к нормальной форме особенности сечения
гиперболической омбилики (1.107).

Замечание 1.7. Омбилическая особенность в случае Чаплыгина не имеет
такой же специфики. В самом деле, «единая функция» (1.20) имеет вид 𝐹 =
2𝑚
𝑙−𝑟 [

𝑟+𝑙
2 𝑡−𝑥− 𝑓(𝑟)− 𝑔(𝑙)] и ее разложение в ряд Тейлора в окрестности точек 𝑡*,
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𝑥*, 𝑟*, 𝑙* с учетом равенств 𝑔2 = 𝑓2 = 0 и 𝜌 = − 2𝑚
(𝑟−𝑙) принимает вид

𝐹 = 𝑚(𝑓1 − 𝑔1) +
𝑚[2Δ𝑥−Δ𝑡(𝑟* + 𝑙*)]

(𝑟* − 𝑙*)
+

+Δ𝑟

[︂
−2𝑚(Δ𝑥− 𝑙*Δ𝑡)

(𝑟* − 𝑙*)2

]︂
+Δ𝑙

[︂
−2𝑚(𝑟*Δ𝑡−Δ𝑥)

(𝑟* − 𝑙*)2

]︂
+

+(Δ𝑟)2
(︂
−2𝑚(𝑙*Δ𝑡−Δ𝑥)

(𝑟* − 𝑙*)3

)︂
+Δ𝑟Δ𝑙

(︂
−2𝑚(2Δ𝑥−Δ𝑡(𝑟* + 𝑙*))

(𝑟* − 𝑙*)3

)︂
+

+(Δ𝑙)2
(︂
−2𝑚(𝑟*Δ𝑡−Δ𝑥)

(𝑟* − 𝑙*)3

)︂
+

+
2𝑓3𝑚

(𝑟* − 𝑙*)
(Δ𝑟)3 +

2𝑔3𝑚

(𝑟* − 𝑙*)
(Δ𝑙)3+

+(Δ𝑟)3
(︂
−2𝑚(Δ𝑥− 𝑙*Δ𝑡)

(𝑟* − 𝑙*)4

)︂
+ (Δ𝑟)2Δ𝑙

(︂
−2𝑚[(𝑟* + 2𝑙*)Δ𝑡− 3Δ𝑥]

(𝑟* − 𝑙*)4

)︂
+

+Δ𝑟(Δ𝑙)2
(︂
−2𝑚[3Δ𝑥− (2𝑟* + 𝑙*)Δ𝑡]

(𝑟* − 𝑙*)4

)︂
+ (Δ𝑙)3

(︂
−2𝑚(𝑟*Δ𝑡−Δ𝑥)

(𝑟* − 𝑙*)4

)︂
+

+
∑︁
𝑖+𝑗≥4

𝑓𝑖𝑗(Δ𝑟)
𝑖(Δ𝑙)𝑗,

где

𝑓𝑖𝑗 =
1∑︁

𝑀+𝑁=0

𝑓𝑀𝑁
𝑖𝑗 (Δ𝑡)𝑀(Δ𝑥)𝑁 ,

т.е.

𝐹 (𝑡*, 𝑥*) = 𝑚(𝑓1 − 𝑔1) +
2𝑓3𝑚

(𝑟* − 𝑙*)
(Δ𝑟)3 +

2𝑔3𝑚

(𝑟* − 𝑙*)
(Δ𝑙)3 +

∑︁
𝑖+𝑗≥4

𝑓 00𝑖𝑗 (Δ𝑟)
𝑖(Δ𝑙)𝑗.

Каждый коэффициент кратен 𝑚 ̸= 0. Поскольку в ситуации «общего поло-
жения» 𝑓1 ̸= 𝑔1, 𝑓3 ̸= 0, 𝑔3 ̸= 0, ни один коэффициент при членах не старше
третьего порядка не обращается в нуль. Само тейлоровское разложение невоз-
можно представить в виде суммы двух степенных рядов по натуральным сте-
пеням каждой из переменных по отдельности, в чем заключалась повлиявшая
на итоговый результат специфика исследования газа Бехерта-Станюковича.

Как в случае газа Чаплыгина, так и в случае газа Бехерта-Станюковича име-
ет место совпадение с точностью до растяжений генотипов особенностей реше-
ний линейного волнового уравнения и генотипов особенностей решений системы
уравнений ГД.
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Пример. Пусть 𝑡0 = 0 и частное решение системы уравнений Хопфа (1.93)
имеет вид {︃

𝑥 = 𝑟𝑡− 𝛼𝑎𝑟𝑠ℎ(𝛽𝑟 − 𝜆)− 𝜙,

𝑥 = 𝑙𝑡− 𝛾𝑎𝑟𝑠ℎ(𝛿𝑙 − 𝜇)− 𝜓,
(1.108)

где 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝜇, 𝜙, 𝜓 – вообще говоря, не произвольные вещественные посто-
янные, подлежащие определению с учетом наложенных выше ограничений и
получаемых далее условий.

Продифференцировав функции (1.108) соответственно по 𝑟 и 𝑙, определим,
что

𝑟* =
𝜆𝑡* ±

√︀
𝛼2𝛽2 − 𝑡2*
𝛽𝑡*

, 𝑙* =
𝜇𝑡* ±

√︀
𝛾2𝛿2 − 𝑡2*
𝛿𝑡*

. (1.109)

Очевидно,
𝛽 ̸= 0, 𝛿 ̸= 0, 𝑡* ̸= 0,

𝑡* ≤ |𝛼𝛽|, 𝑡* ≤ |𝛾𝛿|.
После выбора, например, знака плюс в 𝑟* и знака минус в 𝑙* и подстановки

(1.109) в (1.108) получаем определяющее 𝑡* уравнение

𝛽𝛿[𝛼𝑎𝑟𝑠ℎ(

√︀
𝛼2𝛽2 − 𝑡2*
𝑡*

) + 𝛾𝑎𝑟𝑠ℎ(

√︀
𝛾2𝛿2 − 𝑡2*
𝑡*

) + 𝜙− 𝜓] =

= 𝑡*(𝛿𝜆− 𝛽𝜇) + 𝛽
√︀
𝛾2𝛿2 − 𝑡2* + 𝛿

√︀
𝛼2𝛽2 − 𝑡2*.

Выбрав
𝑎 =

√
3, 𝛼 = 1, 𝛽 = 2, 𝛾 = 1, 𝛿 = 3,

𝜆 =
151

100
, 𝜇 = 0, 𝜙 = 0, 𝜓 =

41

100
,

численно решим это уравнение и получим

𝑡* ≈ 1, 042, 𝑥* ≈ 0, 371,

𝑟*+ ≈ 1, 574, 𝑙*− ≈ −0, 899,

𝑢* ≈ 0, 337, 𝜌* ≈ 0, 357.

На первом графике ниже изображена положительная разность обратных
функций в начальный момент времени 𝑡0 = 0, на втором – пересечение кау-
стик решения в точке градиентной катастрофы.
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Рис. 1: 𝑓−1(𝑋, 0)− 𝑔−1(𝑋, 0) > 0.

Рис. 2: Пересечение левой ветви каустики, соответствующей 𝑟 с правой ветвью
каустики, соответствующей 𝑙 из решения (1.108) системы (1.93).

Этот пример показывает, что омбилическая особенность для газа Бехерта-
Станюковича возникает из гладкого начального условия.

Замечание 1.8. Существует [108, Глава 2, §9, пункт 1] другой подход к
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интегрированию уравнений течений изоэнтропического газа (1.1), основанный
на представлении (1.9) в виде{︃

𝜕
𝜕𝑟 [𝑥− 𝑡(𝑟+𝑙

2 − 𝑐)] = −𝑡(12 − 𝑐𝑟),
𝜕
𝜕𝑙 [𝑥− 𝑡(𝑟+𝑙

2 + 𝑐)] = −𝑡(12 + 𝑐𝑙),

и введении потенциальной функции𝑊 (𝑟, 𝑙), чья полная производная получается
из уравнений выше, если 𝑐𝑙 = −𝑐𝑟 что справедливо для политропных газов с
давлением 𝑝 = 𝑎2𝜌𝛾. После этого получается уравнение

(𝑟 − 𝑙)𝑊𝑟𝑙 =
3− 𝛾

2(𝛾 − 1)
(𝑊𝑟 −𝑊𝑙),

интегрируемое при помощи общего решения 𝑤 = 𝑓(𝑟)+𝑔(𝑙) волнового уравнения
𝑤𝑟𝑙 = 0 по формуле (25) (или (32)) Главы 2, §9 из [108]. В частности, 𝑚-атомный
газ (где 𝑚 = 3−𝛾

2(𝛾−1) , 𝛾 ̸= 1) может быть проинтегрирован с помощью решения
волнового уравнения.

Интересно, что это уравнение является волновым для случая Бехерта-
Станюковича (𝛾 = 3) и уравнением типа Эйлера-Пуассона-Дарбу для случая
Чаплыгина (𝛾 = −1) в то время как для уравнения (1.11) на функцию 𝐵 было
наоборот.

Оказывается, эти две аппроксимации к реальным течениям связаны, хотя
при изучении их типичных особенностей выводы сохраняются, что следует из
формул

𝐵 =

∫︁
𝑓(𝑟)𝑑𝑟 +

∫︁
𝑔(𝑙)𝑑𝑙 (1.110)

для газа Чаплыгина и

𝐵 =
𝑊

𝑟 − 𝑙
(1.111)

для газа Бехерта-Станюковича (кроме знака при произвольной функции 𝑔(𝑙)).
Замены 𝑓𝑟 = 𝑓 и 𝑔𝑙 = 𝑔 в (1.110) приводят к ранее полученным результатам

для газа Чаплыгина, если подставить (1.110) в аналогичные (1.10) соотношения

𝑡 =
𝑊𝑙 −𝑊𝑟

𝑙 − 𝑟
,

𝑥 =
𝑙𝑊𝑙 − 𝑟𝑊𝑟

𝑙 − 𝑟

а подстановка (1.111) в (1.20) ничего не меняет, если отразить произвольную
функцию 𝑔(𝑙) := −𝑔(𝑙).
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2 Провальные особенности решений
гиперболической системы уравнений

одномерной газовой динамики

2.1 Особенность сборки 𝐴3 при 𝜌→ 0

В этом пункте показано, что решениям (1.1) присуща особенность типа сбор-
ки с такой точкой градиентной катастрофы, что 𝜌* = 𝜌(𝑡*, 𝑥*) = 0. Особенно-
сти, соответствующие такой точке, будем называть провальными, подразумевая
стремление плотности газа 𝜌 (или толщины слоя жидкости для уравнений мел-
кой воды, получаемым при 𝛼(𝜌) ≡ 𝑐𝑜𝑛𝑠𝑡) к нулю.

Посредством соотношений на производные преобразования годографа (1.70)

𝑢𝑥 = 𝐽𝑡𝜌, 𝑢𝑡 = −𝐽𝑥𝜌,
𝜌𝑥 = −𝐽𝑡𝑢, 𝜌𝑡 = 𝐽𝑥𝑢,

𝐽 = 𝑢𝑥𝜌𝑡 − 𝑢𝑡𝜌𝑥, 𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢, 𝐽 = 𝑗−1.

система (1.1) {︃
𝑢𝑡 + 𝑢𝑢𝑥 + 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,

локально переводится в линейную систему{︃
𝑥𝜌 = 𝑢𝑡𝜌 − 𝛼(𝜌)𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌,
(2.1)

а якобиан преобразования годографа принимает вид

𝑗 = −𝜌𝑡2𝜌 + 𝛼(𝜌)𝑡2𝑢. (2.2)

Преобразования (1.10)

𝑡 = 𝐵𝑢, 𝑥 = 𝑢𝐵𝑢 −𝐵 − 𝜌𝐵𝜌

сводят (2.1) к линейному гиперболическому (при 𝜌 > 0) уравнению (1.12)

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = 𝛼(𝜌)𝐵𝑢𝑢, (2.3)
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гладкое решение которого ищется в виде ряда

𝐵 =
∑︁
𝑖+𝑗≥0

𝑏𝑖𝑗(Δ𝑢)
𝑖𝜌𝑗 (2.4)

с коэффициентами однозначно определяемыми через коэффициенты тейлоров-
ского разложения в окрестности 𝑢 = 𝑢* функции 𝐵0(𝑢) = 𝐵(𝑢, 0)

𝐵0(𝑢) = 𝑏00 +
∑︁
𝑖≥1

𝑏𝑖0(Δ𝑢)
𝑖. (2.5)

В самом деле, все коэффициенты ряда Тейлора 𝐵 =
∑︀∞

𝑗=0 𝜌
𝑘𝐵𝑘(𝑢) реше-

ния уравнения (2.3) через его главный член 𝐵0(𝑢) рекуррентно находятся по
формулам

𝐵1 = 2(𝐵0)
′′, 𝐵2 =

2(𝐵1)
′′

3
+
𝛼1(𝐵0)

′′

6
,

𝐵𝑘+1 =
1

(𝑘 + 1)(𝑘 + 2)
(4(𝐵𝑘)

′′ +
𝑘∑︁

𝑙=1

𝛼𝑙(𝐵𝑘−𝑙)
′′).

В дальнейшем будет показано, что при 𝛼(𝜌) ≡ 𝑐𝑜𝑛𝑠𝑡 и аналитичности на-
чальных данных ряд (2.4) соответствует аналитическому в окрестности 𝜌 = 0

решению уравнения (1.12) и его эллиптическому аналогу, получаемому отраже-
нием 𝜌→ −𝜌.

Получаются следующие соотношения на коэффициенты 𝑏𝑖𝑗 ряда (2.4) и два
соотношения, следующие из преобразований (1.10):

4𝑏20 = 𝑏01, 12𝑏30 = 𝑏11, 4𝑏21 + 𝛼1𝑏20 = 3𝑏02, 4𝑏40 = 𝑏21, ...

𝑡* = 𝑏10, 𝑥* = 𝑢*𝑡* − 𝑏00.
(2.6)

Обращение якобиана (2.2) в нуль в точке 𝑢 = 𝑢*, 𝜌 = 𝜌* = 0 означает
выполнение равенства 𝑏20 = 0, откуда следует, что 𝑏01 = 0. С учетом полученных
соотношений и (2.6) введем новые переменные

𝜏 = Δ𝑡,

𝜉 = Δ𝑥− 𝑢*Δ𝑡,
(2.7)
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представимые в виде степенных рядов

𝜏 = 𝑏11(𝜌+
(Δ𝑢)2

4
) +

3

2
𝑏02Δ𝑢𝜌+ (

𝛼1

12
𝑏11 + 4𝑏31)𝜌

2+

+
𝑏02
8
(Δ𝑢)3 + 3𝑏31(Δ𝑢)

2𝜌+ 2𝑏22Δ𝑢𝜌
2 + 𝑏13𝜌

3 +
∑︁
𝑖+𝑗≥4

𝜏𝑖𝑗(Δ𝑢)
𝑖𝜌𝑗,

𝜉 = −𝑏11Δ𝑢𝜌− 3𝑏02𝜌
2+

+
𝑏11
6
(Δ𝑢)3 − (

𝛼1

6
𝑏11 + 8𝑏31)Δ𝑢𝜌

2 − (
8

3
𝑏22 +

𝛼1𝑏02
2

)𝜌3 +
∑︁
𝑖+𝑗≥4

𝜉𝑖𝑗(Δ𝑢)
𝑖𝜌𝑗,

(2.8)

где коэффициенты 𝜏𝑖𝑗 и 𝜉𝑖𝑗 однозначно определяются коэффициентами 𝛼𝑗 и 𝑏𝑖𝑗.
Считая, что 𝜌* = 0 и, как следствие, 𝑏20 = 0, мы при рассмотрении ситуа-

ции «общего положения» задействовали оба возможных ограничения в виде ра-
венств и потому не имеем оснований полагать, что 𝑏11 = 0. Считая, что 𝑏11 ̸= 0,
применим к первому ряду (2.8) теорему о неявной функции и представим плот-
ность 𝜌 в виде ряда по натуральным степеням 𝜏 и Δ𝑢:

𝜌 =
𝜏

𝑏11
− (Δ𝑢)2

4
− 3𝑏02

2𝑏211
Δ𝑢𝜏 + 𝜌02𝜏

2 +
∑︁
𝑖+𝑗≥3

𝜌𝑖𝑗(Δ𝑢)
𝑖𝜏 𝑗, (2.9)

где коэффициенты 𝜌𝑖𝑗 однозначно выражаются через 𝛼𝑗 и 𝑏𝑖𝑗.
Подстановка (2.9) в правую часть второго из равенств (2.8) дает представ-

ление в виде ряда по степеням 𝜏 и Δ𝑢

𝜉 =
3𝑏02
𝑏211

𝜏 2 − 72𝑏02𝑏31 − 8𝑏22𝑏11
3𝑏411

𝜏 3 +
∑︁
𝑗>3

𝜇𝑗𝜏
𝑗−

−𝜏Δ𝑢+ 5

12
𝑏11(Δ𝑢)

3 +
𝛼1𝑏

2
11 + 108𝑏202 − 48𝑏31𝑏11

12𝑏311
Δ𝑢𝜏 2+

+
3𝑏02
𝑏11

(Δ𝑢)2𝜏 +
∑︁
𝑖≥4

(Δ𝑢)𝑖
∑︁
𝑗≥0

𝛽𝑖𝑗𝜏
𝑗,

(2.10)

где 𝜇𝑗(𝜏𝑖𝑗, 𝑏𝑖𝑗), 𝛽𝑖𝑗(𝜏𝑖𝑗, 𝑏𝑖𝑗) – однозначно определяемые константы.
Применим лемму Адамара и построим гладкую замену в виде ряда

Δ𝑢 = 𝑄+ 𝑈2𝑄
2 + 𝑈3𝑄

3 +
∑︁
𝑖≥4

𝑈𝑖𝑄
𝑖
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с целью исключить в (2.10) постоянные члены в рядах, определяющих коэффи-
циенты при 𝑄𝑖, 𝑖 ≥ 4:

𝑄4𝜏 0 :
5

4
𝑏11𝑈2 + 𝛽40 = 0 ⇒ 𝑈2 = − 4

5𝑏11
𝛽40,

𝑄5𝜏 0 :
5

4
𝑏11[𝑈3 + 𝑈 2

2 ] + 4𝛽40𝑈2 + 𝛽50 = 0 ⇒ 𝑈3 = − 4

5𝑏11
(4𝛽40𝑈2 + 𝛽50)− 𝑈 2

2 , ....

Получим, что функция 𝜉(𝜏,𝑄) имеет разложение

𝜉 =
∑︁
𝑗≥2

𝜇𝑗𝜏
𝑗 +𝑄

∑︁
𝑗≥1

𝑞1𝑗𝜏
𝑗 +𝑄2

∑︁
𝑗≥1

𝑞2𝑗𝜏
𝑗+

+𝑄3[
5

12
𝑏11 +

∑︁
𝑗≥1

𝑞3𝑗𝜏
𝑗] +

∑︁
𝑖≥4

𝑄𝑖
∑︁
𝑗≥1

𝑞𝑖𝑗𝜏
𝑗,

где коэффициенты 𝑞𝑖𝑗 однозначно определяются через 𝑏𝑖𝑗, 𝛽𝑖𝑗.
Из того, что 𝜉(0, 𝑄) = 𝑄3 делаем вывод [93, §13] о том, что росток функ-

ции 𝜉(𝜏, 𝑍) есть деформация с параметром 𝜏 ростка монома 𝑄3, обладающего
𝑅-универсальной (миниверсальной) деформацией, являющейся ростком в нуле
кубического многочлена 𝑄3 + 𝑒1𝑄 + 𝑒2 и существуют три локальных диффео-
морфизма

𝑆(𝑌,𝑄), 𝑒1(𝑌 ), 𝑒2(𝑌 ) : 𝑆(0, 𝑄) = 𝑄, 𝑒1(0) = 0, 𝑒2(0) = 0,

таких, что
𝜉(𝜏,𝑄) = 𝑆(𝜏,𝑄)3 + 𝑒1(𝜏)𝑆(𝜏,𝑄) + 𝑒2(𝜏). (2.11)

Подстановка

𝑒𝑖(𝜏) =
∑︁
𝑗≥1

𝑒𝑖𝑗𝜏
𝑗, 𝑖 = 1, 2,

𝑆(𝜏,𝑄) =
∑︁
𝑗≥1

𝑆0𝑗𝜏
𝑗 +𝑄[𝑆0 +

∑︁
𝑗≥1

𝑆1𝑗𝜏
𝑗] +

∑︁
𝑘≥2,𝑗≥1

𝑆𝑘𝑗𝑄
𝑘𝜏 𝑗

в (2.11) и приравнивание коэффициентов при линейно независимых слагаемых
однозначно определяет все коэффициенты:

𝑆0 = (
5

12
𝑏11)

1/3, 𝑆01 =
𝑞21
3𝑆2

0

, 𝑒11 =
1

𝑞11
, 𝑒21 = 0, 𝑒22 = 𝜇2, ....

что позволяет вывести в итоге кубическое уравнение сборки

𝛿(𝜉, 𝜏) + 𝜎(𝜏)𝑆 +
5

12
𝑏11𝑆

3 = 0 (2.12)
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с управляющими параметрами

𝛿(𝜉, 𝜏) = 𝜉(1 +
∞∑︁
𝑗=1

𝛿1𝑗𝜏
𝑖𝜉𝑗) +

∞∑︁
𝑗=2

𝛿0𝑗𝜏
𝑗,

𝜎(𝜏) = 𝜏 +
∞∑︁
𝑗=2

𝜎𝑗𝜏
𝑗.

(2.13)

В главном порядке (2.12) представляется в виде

𝜉 + 𝜏𝑄+
5

12
𝑏11𝑄

3 = 0. (2.14)

Такая же провальная особенность сборки присуща и решениям системы
уравнений нелинейной геометрической оптики (эллиптический вариант гипер-
болической газодинамической системы). Описание происходит аналогично при
замене 𝜌→ −𝜌.

При этом, вообще говоря, неочевидна непустота множества гладких реше-
ний уравнения (1.12), но в пункте работы 2.2 доказана непустота множества
аналитических решений при 𝛼(𝜌) ≡ 𝑐𝑜𝑛𝑠𝑡, что позволяет частично обосновать
формальные результаты работ [73] (НГО, эллиптическая система) и [76] (газо-
вая динамика, гиперболическая система).

2.1.1 Уравнения мелкой воды. Эталонное решение

Рассматривая частный случай 𝛼(𝜌) ≡ 4 (т.е. давление вида 𝑝 = 𝑝0 + 2𝜌2),
получим из (1.1) систему уравнений течения мелкой воды{︃

𝑢𝑡 + 𝑢𝑢𝑥 + 4𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(2.15)

образ годографа которой заменами (1.10) переводится в линейное гиперболиче-
ское (при 𝜌 > 0) уравнение второго порядка

4𝐵𝑢𝑢 = 𝜌𝐵𝜌𝜌 + 2𝐵𝜌. (2.16)

Среди множества решений данного уравнения отметим функцию

𝐵(𝑢, 𝜌) = −𝑢3 − 12𝑢𝜌, (2.17)
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которую назовем эталонным решением, так как на ее примере наглядно демон-
стрируется возникновение провальной особенности типа сборки. Это было за-
мечено научным руководителем диссертанта Б. И. Сулеймановым в совместной
публикации [76].

Из (1.10) получаем, что

𝑡 = −3𝑢2 − 12𝜌,

𝑥 = −2𝑢3 + 12𝑢𝜌,
(2.18)

откуда выводим кубическое уравнение сборки

𝑥+ 𝑡𝑢+ 5𝑢3 = 0 (2.19)

совпадающее с (2.14) при 𝑡* = 𝑥* = 𝑢* = 0, 𝑏11 = 12.

Рис. 3: График уравнения сборки 𝑥+ 𝑡𝑢+ 5𝑢3 = 0.

По теореме о неявной функции 15𝑢2 + 𝑡 > 0 при 𝑡 > 0, поэтому у уравнения
при 𝑡 > 0 корень один. В момент 𝑡 = 0 происходит катастрофа, и решение
становится многозначным. При 𝑡 < 0 – три корня уравнения.
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На графике ниже показано: сначала происходит провал, а кривая, отвечаю-
щая нулям якобиана, находится между ветвями кривой провала. Пересечение
этих кривых происходит только в начале координат (𝑡, 𝑥)−плоскости.

Рис. 4: Кривая провала 𝑥 = ∓2(− 𝑡
3)

3/2 и кривая нулей якобиана
𝑥 = ±10(− 𝑡

15)
3/2 (пунктир) для (2.17).

2.2 Обоснование формальных провальных асимптотик
для уравнений мелкой воды

Для частного случая уравнений мелкой воды (𝛼(𝜌) ≡ 4) в работе [104] до-
казана непустота множества аналитических решений уравнения (2.16) в окрест-
ности 𝜌 = 0, обладающих разложениями с коэффициентами, связанными со-
отношениями (2.6), что, вообще говоря, неочевидно для случая произвольной
аналитической функции 𝛼(𝜌). Доказательство основано на частном случае тео-
ремы Ю. Ф. Коробейника [131] об аналитичности решений уравнения

ℎ𝐺ℎℎ = 𝐺𝑢𝑢, (2.20)
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к которому (2.16) сводится заменами

𝐵(𝜌, 𝑢) =
𝐺(𝜌, 𝑢)

𝜌
,

𝑢 :=
𝑢

2
.

Доказательство самого Ю. Ф. Коробейника нигде не было обнаружено. В
работе диссертанта, научного руководителя Б. И. Сулейманова и соавтора С.
Н. Мелихова [104] было приведено независимое доказательство для частного
случая 𝛼(𝜌) ≡ 𝑐𝑜𝑛𝑠𝑡. Соавтором данной работы С. Н. Мелиховым была доказа-
на необходимость утверждения из условия нижеследующей теоремы – в тексте
диссертации необходимость приводится для полноты изложения.

При этом в доказательстве опускается требование 𝜌 > 0 – рассматриваются
и 𝜌 < 0. Хотя неравенство 𝜌 < 0 не соответствует физическому смыслу по-
ложительной плотности, но рассмотрение и этой области позволяет обосновать
непустоту множества аналитических решений как гиперболического (𝜌 > 0),
так и эллиптического (𝜌 < 0) варианта уравнения (2.20) в окрестности провала
𝜌 = 0. Тем самым обоснован формализм провальной особенности сборки как
для системы уравнений мелкой воды (гиперболическая система, исследованная
в [76]), так и для системы уравнений «опрокинутой» мелкой воды (эллиптиче-
ская система, исследованная в [73]).

Согласно этой теореме Ю. Ф. Коробейника, аналитичность решений (2.20)
следует из аналитичности начальной функции 𝐵(0, 𝑢) = 𝑔1(𝑢). Тогда ряд

𝐺(ℎ, 𝑢) = 𝑔1(𝑢)ℎ+
∞∑︁
𝑘=2

𝑔𝑘(𝑢)ℎ
𝑘 (2.21)

есть аналитическая функция переменных 𝜌 и 𝑢 в некотором бикруге

𝐷(𝑅1, 𝑅) := {𝜌, 𝑢 ∈ C, |𝜌| < 𝑅1, |𝑢− 𝑢*| < 𝑅}. (2.22)

Отметим, что коэффициенты 𝑔𝑘+1(𝑢) при 𝑘 ≥ 1 формального решения в виде
ряда (2.21) уравнения (2.20) выражаются через производные 𝑔(2𝑘)1 (𝑢) порядка 2𝑘

коэффициента 𝑔1(𝑢) в некоторой окрестности точки 𝑢 = 𝑢* равенствами

𝑔𝑘+1(𝑢) =
𝑔
(2𝑘)
1 (𝑢)

𝑘!(𝑘 + 1)!
.
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Поэтому в дальнейшем речь пойдет о формальном решении уравнения (2.20)
в виде ряда

𝐺(ℎ, 𝑢) = 𝑔1(𝑢)ℎ+
∞∑︁
𝑘=1

1

𝑘!(𝑘 + 1)!
𝑔
(2𝑘)
1 (𝑢)ℎ𝑘+1. (2.23)

Теорема 2.1. (Ю. Ф. Коробейник, 1961 г.) Пусть 𝑅 и 𝑅1 – произволь-
ные вещественные положительные числа, 𝑢* – произвольное комплексное число,
𝐺(𝜌, 𝑢) – формальное решение в виде ряда (2.23) уравнения (2.20), где функция

𝑔1(𝑢) = 𝑔1(𝑅𝑒𝑢+ 𝑖𝐼𝑚𝑢)

бесконечно дифференцируема в круге

{𝑢 ∈ C, |𝑢− 𝑢*| < 𝑅}

как функция двух вещественных переменных 𝑅𝑒𝑢, 𝐼𝑚𝑢. Для того, чтобы функ-
ция 𝐺(𝜌, 𝑢) была аналитической в бикруге (2.22) и ряд (2.23) сходился по 𝜌 в
круге {𝜌 ∈ C, |𝜌| < 𝑅1} при любом 𝑢 из круга {𝑢 ∈ C, |𝑢−𝑢*| < 𝑅}, необходимо
и достаточно, чтобы функция 𝑔1(𝑢) была аналитической в круге

{𝑢 ∈ C, |𝑢− 𝑢*| < 𝑅 + 2
√︀
𝑅1}

.
Сначала докажем следующее вспомогательное утверждение.
Лемма 2.1. Пусть 𝑓(𝑧) – функция, аналитическая в круге {𝑧 ∈ C, |𝑧| < 𝑟},

𝑟 ∈ (0,∞). Для произвольных 𝑟0 ∈ [0, 𝑟) и 𝜀 ∈ (0, 𝑟 − 𝑟0) существует такая
положительная постоянная 𝐶(𝜀), что при всех натуральных 𝑛 в круге |𝑧| ⩽ 𝑟0
справедлива оценка

|𝑓 (𝑛)(𝑧)| ⩽ 𝐶(𝜀)
𝑛!(𝑟 − 𝜀)

(𝑟 − 𝑟0 − 𝜀)𝑛+1
.

Доказательство. Вследствие интегральной формулы Коши для любого 𝑧 ∈
C, лежащего в круге |𝑧| ≤ 𝑟0, при всех натуральных 𝑛 выполняется равенство

𝑓 (𝑛)(𝑧) =
𝑛!

2𝜋𝑖

∫︁
|𝑡|=𝑟−𝜀

𝑓(𝑡)

(𝑡− 𝑧)𝑛+1
𝑑𝑡.

Отсюда следует, что

|𝑓 (𝑛)(𝑧)| ⩽ 𝑛!

2𝜋
2𝜋(𝑟 − 𝜀) max

|𝑡|=𝑟−𝜀

|𝑓(𝑡)|
|𝑡− 𝑧|𝑛+1

⩽ 𝐶(𝜀)
𝑛!(𝑟 − 𝜀)

(𝑟 − 𝑟0 − 𝜀)𝑛+1
,
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где 𝐶(𝜀) = max
|𝑡|=𝑟−𝜀

|𝑓(𝑡)|. Лемма доказана.

Докажем достаточность в теореме 2. Предположим, что функция 𝑔1(𝑢) ана-
литична в круге {𝑢 ∈ C, |𝑢 − 𝑢*| < 𝑅 + 2

√
𝑅1}. Покажем, что для любого

𝛿 ∈ (0, 𝑅) ряд в правой части (2.23) сходится равномерно на бикруге

𝐸(𝛿) = {𝜌, 𝑢 ∈ C, |𝜌| ⩽ 𝑅1, |𝑢− 𝑢*| ⩽ 𝑅− 𝛿}. (2.24)

Рассмотрим величины

𝛽𝑘 = sup

{︂
|𝜌|𝑘+1

𝑘!(𝑘 + 1)!
|𝑔(2𝑘)1 (𝑢)|, |𝜌| ⩽ 𝑅1, |𝑢− 𝑢*| ≤ 𝑅− 𝛿

}︂
.

В силу только что доказанной леммы, в которой надо положить 𝑓(𝑧) = 𝑔1(𝑧+𝑢*),
𝑧 = 𝑢 − 𝑢*, 𝑟 = 𝑅 + 2

√
𝑅1, 𝑟0 = 𝑅 − 𝛿, для любого 𝜀 ∈ (0, 𝛿) существует

такая положительная постоянная 𝐶(𝜀), что при всех натуральных 𝑘 на круге
|𝑢− 𝑢*| ⩽ 𝑅− 𝛿 имеет место оценка

|𝑔(2𝑘)1 (𝑢)| ⩽ 𝐶(𝜀)(2𝑘)!(𝑅 + 2
√
𝑅1 − 𝜀)

(2
√
𝑅1 + 𝛿 − 𝜀)2𝑘+1

.

Значит,

𝛽𝑘 ⩽ (𝑅1)
𝑘+1 𝐶(𝜀)(2𝑘)!(𝑅 + 2

√
𝑅1 − 𝜀)

𝑘!(𝑘 + 1)!(2
√
𝑅1 + 𝛿 − 𝜀)2𝑘+1

=: 𝛼𝑘.

Ряд
∞∑︀
𝑘=1

𝛼𝑘 сходится. Действительно, для любого 𝑘 ⩾ 1

𝛼𝑘+1

𝛼𝑘
=

𝑅1(2𝑘 + 1)(2𝑘 + 2)

(𝑘 + 1)(𝑘 + 2)(2
√
𝑅1 + 𝛿 − 𝜀)2

и
lim
𝑘→∞

𝛼𝑘+1

𝛼𝑘
=

𝑅1(︀√
𝑅1 +

𝛿−𝜀
2

)︀2 < 1.

Таким образом, ряд (2.23) равномерно сходится на множестве 𝐸(𝛿) (см.(2.24))
для любого 𝛿 ∈ (0, 𝑅). Поэтому в бикруге (2.22) функция 𝐺(ℎ, 𝑢) действительно
аналитична.

Теперь докажем необходимость. Предположим, что функция 𝐺(𝜌, 𝑢) ана-
литична в бикруге (2.22) и ряд (2.23) сходится по 𝜌 в круге {𝜌 ∈ C, |𝜌| <
𝑅1} для любого 𝑢, удовлетворяющего неравенству |𝑢 − 𝑢*| < 𝑅. Посколь-
ку 𝑔1(𝑢) = 𝜕𝐺

𝜕𝜌 (0, 𝑢), |𝑢 − 𝑢*| < 𝑅, то функция 𝑔1(𝑢) аналитична в круге
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{𝑢 ∈ C, |𝑢 − 𝑢*| < 𝑅}. Покажем, что ее можно аналитически продолжить в
круг {𝑢 ∈ C, |𝑢− 𝑢*| < 𝑅 + 2

√
𝑅1} c помощью степенного ряда

𝑔1(𝑢) +
∞∑︁
𝑗=1

𝑔
(𝑗)
1 (𝑢)

𝑗!
𝜌𝑗. (2.25)

Прежде всего, вследствие представления (2.23) для любого 𝑢 ∈ C такого, что
|𝑢− 𝑢*| < 𝑅, при каждом натуральном 𝑘 справедливо равенство

𝑔
(2𝑘)
1 (𝑢) = 𝑘!

𝜕𝑘+1𝐺

𝜕𝜌𝑘+1
(0, 𝑢).

Зафиксируем числа 𝑡 ∈ (0, 𝑅), 𝑡1 ∈ (𝑡, 𝑅) и числа 𝑟0 ∈ (0, 2
√
𝑅1), 𝜌 ∈

(𝑟0, 2
√
𝑅1). Из равенств

𝜕𝑘+1𝐺

𝜕𝜌𝑘+1
(0, 𝑢) =

(𝑘 + 1)!

2𝜋𝑖

∫︁
|𝜌|=𝜌2/4

𝐺(𝜌, 𝑢)

𝜌𝑘+2
𝑑𝜌

следует, что для любого 𝑢 ∈ C, для которого |𝑢 − 𝑢*| ⩽ 𝑡1, при всяком нату-
ральном 𝑘 ⩾ 1

|𝑔(2𝑘)1 (𝑢)| ⩽ 𝑘!(𝑘 + 1)!𝑀(𝜌, 𝑡1)

(𝜌2/4)𝑘+1
=

4𝑘+1𝑘!(𝑘 + 1)!

𝜌2𝑘+2
𝑀(𝜌, 𝑡1), (2.26)

где
𝑀(𝜌, 𝑡1) := max{|𝐺(𝜌, 𝑢)|, |𝜌| ⩽ 𝜌2/4, |𝑢− 𝑢*| ⩽ 𝑡1}.

Функция 𝑔(2𝑘+1)(𝑢) является производной функции 𝑔(2𝑘)(𝑢). Поэтому, исполь-
зуя формулу Коши

𝑔(2𝑘+1)(𝑢) =
1

2𝜋𝑖

∫︁
|𝑣−𝑢*|=𝑡1

𝑔(2𝑘)(𝑣)

(𝑣 − 𝑢)2
𝑑𝑣,

получим, что для любого натурального 𝑘 ⩾ 1 и всякого 𝑢 ∈ C такого, что
|𝑢− 𝑢*| ⩽ 𝑡, выполняется неравенство

|𝑔(2𝑘+1)
1 (𝑢)| ⩽ 𝑡14

𝑘+1𝑘!(𝑘 + 1)!𝑀(𝜌, 𝑡1)

(𝑡1 − 𝑡)2𝜌2𝑘+2
. (2.27)

Вследствие неравенства (2.26) для любого натурального 𝑘 ⩾ 1

sup

{︂
|𝑔(2𝑘)(𝑢)|
(2𝑘)!

|𝜌|2𝑘, |𝑢− 𝑢*| ⩽ 𝑡1, |𝜌| ≤ 𝑟0

}︂
≤𝑀(𝜌, 𝑡1)

4𝑘+1𝑘!(𝑘 + 1)!

(2𝑘)!𝜌2𝑘+2
(𝑟0)

2𝑘,
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откуда следует (см. доказательство достаточности), что ряд

∞∑︁
𝑘=1

𝑔(2𝑘)(𝑢)

(2𝑘)!
𝜌2𝑘

для любого 𝑡1 ∈ (0, 𝑅) и каждого 𝑢 ∈ C из круга |𝑢 − 𝑢*| ⩽ 𝑡1, сходится рав-
номерно на круге {𝜌 ∈ C, |𝜌| ≤ 𝑟0}. Значит, он сходится для любых 𝑢, 𝜌 ∈ C
таких, что |𝑢− 𝑢*| < 𝑅, |𝜌| < 2

√
𝑅1.

Аналогично, с помощью неравенств (2.27), показывается, что ряд

∞∑︁
𝑘=1

𝑔(2𝑘+1)(𝑢)

(2𝑘 + 1)!
𝜌2𝑘+1

также сходится для всех 𝑢, 𝜌 ∈ C, таких, что |𝑢 − 𝑢*| < 𝑅, |𝜌| < 2
√
𝑅1. Таким

образом, для всех 𝑢, 𝜌 ∈ C, удовлетворяющих неравенствам |𝑢− 𝑢*| < 𝑅, |𝜌| <
2
√
𝑅1, ряд (2.25) сходится.
При этом его сумма для каждого 𝑢 ∈ C из круга |𝑢− 𝑢*| < 𝑅 аналитически

продолжает функцию 𝑔1(𝑤) в круг {𝑤 ∈ C, |𝑤 − 𝑢| < 2
√
𝑅1}. Поэтому 𝑔1(𝑢)

аналитически продолжима в больший круг {𝑢 ∈ C, |𝑢− 𝑢*| < 𝑅 + 2
√
𝑅1}.

Теорема 2.1 доказана.
Если зафиксировать сумму 𝑅 + 2

√
𝑅1, а положительные числа 𝑅 и 𝑅1 ме-

нять, то можно получить более широкую область, в каждой точке которой ряд
Тейлора 𝐺(𝜌, 𝑢) вида (2.23) сходится (к 𝐺(𝜌, 𝑢)) и функция 𝐺(𝜌, 𝑢) аналити-
ческая. Эта область является объединением бикругов (2.22) с центром в точке
𝜌 = 0, 𝑢 = 𝑢*, о которых идет речь в предыдущей теореме.

Зафиксируем положительное число 𝑅0. Определим область в C2

𝑃 (𝑅0) = {𝜌, 𝑢 ∈ C, |𝑢− 𝑢*|+ 2
√︀
|𝜌| < 𝑅0}.

Ясно, что
𝑃 (𝑅0) =

⋃︁
𝑅,𝑅1>0, 𝑅+2

√
𝑅1=𝑅0

𝐷(𝑅1, 𝑅).

Предположим, что функция 𝑔1(𝑢) аналитична в круге {𝑢 ∈ C, |𝑢−𝑢*| < 𝑅0}.
Пусть функция 𝐺(𝜌, 𝑢) задается рядом (2.23). Возьмем точку (𝜌, 𝑢) в 𝑃 (𝑅0).
Найдутся числа 𝑅,𝑅1 > 0, для которых 𝑅 + 2

√
𝑅1 = 𝑅0 и (𝜌, 𝑢) принадлежит

бикругу𝐷(𝑅1, 𝑅). По теореме 2. 1 ряд в правой части формулы (2.23) сходится
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в каждой точке 𝐷(𝑅1, 𝑅), функция 𝐺(𝜌, 𝑢) аналитична в 𝐷(𝑅1, 𝑅) и является
решением уравнения (2.20). Получили такое

Следствие. Пусть функция 𝑔1(𝑢) аналитична в круге {𝑢 ∈ C, |𝑢 − 𝑢*| <
𝑅0}, где 𝑅0 – положительное число. Тогда ряд в правой части (2.23) сходится
в каждой точке из 𝑃 (𝑅0) к функции 𝐺(𝜌, 𝑢), являющейся решением уравнения
(2.20), аналитическим в области 𝑃 (𝑅0).

Замечание 2.1. А. И. Янушаускасом в статье [132] и монографии [133, Гла-
ва 6, §5] описывались аналитические решения ряда эллиптических и вырожда-
ющихся уравнений в частных производных. Эти решения для части из рассмот-
ренных в [132], [133] уравнений строятся в виде рядов по одной из независимых
переменных, сходимость которых обосновывается с помощью метода мажорант.
В частности, в этих публикациях изучена структура решений уравнения

𝑠(𝑣𝑘)𝑠𝑠 + (𝑘 + 1)(𝑣𝑘)𝑠 + (𝑣𝑘)𝑧𝑧 = 0, (2.28)

(в нумерации из [132] уравнение (16) для случая оператора 𝐿 = 𝜕2

𝜕𝑧2 ), при 𝑘 = 1

сводящегося к исследуемому нами уравнению (2.20).
Но для уравнения (2.28) в [132] нет обоснования сходимости соответствую-

щих рядов, не описана область, в которой рассматриваемые ряды сходятся, не
указана ее зависимость от определяющей функции 𝑣(𝑘)0 (𝑧). Доказанные же нами
теорема 2.1 и ее следствие позволяют проследить связь областей специаль-
ного вида, в которых решение 𝐺(ℎ, 𝑢) уравнения (2.20) и коэффициент 𝑔1(𝑢)

аналитичны.

2.3 Замечание о случае 𝛼(𝜌) ≡ 0

Тип уравнения (1.12)

𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = 𝛼(𝜌)𝐵𝑢𝑢

определяется знаком соотношения 𝐷 = 𝜌𝛼(𝜌). В первой главе рассматривалась
ситуация, когда 𝜌 > 0 и 𝛼(𝜌) > 0, в третьей главе – 𝜌 > 0 и 𝛼(𝜌) < 0 (точнее, в
первом уравнении системы (1.1) перед 𝛼(𝜌) > 0 будет поставлен знак минус, а
не плюс), а в текущей главе – 𝜌→ 0, 𝛼(𝜌) > 0 и 𝛼(𝜌) < 0. Настоящее замечание
касается случая 𝛼(𝜌) ≡ 0 или, что равносильно, 𝑝(𝜌) ≡ 𝑐𝑜𝑛𝑠𝑡. В таком случае
уравнение (1.12) редуцируется к обыкновенному дифференциальному уравне-
нию с независиммой переменной 𝜌.
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Тем самым будут рассмотрены все три возможности знака 𝛼(𝜌). Кроме того,
как было показано в Замечании 1.6 к 𝛼(𝜌) ≡ 0 приводит – противоречащее
положительности массы газа 𝑚 > 0 – требование 𝑟* = 𝑙* = 0 в изучении газа
Чаплыгина.

При 𝛼(𝜌) ≡ 0 система (1.1) принимает вид{︃
𝑢𝑡 + 𝑢𝑢𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0,
(2.29)

где первое уравнение – уравнение Хопфа (или безвязкостное уравнение Бюр-
герса), общее локально бесконечно дифференцируемое (или, при аналитичности
начальных данных – аналитическое) решение которого представимо в виде

𝑥− 𝑢(𝑡− 𝑡0) = 𝑞(𝑢),

где 𝑞(𝑢) – произвольная локально бесконечно дифференцируемая (аналитиче-
ская) функция.

В силу возможности совершить сдвиг 𝜏 = 𝑡− 𝑡0 далее без ограничения общ-
ности считаем, что начальный момент времени 𝑡0 = 0. Таким образом, в силу
соотношений (1.10) общее решение системы (2.29) имеет вид

𝑥− 𝑢𝑡 = 𝑞(𝑢),

𝜌 =
𝑝′(𝑢)

𝑡+ 𝑞′(𝑢)
,

(2.30)

где 𝑝(𝑢) – произвольная локально бесконечно дифференцируемая (аналитиче-
ская) функция.

Нетрудно видеть, что тогда типичные (в смысле математической теории ка-
тастроф) особенности решений (2.29) по существу определяются только лишь
кривой 𝑡 = −𝑞′(𝑢), а плотность 𝜌 обращается в бесконечность на этой кривой.

В самом деле, применяя теорему о неявной функции к первой строке (2.30),
т.е. к уравнению

𝑥− 𝑢𝑡 = 𝑞(𝑢),

определим каустическую кривую

−𝑡 = 𝑞′(𝑢),
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в малой окрестности которой уравнение разрешимо относительно 𝑢, но на ко-
торой плотность 𝜌, очевидно, обращается в бесконечность, так как на ней обра-
щается в нуль знаменатель дроби

𝜌 =
𝑝′(𝑢)

𝑡+ 𝑞′(𝑢)
.

Покажем, что для решений 𝑢 системы (2.29) типичны особенности типа
складки и сборки.

Пусть, как и ранее, 𝑢*, 𝑡*, 𝑥* – точка градиентной катастрофы и Δ𝑢 = 𝑢−𝑢*,
Δ𝑡 = 𝑡 − 𝑡*, Δ𝑥 = 𝑥 − 𝑥*. Напишем в окрестности этой точки тейлоровское
разложение

𝑥* +Δ𝑥− (𝑡* +Δ𝑡)[𝑢* +Δ𝑢] = 𝑞0 + 𝑞1Δ𝑢+

+𝑞2
2 (Δ𝑢)

2 + 𝑞3
6 (Δ𝑢)

3 +
∑︀

𝑖≥4
𝑞𝑖
𝑖! (Δ𝑢)

𝑖,

откуда следует, что
𝑥* − 𝑡*𝑢* = 𝑞0,

и, кроме того, мы предполагаем, что условия теоремы о неявной функции на-
рушаются и при рассмотрении ситуации «общего положения» мы накладываем
первое из допустимых двух ограничений в виде равенств

−𝑡* = 𝑞1.

С учетом этих равенств получаем, что

Δ𝑥− 𝑢*Δ𝑡 = Δ𝑡Δ𝑢+
𝑞2
2
(Δ𝑢)2 +

𝑞3
6
(Δ𝑢)3 +

∑︁
𝑖≥4

𝑞𝑖
𝑖!
(Δ𝑢)𝑖.

Для удобства обозначим

𝜉 = Δ𝑥− 𝑢*Δ𝑡.

Далее возможны две ситуации – с наложением второго (и последнего до-
пустимого в ситуации «общего положения») ограничения в виде равенства на
коэффициент ряда 𝑞𝑖 или без наложения второго ограничения. Рассмотрим сна-
чала ситуацию без наложения второго ограничения.

Ситуация 1. 𝑞1 = −𝑡*, 𝑞2 ̸= 0. Тогда по лемме Морса существует такая
локальная невырожденная обратимая замена Δ𝑢 = Δ𝑢(𝑢̃), что

𝜉 = Δ𝑡𝑢̃+
𝑞2
2
𝑢̃2,
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а после сдвига 𝑢̃ = 𝑈 − Δ𝑡
𝑞2

и переобозначения 𝜉 + (Δ𝑡)2

2𝑞2
= 𝜒 получается канони-

ческое уравнение складки
𝜒 =

𝑞2
2
𝑈 2.

Ситуация 2. 𝑞1 = −𝑡*, 𝑞2 = 0, 𝑞3 ̸= 0. Тогда существует [92, Глава 4, §3,
Теорема 4.4] такая локальная невырожденная обратимая замена Δ𝑢 = Δ𝑢(𝑈),
что получается каноническое уравнение сборки

𝜉 = Δ𝑡𝑈 + 𝑈 3.

В качестве примеров для описанных выше складок и сборок можно рассмот-
реть решения уравнения Хопфа с функциями 𝑞(𝑢) = 𝐴2𝑢

2 (сделав затем сдвиг
𝑢 = 𝑈− 𝑡

2𝐴2
) и, соответственно, 𝑞(𝑢) = 𝐴3𝑢

3, где 𝐴2, 𝐴3 – ненулевые постоянные.
Зададимся вопросом о поведении 𝜌 при стремлении к бесконечности, т.е. как

ведет себя решение 𝜌 при стремлении к каустической кривой, определяемой с
помощью теоремы о неявной функции посредством подстановки

𝑡 = −𝑞′(𝑢𝑘)

в решение:
𝑥+ 𝑡𝑞′(𝑡)−1 = 𝑞(−𝑞′(𝑡)−1),

где 𝑞′(𝑡)−1 – производная обратной функции. Условия теоремы об обратной
функции применимы, так как функция 𝑞(𝑢) локально является непрерывно
дифференцируемой и обладает ненулевой первой производной.

Например, для решения
𝑥− 𝑢𝑡 = 𝑢3

каустическая кривая это

𝑥 = ± 4√
27
𝑡3/2.

Используем далее обозначения Δ𝑥 = 𝑥 − 𝑥𝑘, Δ𝑡 = 𝑡 − 𝑡𝑘, Δ𝑢 = 𝑢 − 𝑢𝑘(𝑡),
где нижний индекс 𝑘 обозначает принадлежность точки к каустической кривой.
Для экономии места будем писать 𝑢𝑘 вместо 𝑢𝑘(𝑡).

С учетом равенства 𝑡 = −𝑞′(𝑢𝑘) тейлоровское разложение решения уравне-
ния Хопфа в окрестности (𝑡𝑘, 𝑥𝑘) имеет вид

Δ𝑥 =
𝑞2
2
(Δ𝑢)2 +

𝑞3
6
(Δ𝑢)3 +

∑︁
𝑖≥4

𝑞𝑖
𝑖!
(Δ𝑢)𝑖.

84



Пусть 𝑞2 ̸= 0. Выразим теперь Δ𝑢 через 𝑡, 𝑥 посредством ряда

Δ𝑢 = 𝑢1(𝑡)
√
Δ𝑥+ 𝑢2(𝑡)Δ𝑥+ 𝑢3(𝑡)(Δ𝑥)

3/2 +
∑︁
𝑖≥4

(Δ𝑥)𝑖/2,

являющимся сходящимся при локальной аналитичности 𝑞(𝑢) и, вообще говоря,
асимптотическим при локальной бесконечной дифференцируемости 𝑞(𝑢).

Из подстановки и сравнения линейно независимых членов определим, что

Δ𝑢 = ±
√︂

2

𝑞2

√
Δ𝑥− 𝑞3

3𝑞22
Δ𝑥+

∑︁
𝑖≥3

𝑢𝑖(𝑡)(Δ𝑥)
𝑖/𝑚,

а после подстановки в решение 𝜌 заключаем, что

𝜌 = 𝑂((Δ𝑥)−1/2),

и, в свою очередь,
√
𝜌 = 𝑂((Δ𝑥)−1/4).

В оптическом смысле обращение 𝜌 в бесконечность на каустической кривой
означает резкое возрастание интенсивности света в точках фокусировки лучей.
Занимательно отметить, что согласно древнегреческим легендам, Архимед ис-
пользовал [134, Введение, стр. 22], [135, Глава 3, стр. 47] этот факт и уничтожил
римский флот, атакующий Сиракузы, создав систему зеркал, действующих как
параболический отражатель. Впрочем, этому нет [136] ни исторических под-
тверждений, ни успешных повторений опыта.

85



3 Особенность сечения эллиптической
омбилики 𝐷−

4 решений эллиптической
системы уравнений нелинейной

геометрической оптики
Эллиптический вариант системы уравнений нелинейной геометрической оп-

тики (НГО) {︃
𝑢𝑡 + 𝑢𝑢𝑥 − 𝛼(𝜌)𝜌𝑥 = 0,

𝜌𝑡 + (𝜌𝑢)𝑥 = 0
(3.1)

на функции 𝑢 = 𝑢(𝑡, 𝑥) и 𝜌 = 𝜌(𝑡, 𝑥) ≥ 0, отвечающий случаю знакоположитель-
ной функции 𝛼(𝜌), в приложениях чаще всего служит для описания квазиклас-
сических приближений уравнений типа фокусирующего нелинейного уравнения
Шрёдингера (НУШ)

−𝑖𝜀Ψ𝑡 = 𝜀2Ψ𝑥𝑥 +𝐾(|Ψ|2)Ψ (0 < 𝜀 << 1). (3.2)

Второе из уравнений системы НГО имеет смысл закона сохранения. В пер-
вом уравнении слагаемые 𝑢𝑡 + 𝑢𝑢𝑥 соответствуют обычному уравнению эйкона-
ла, а третий член связан с нелинейным самовоздействием поля [110, §1.3, стр.
15]. Система (3.1) отличается от системы (1.1) знаком минус вместо знака плюс
перед слагаемым 𝛼(𝜌)𝜌𝑥.

В отличие от гиперболического варианта, решениям эллиптической системы
(3.1) с 𝛼(𝜌) > 0 присуще не образование ударных волн, а разбиение на отдельные
самостягивающиеся сгустки, разделенные промежутками нулевой интенсивно-
сти, на которых 𝜌(𝑡, 𝑥) ≡ 0 [110], [125], [126, Глава V, §26, стр. 87-90].

Из второго уравнения системы (3.1) после интегрирования по переменной 𝑥
следует, что для каждого самостягивающегося сгустка площадь

∫︀
𝜌(𝑡, 𝑥)𝑑𝑥 не

зависит от 𝑡. А значит – в силу неотрицательности 𝜌(𝑡, 𝑥) – в таких сгустках с
течением времени неизбежно возникают области больших перепадов значений
𝜌. И, в частности, для решений системы НГО (3.1) оказываются характерными
точки (𝑡*, 𝑥*) градиентных катастроф (ГК) – в них при конечных значениях
𝑢(𝑡*, 𝑥*) = 𝑢* и 𝜌(𝑡*, 𝑥*) = 𝜌* > 0 первые производные решений данной системы
обращаются в бесконечность.
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Такая ГK для случая 𝛼(𝜌) ≡ 𝑐𝑜𝑛𝑠𝑡 > 0 впервые четко была описана в работе
Б. А. Дубровина, Т. Гравы и К. Клейна [100]. Для данного частного случая в
[100] было фактически продемонстрировано, что рассматриваемые в этой статье
точки ГК возникают как типичные с точки зрения идеологии математической
теории катастроф [77], [78], [79] – [82], [91] – [93] омбилические особенности про-
ектирования на (𝑡, 𝑥)-плоскость двумерного многообразия, определяемого глад-
кими решениями 𝑡(𝑢, 𝜌), 𝑥(𝑢, 𝜌) линейной системы{︃

𝑥𝜌 = 𝑢𝑡𝜌 + 𝛼(𝜌)𝑡𝑢,

𝑥𝑢 = 𝑢𝑡𝑢 − 𝜌𝑡𝜌,
(3.3)

которая из системы НГО (3.1) возникает в результате применения преобразова-
ния годографа.

Отметим, что ранее в статье [73] такой подход был использован для описания
сингулярностей типа сборки решений эллиптической системы (3.1), которые в
ситуации «общего положения» отвечают процессам самопроизвольного появле-
ния – первоначально в виде точек – областей провала интенсивности 𝜌 = 0.

При этом как выводы [73], так и выводы [100] были выполнены на уровне
рассуждений, опирающихся лишь на формальные асимптотические решения си-
стемы (3.1). И если результаты [73] недавно были строго обоснованы в [104]
(на основе этой публикации написана предыдущая глава) для случая 𝛼(𝜌) ≡
𝑐𝑜𝑛𝑠𝑡 > 0, то аналогичная задача строгого обоснования упомянутого выше вы-
вода авторов [100] до настоящего времени решена не была. В настоящей главе
проводится обоснование уточнения этого вывода для общего случая локально
аналитической и положительной в окрестности точки 𝜌* > 0 функции 𝛼(𝜌).

Описываются решения эллиптической системы (3.1) в окрестностях их точек
ГК, трактуемых – как и в [100] – как типичные с точки зрения математической
теории особенностей гладких отображений сингулярные точки, которые обра-
зуются при обращении в нуль якобиана

𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢 (3.4)

гладких решений (3.3).
При преобразовании годографа справедливы соотношения (см., например,
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[109, Лекция 16]) (1.70)

𝑢𝑥 = 𝐽𝑡𝜌, 𝑢𝑡 = −𝐽𝑥𝜌,
𝜌𝑥 = −𝐽𝑡𝑢, 𝜌𝑡 = 𝐽𝑥𝑢,

𝐽 = 𝑢𝑥𝜌𝑡 − 𝑢𝑡𝜌𝑥, 𝑗 = 𝑥𝑢𝑡𝜌 − 𝑥𝜌𝑡𝑢, 𝐽 = 𝑗−1

из которых следует, что данное преобразование квазилинейную систему (3.1) пе-
реводит в линейную систему (3.3). Из вида (1.8) следует, что при конечности 𝑡𝑢,
𝑡𝜌, 𝑥𝑢, 𝑥𝜌 обращение в нуль якобиана (3.4) в конечных точках (𝑢 = 𝑢*, 𝜌 = 𝜌* > 0)

будет сопровождаться обращением в бесконечность производных решений систе-
мы (3.1) при том, что значения самих решений 𝑢, 𝜌 в этой точке конечны.

Из вида линейной системы (3.3) вытекает равенство для этого якобиана

𝑗 = −𝜌𝑡2𝜌 − 𝛼(𝜌)𝑡2𝑢. (3.5)

Посредством непротиворечивых соотношений (1.10)

𝑡 = 𝐵𝑢,

𝑥 = 𝑢𝐵𝑢 −𝐵 − 𝜌𝐵𝜌

решения линейной системы (3.3) могут быть [110, Глава I, §2, 2.1, формула 2.7,
стр. 18] выражены через решения скалярного уравнения

𝛼(𝜌)𝐵𝑢𝑢 + 𝜌𝐵𝜌𝜌 + 2𝐵𝜌 = 0, (3.6)

которое при положительных значениях 𝜌 является эллиптическим.
Отметим, что для эллиптических систем вида (3.1) не существует аналогов

инвариантов Римана (1.4) в силу отрицательности квадрата скорости звука.
Нас далее будет интересовать поведение решения (3.1) в окрестности ко-

нечной точки (𝑡*, 𝑥*;𝑢*, 𝜌* > 0), в которой якобиан (3.5) обращается в нуль.
Для описания такого поведения будут использоваться разложения Тейлора
(Δ𝑢 = 𝑢− 𝑢*, Δ𝜌 = 𝜌− 𝜌*,𝑏𝑖𝑗 – постоянные коэффициенты)

𝐵(𝑢, 𝜌) = 𝑏00 + 𝑏10Δ𝑢+ 𝑏01Δ𝜌+
∑︁
𝑖+𝑗≥2

𝑏𝑖𝑗(Δ𝑢)
𝑖(Δ𝜌)𝑗 (3.7)

решений эллиптического уравнения (3.6) в точках (𝑢 = 𝑢*, 𝜌 = 𝜌* > 0).
Вновь, следуя [101, Введение, стр. 18, формула (44)], введем в рассмотрение

потенциальную локально аналитическую функцию (1.20)

𝐹 (𝑢, 𝜌; 𝑡, 𝑥) = 𝜌(𝑢𝑡− 𝑥−𝐵(𝑢, 𝜌)),
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чьи критические точки 𝐹𝑢 = 0, 𝐹𝜌 = 0 определяются равенством (1.10), т.е. ре-
шением системы (3.3), связанным с решением (3.1) преобразованием годографа.
Аналитичность (1.20) в данной главе будет обоснована далее.

При используемом нами подходе исследование типичных особенностей ре-
шений (3.1) в окрестности точки ГК сводится к задаче исследования типичных
вырожденных критических точек функции (1.20), которая помимо двух основ-
ных независимых переменных 𝑢 и 𝜌, зависит еще от двух параметров 𝑡 и 𝑥,
которые в терминологии математической теории катастроф называются управ-
ляющими параметрами [77, Лекция 1, Определение 2, стр. 11], [80, Часть 1,
Глава 1, стр. 9], [92, Глава 5, §2, стр. 109].

Научным руководителем диссертанта Б. И. Сулеймановым в совместной пуб-
ликации [106] было сделано следующее утверждение, обосновывающее необходи-
мость аналитичности решений уравнения (3.6) и, как следствие, фигурирующих
в дальнейшем функций (1.10) и (1.20).

Э. Пикар доказал [111], что внутри области своей определенности всякое
непрерывное вместе со всеми производными до второго порядка решение урав-
нения

𝑎𝑧𝑥𝑥 + 2𝑏𝑧𝑥𝑦 + 𝑐𝑧𝑦𝑦 + 𝑑𝑧𝑥 + 𝑒𝑧𝑦 + 𝑓𝑧 = 𝐹,

где 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝐹 – аналитические функции переменных 𝑥 и 𝑦, аналитично
по 𝑥 и 𝑦 при выполнении условия эллиптичности 𝑎𝑐 > 𝑏2.

Следовательно, все решения (3.6) в некоторых окрестностях рассматривае-
мых нами точек 𝑢 = 𝑢*, 𝜌 = 𝜌* > 0 обязательно должны быть аналитическими
функциями, и ряды (3.7) необходимо должны иметь ненулевой радиус сходимо-
сти. В частности, сходящимися должны быть и ряды Тейлора

𝐵(𝑢, 𝜌*) = 𝑏00 + 𝑏10Δ𝑢+ 𝑏20(Δ𝑢)
2 + 𝑏30(Δ𝑢)

3 +
∑︁
𝑖>3

𝑏𝑖0(Δ𝑢)
𝑖, (3.8)

𝐵𝜌(𝑢, 𝜌*) = 𝑏01 + 𝑏11Δ𝑢+ 𝑏21(Δ𝑢)
2 +

∑︁
𝑖≥3

𝑏𝑖1(Δ𝑢)
𝑖, (3.9)

по коэффициентам которых остальные коэффициенты 𝑏𝑖𝑗 разложений Тейлора
(3.7) находятся однозначно. Понятно, что и, наоборот, в силу теоремы Коши-
Ковалевской из сходимости рядов (3.8), (3.9) будет следовать также сходимость
рядов (3.7).

Итак, в дальнейшем мы рассматриваем ряды (3.8), (3.9), сходящиеся в неко-
торых окрестностях точек (𝑢 = 𝑢*, 𝜌 = 𝜌* > 0). Именно поэтому функция (1.20)
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в настоящей главе именно локально аналитическая, а не локально бесконечно
дифференцируемая.

Обращение в этих точках якобиана (3.4) в нуль в силу справедливости тож-
дества (3.5) и соотношений (1.10) означает, что

𝑗(𝑢*, 𝜌*) = −𝜌*𝑏211 − 16𝑏220 = 0,

то есть
𝑏20 = 𝑏11 = 0. (3.10)

Из уравнения (3.6) и двух равенств (3.10) получаем следующие три соотно-
шения на коэффициенты 𝑏𝑖𝑗:

𝑏02 = −𝑏01
𝜌*
, 𝑏12 = −12𝑏30

𝜌*
, 𝑏03 =

𝑏01
(𝜌*)2

− 4𝑏21
3
. (3.11)

Кроме того, из вида подстановок (1.10) следует справедливость равенств

𝑡* = 𝑏10,

𝑥* = 𝑢*𝑡* − 𝑏00 − 𝜌*𝑏01.
(3.12)

Разложение функции (1.20) в ряд Тейлора в окрестности (𝑢*, 𝜌*; 𝑡*, 𝑥*) с уче-
том соотношений (3.10)–(3.12) имеет вид

𝐹 = 𝜌2*𝑏01 + 𝜌*(𝑢*Δ𝑡−Δ𝑥) + 𝜌*Δ𝑢Δ𝑡+Δ𝜌(𝑢*Δ𝑡−Δ𝑥) + Δ𝑢Δ𝜌Δ𝑡+

+𝑏30(12Δ𝑢(Δ𝜌)
2 − 𝜌*(Δ𝑢)

3) + 𝑏21(
4

3
(Δ𝜌)3 − 𝜌*(Δ𝑢)

2Δ𝜌)+

+
∑︁
𝑖+𝑗≥4

𝑓𝑖𝑗(Δ𝑢)
𝑖(Δ𝜌)𝑗,

(3.13)

где все постоянные 𝑓𝑖𝑗 однозначно вычисляются через 𝜌*, а также коэффициен-
ты 𝛼𝑘, 𝑏𝑘0 и 𝑏𝑘1 разложений Тейлора (1.2), (3.8) и (3.9).

Заметим, что от Δ𝑡, Δ𝑥 зависят лишь линейные и единственный квадратич-
ный член, а кубические слагаемые разбиты на пары, вид которых с точностью
до растяжений совпадает с генотипом канонического ростка катастрофы типа
эллиптической омбилики 𝐷−

4 [93, §13, Пример 13.6; §14, стр. 105].
На множестве всех гладких функций двух основных переменных и двух

управляющих параметров такая вырожденность критических точек не типич-
на – типичными на этом множестве являются [91, Глава 1, §1, 1.5, стр. 13],
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[93, §6, стр. 44-45] лишь особенности складки 𝐴2 и сборки 𝐴3, которые в глав-
ном порядке описываются решениями, соответственно, уравнений 𝑦2 + 𝑥 = 0 и
𝑦3 + 𝑥1𝑢+ 𝑥2 = 0. Однако на его подмножестве функций вида (1.20), определя-
емых аналитическими в окрестностях точек (𝑢 = 𝑢*, 𝜌 = 𝜌* > 0) решениями эл-
липтических уравнений (3.6), вырождения критических точек таких функций,
которые соответствуют разложениям (3.13), в смысле идеологии математиче-
ской теории катастроф уже оказываются типичными.

Действительно, общность положения при обращении якобиана (3.5) в нуль
– т.е., выполнении равенства 𝑏20 = 𝑏11 = 0 – обеспечивается за счет выбора
подходящих для этого значений двух постоянных 𝑢*, 𝜌*, находящихся в нашей
власти за счет возможности вариации двух управляющих параметров 𝑡 и 𝑥. На
этом свобода выбора исчерпывается, и в ситуации «общего положения» мы не
можем наложить других ограничений в виде равенств на коэффициенты 𝑏𝑖𝑗.

Поэтому далее можно считать, что одновременно 𝑏21 ̸= 0 и 𝑏30 ̸= 0. Но в
дальнейшем мы будем исходить лишь из еще одного дополнительного ограни-
чения 𝑏30 ̸= 0. (Вариант с 𝑏30 = 0 и 𝑏21 ̸= 0 простыми переобозначениями и
растяжениями сводится к варианту с 𝑏30 ̸= 0, 𝑏21 = 0.) Помимо равенств (3.10)
и, естественно, ограничений, обеспечивающих сходимость рядов Тейлора (3.8),
(3.9), никаких других ограничений на коэффициенты этих рядов Тейлора далее
не накладывается.

Замечание 3.1. Данная ситуация во многом аналогична той, что описана
в Примере раздела 1.8 монографии [91]:

«Рассмотрим отображение плоскости комплексного переменного 𝑧 = 𝑥1+𝑖𝑥2
на плоскость комплексного переменного 𝑤 = 𝑦1 + 𝑖𝑦2, заданное формулой 𝑤 =

𝑧2, как гладкое отображение двумерной вещественной плоскости на двумерную
вещественную плоскость:

𝑦1 = 𝑥21 − 𝑥22,

𝑦2 = 2𝑥1𝑥2.

. . . Мы заключаем, что рассматриваемое отображение имеет в начале коорди-
нат особенность, отличную от складки и сборки. Следовательно, по теореме
Уитни оно неустойчиво, и его особенность в нуле при малом шевелении должна
распасться на складки и сборки.

В классе ростков голоморфных отображений C1 → C1 особенность 𝑤 = 𝑧2

устойчива.»
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Из процитированного следует и устойчивость в классе аналитических функ-
ций подобных ГК вещественных решений линеаризации системы (3.1){︃

𝑢𝑡 + 𝑢*𝑢𝑥 − 4𝜌𝑥 = 0,

𝜌𝑡 + 𝑢*𝜌𝑥 + 𝜌*𝑢𝑥 = 0,
(3.14)

которая простыми растяжениями сводится к системе Коши-Римана

(𝑥1)𝑦1 = (𝑥2)𝑦2,

(𝑥1)𝑦2 = −(𝑥2)𝑦1.

Описываемая окрестность точки типичной ГК решений системы НГО (3.1) в
главном порядке определяется корнями канонических уравнений, которые схо-
жи с уравнениями

𝑦1 = 𝑥21 − 𝑥22,

𝑦2 = 2𝑥1𝑥2

особенности комплексной складки. Как уже было отмечено в [103] эта сингуляр-
ность системы (3.1) наследуется из типичной сингулярности решений ее лине-
аризации (3.14) – у соответствующих ростков один и тот же генотип [93, §13,
Пример 13.6, стр. 102; §14, стр. 105].

Невырожденным линейным преобразованием (3.18) кубическую форму

𝑏30(12Δ𝑢(Δ𝜌)
2 − 𝜌*(Δ𝑢)

3) + 𝑏21(
4

3
(Δ𝜌)3 − 𝜌*(Δ𝑢)

2Δ𝜌) (3.15)

из второй строки правой части формулы (3.13) приведем к виду

−𝑏30𝜌*(𝑝2𝑞 −
𝑞3

3
). (3.16)

Для этого, все еще считая, что 𝑏30 ̸= 0, кубическое уравнение

𝑏30(12Δ𝑢(Δ𝜌)
2 − 𝜌*(Δ𝑢)

3) + 𝑏21(
4

3
(Δ𝜌)3 − 𝜌*(Δ𝑢)

2Δ𝜌) = 0 (3.17)

разрешим относительно Δ𝑢. В изучаемой нами ситуации «общего положения»
дискриминант [137, §9, Замечание 3] этого кубического уравнения

𝐷 =
16

3
𝜌*(Δ𝜌)

6(𝜌*𝑏
2
21 + 36𝑏230)

2
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при Δ𝜌 ̸= 0, очевидно, положителен, т.е. мы считаем, что, вообще говоря, коэф-
фициенты 𝑏21 и 𝑏30 не обращаются в нуль одновременно – иначе бы в разложении
(3.13) вообще не было бы кубических членов.

Поэтому [137, §9, стр. 142] при Δ𝜌 ̸= 0 данное кубическое уравнение обладает
тремя различными вещественными корнями, а значит [92, Глава 2, §6, стр. 46-
53], посредством невырожденных линейных преобразований вида

Δ𝑢 = 𝑢1𝑝+ 𝑢2𝑞,

Δ𝜌 = 𝜌1𝑝+ 𝜌2𝑞,
(3.18)

кубический многочлен (3.15) действительно переводится в двучлен (3.16).
Для этого найдем корни кубического уравнения (3.17) тригонометрическим

методом Виета [138, Chapter III, §7, стр. 36-37]:

(Δ𝑢)𝑘 =
Δ𝜌

3𝑏30
[2

√︂
(𝑏21)2 +

36

𝜌*
(𝑏30)2 cos(𝜙+

2(𝑘 − 1)𝜋

3
)− 𝑏21] (𝑘 = 1, 2, 3),

где

𝜙 =
1

3
arccos

⎛⎜⎝ 𝑏21√︁
(𝑏21)2 +

36
𝜌*
(𝑏30)2

⎞⎟⎠ .

Следовательно, кубическую форму (3.15) можно переписать в виде

−𝜌*𝑏30(Δ𝑢+ 𝑐1Δ𝜌)(Δ𝑢+ 𝑐2Δ𝜌)(Δ𝑢+ 𝑐3Δ𝜌),

где несовпадающие между собой постоянные 𝑐𝑘 имеют вид

𝑐𝑘 = − 1

3𝑏30
[2

√︂
(𝑏21)2 +

36

𝜌*
(𝑏30)2 cos(𝜙+

2(𝑘 − 1)𝜋

3
)− 𝑏21] (𝑘 = 1, 2, 3). (3.19)

А эта форма линейным невырожденным преобразованием

𝑈 = (Δ𝑢+ 𝑐2Δ𝜌)
(𝑐1−𝑐3)
(𝑐2−𝑐3)

( (𝑐2−𝑐3)
2

(𝑐1−𝑐2)(𝑐1−𝑐3)
)1/3,

𝑉 = (Δ𝑢+ 𝑐3Δ𝜌)
(𝑐1−𝑐2)
(𝑐2−𝑐3)

( (𝑐2−𝑐3)
2

(𝑐1−𝑐2)(𝑐1−𝑐3)
)1/3

(3.20)

сводится к произведению
−𝜌*𝑏30𝑈𝑉 (𝑈 − 𝑉 ),
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которое, в свою очередь, после замен

𝑈 =

√
3

61/3
𝑝+

1

61/3
𝑞,

𝑉 =

√
3

61/3
𝑝− 1

61/3
𝑞

переводится как раз в двучлен (3.16). Из вида данной замены и из вида замены
(3.20) следует, что невырожденное линейное преобразование, которое кубиче-
скую форму (3.15) переводит в форму (3.16), можно выбрать следующим:

Δ𝑢 =

√
3𝑐1(𝑐2 − 𝑐3)

1/3

61/3(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3
𝑝− (𝑐1𝑐2 + 𝑐1𝑐3 − 2𝑐2𝑐3)

61/3(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3(𝑐2 − 𝑐3)2/3
𝑞,

Δ𝜌 = −
√
3(𝑐2 − 𝑐3)

1/3

61/3(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3
𝑝+

(2𝑐1 − 𝑐2 − 𝑐3)

61/3(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3(𝑐2 − 𝑐3)2/3
𝑞.

(3.21)
Теперь заменой

𝐹 = −(𝐹 − (𝜌*)
2𝑏01 − 𝜌*(𝑢*Δ𝑡−Δ𝑥))

𝑏30𝜌*

разложение (1.20) переводится в сходящийся ряд, который в переменных 𝑝 и 𝑞
имеет вид

𝐹 = (𝐹10,10Δ𝑡+ 𝐹10,01Δ𝑥)𝑝+ (𝐹01,10Δ𝑡+ 𝐹01,01Δ𝑥)𝑞+

𝐹20Δ𝑡𝑝
2 + 𝐹11Δ𝑡𝑝𝑞 + 𝐹02Δ𝑡𝑞

2+

𝑝2𝑞 − 𝑞3

3
+

∑︁
𝑖+𝑗≥4

𝐹𝑖𝑗𝑝
𝑖𝑞𝑗,

(3.22)

где

𝐹10,10 = −
√
3(𝜌*𝑐1 − 𝑢*)(𝑐2 − 𝑐3)

1/3

61/3𝜌*𝑏30(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3
,

𝐹10,01 = −
√
3(𝑐2 − 𝑐3)

1/3

61/3𝜌*𝑏30(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3
,

𝐹01,10 =
𝑢*(2𝑐1 − 𝑐2 − 𝑐3)− 𝜌*(𝑐1𝑐2 + 𝑐1𝑐3 − 2𝑐2𝑐3)

61/3𝜌*𝑏30(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3(𝑐2 − 𝑐3)2/3
,

𝐹01,01 =
(2𝑐1 − 𝑐2 − 𝑐3)

61/3𝜌*𝑏30(𝑐1 − 𝑐2)2/3(𝑐1 − 𝑐3)2/3(𝑐2 − 𝑐3)2/3
,
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𝐹20 = − 61/3𝑐1(𝑐2 − 𝑐3)
2/3

2𝜌*𝑏30(𝑐1 − 𝑐2)4/3(𝑐1 − 𝑐3)4/3
,

𝐹11 =
61/3((𝑐1)

2 − 𝑐2𝑐3)√
3𝜌*𝑏30(𝑐2 − 𝑐3)1/3(𝑐1 − 𝑐2)4/3(𝑐1 − 𝑐3)4/3

,

𝐹02 = − (2𝑐1 − 𝑐2 − 𝑐3)(𝑐1𝑐2 + 𝑐1𝑐3 − 2𝑐2𝑐3)

62/3𝜌*𝑏30(𝑐1 − 𝑐2)4/3(𝑐1 − 𝑐3)4/3(𝑐2 − 𝑐3)4/3
,

а остальные постоянные 𝐹𝑖𝑗 также однозначно вычисляются по 𝜌*, а также ко-
эффициенты 𝛼𝑘, 𝑏𝑘0 и 𝑏𝑘1 сходящихся разложений Тейлора (1.2), (3.8) и (3.9).

Росток функции 𝐹 (𝑢, 𝜌; 𝑡, 𝑥) в точке (𝑡 = 𝑡*, 𝑥 = 𝑥*) есть [91, §8, стр. 121]
2-параметрическая деформация ростка функции 𝐹 (𝑢, 𝜌; 𝑡*, 𝑥*), задаваемой схо-
дящимся рядом

𝐹 (𝑢, 𝜌; 𝑡*, 𝑥*) = 𝑝2𝑞 − 𝑞3

3
+

∑︁
𝑖+𝑗≥4

𝐹𝑖𝑗𝑝
𝑖𝑞𝑗.

Она посредством аналитических в окрестности точки (𝑦1 = 0, 𝑦2 = 0) диф-
феоморфизмов 𝑦𝑗(𝑝, 𝑞) сводится [96, первое предложение §2, определение 2.9,
Леммы 5.1, 5.3] к канонической кубической форме

𝐹 (𝑢, 𝜌; 𝑡*, 𝑥*) = 𝑦21𝑦2 −
𝑦32
3
.

Из теории особенностей гладких отображений известно, что каноническая
нормальная форма

𝐺 = 𝑦21𝑦2 −
𝑦32
3
− 𝑘3𝑦

2
2 − 𝑘2𝑦1 − 𝑘1𝑦2 + 𝛾 (3.23)

с управляющими параметрами 𝑘1, 𝑘2, 𝑘3 является 𝑅-миниверсальной (и, в част-
ности, 𝑅-версальной).

Это означает [93, §13, Пример 13.6, стр. 102], [96, §2, Замечание 2.13, §8], [139]
существование невырожденных обратимых локально аналитических в окрест-
ности точки 𝑦1 = 0, 𝑦2 = 0 по переменным 𝑦1, 𝑦2 и аналитических в окрестности
точки (𝑡 = 𝑡*, 𝑥 = 𝑥*) функций 𝑝(𝑦1, 𝑦2; 𝑡, 𝑥), 𝑞(𝑦1, 𝑦2; 𝑡, 𝑥), а также локально
аналитических в окрестности точки (𝑡 = 𝑡*, 𝑥 = 𝑥*) функций 𝑘1(𝑡, 𝑥), 𝑘2(𝑡, 𝑥),
𝑘3(𝑡, 𝑥) и 𝛾(𝑡, 𝑥), гарантирующих выполнение в достаточно малой окрестности
точки (𝑝 = 0, 𝑞 = 0, 𝑡 = 𝑡*, 𝑥 = 𝑥*) тождества

𝐹 (𝑢, 𝜌; 𝑡, 𝑥) ≡ 𝑦21𝑦2 −
𝑦32
3
− 𝑘3𝑦

2
2 − 𝑘2𝑦1 − 𝑘1𝑦2 + 𝛾. (3.24)
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Найдем коэффициенты разложений

𝑝 =
∑︁

𝑚+𝑛>0

𝑎𝑚𝑛,00(Δ𝑡)
𝑚(Δ𝑥)𝑛+

+𝑦1[1 +
∑︁

𝑚+𝑛>0

𝑎𝑚𝑛,10(Δ𝑡)
𝑚(Δ𝑥)𝑛] + 𝑦2

∑︁
𝑚+𝑛>0

𝑎𝑚𝑛,01(Δ𝑡)
𝑚(Δ𝑥)𝑛+∑︁

𝑖+𝑗≥2

∑︁
𝑚+𝑛≥0

𝑎𝑚𝑛,𝑖𝑗(𝑦1)
𝑖(𝑦2)

𝑗(Δ𝑡)𝑚(Δ𝑥)𝑛,

(3.25)

𝑞 =
∑︁

𝑚+𝑛>0

𝑏𝑚𝑛,00(Δ𝑡)
𝑚(Δ𝑥)𝑛+

+𝑦1
∑︁

𝑚+𝑛>0

𝑏𝑚𝑛,01(Δ𝑡)
𝑚(Δ𝑥)𝑛 + 𝑦2[1 +

∑︁
𝑚+𝑛>0

𝑏𝑚𝑛,10(Δ𝑡)
𝑚(Δ𝑥)𝑛]+∑︁

𝑖+𝑗≥2

∑︁
𝑚+𝑛≥0

𝑏𝑚𝑛,𝑖𝑗(𝑦1)
𝑖(𝑦2)

𝑗(Δ𝑡)𝑚(Δ𝑥)𝑛,

(3.26)

𝑘𝑖 = 𝑘𝑖,10Δ𝑡+ 𝑘𝑖,01Δ𝑥+
∑︁

𝑚+𝑛≥2

𝑘𝑖,𝑚𝑛(Δ𝑡)
𝑚(Δ𝑥)𝑛, (𝑖 = 1, 2, 3),

𝛾 = 𝛾10Δ𝑡+ 𝛾01Δ𝑥+
∑︁
𝑖+𝑗≥2

𝛾𝑖𝑗(Δ𝑡)
𝑖(Δ𝑥)𝑗.

(3.27)

этих локально аналитических функций.
Кроме постоянного коэффициента 𝑏00,11, который может быть выбран про-

извольно (например, 𝑏00,11 = 0), все остальные эти коэффициенты однозначно
определяются через коэффициенты разложения (3.22) в результате подстанов-
ки рядов (3.25), (3.26), (3.27) в форму (3.23) и приравнивания результата этой
подстановки левой части тождества (3.24), задаваемой разложением (3.22):

𝑎00,20 = −𝐹31 + 𝑏00,11
2

, 𝑎00,11 = −𝐹40 + 𝐹22 + 𝐹04

2
,

𝑎00,02 = −𝐹13 − 𝑏00,11
2

, 𝑏00,20 = −𝐹40, 𝑏00,02 = 𝐹04,

𝑎10,00 = −1

2
[𝐹11 −

𝐹10,10(𝐹40 + 𝐹22 + 𝐹04)

2
+ 𝐹01,10𝑏00,11],

𝑎01,00 =
1

2
[
𝐹10,01(𝐹40 + 𝐹22 + 𝐹04)

2
− 𝐹01,01𝑏00,11],

(3.28)
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𝑏10,00 = −𝐹20 + 𝐹01,10𝐹40 + 𝐹10,10
(𝐹31 + 𝑏00,11)

2
,

𝑏01,00 = 𝐹01,01𝐹40 + 𝐹10,01
(𝐹31 + 𝑏00,11)

2
,

𝑘1,10 = −𝐹01,10, 𝑘1,01 = −𝐹01,01, 𝑘2,10 = −𝐹10,10, 𝑘2,01 = −𝐹10,01,

𝑘3,10 =
𝐹10,10(𝐹13 + 𝐹31)

2
+ 𝐹01,10(𝐹40 − 𝐹04)− 𝐹20 − 𝐹02,

𝑘3,01 =
𝐹10,01(𝐹13 + 𝐹31)

2
+ 𝐹01,01(𝐹40 − 𝐹04),

𝛾10 = 𝐹00,10, 𝛾01 = 𝐹00,01, ...

(3.29)

При этом управляющий параметр 𝑘3 представляется сходящимся рядом по
натуральным степеням управляющих параметров 𝑘1, 𝑘2:

𝑘3 = 𝜅10𝑘1 + 𝜅01𝑘2 +
∑︁
𝑖+𝑗≥2

𝜅𝑖𝑗𝑘
𝑖
1𝑘

𝑗
2,

𝜅10 =
(𝐹40 − 𝐹04)[𝐹10,01𝐹01,10 − 𝐹10,10𝐹01,01]− 𝐹10,01(𝐹20 + 𝐹02)

𝐹10,10𝐹01,01 − 𝐹10,01𝐹01,10

𝜅01 =
(𝐹13+𝐹31)

2 [𝐹01,10𝐹10,01 − 𝐹01,01𝐹10,10]− 𝐹01,01(𝐹20 + 𝐹02)

𝐹10,10𝐹01,01 − 𝐹10,01𝐹01,10
.

(3.30)

То есть потенциальная функция (1.20), разлагающаяся в сходящийся ряд
(3.13), действительно локально сводится к форме (3.23) с коэффициентом 𝑘3,
который при достаточно малых 𝑘1, 𝑘2 является аналитической функцией этих
двух переменных, задаваемой сходящимся разложением (3.30).

А так как критические точки функции (1.20) посредством соотношений
(1.10) задают решение (3.1) в окрестности точки градиентной катастрофы
(𝑢*, 𝜌*; 𝑡*, 𝑥*), то данное решение системы НГО (3.1) локально представляется
через зависящее от параметров 𝑘1,𝑘2 решение системы уравнений

𝑦21 − 𝑦22 = 𝑘1 + 2𝑘3(𝑘1, 𝑘2)𝑦2,

2𝑦1𝑦2 = 𝑘2,
(3.31)

определяющей согласно равенствам 𝐺𝑦1 = 0, 𝐺𝑦2 = 0 критические точки функ-
ции (3.23).

При независимости трех переменных 𝑘𝑖 друг от друга эти уравнения совпада-
ют с каноническими уравнениями катастрофы эллиптической омбилики 𝐷−

4 . В
рассматриваемой же нами ситуации аналитической зависимости 𝑘3 от перемен-
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ных 𝑘1 и 𝑘2 уместно говорить о сечении этой канонической катастрофы теории
особенностей гладких отображений.

В силу ранее сделанного Замечания 3.1 делаем вывод о совпадении – с
точностью до растяжений – генотипа особенностей решения уравнения Лапласа
и генотипа только что описанной особенности типа 𝐷−

4 . Подобно гиперболиче-
скому случаю, исследованному в пунктах 1.1 и 1.2, имеет место наследование
генотипов.

Тем самым доказана
Теорема 3.1. Пусть коэффициент 𝛼(𝜌) системы (3.1) – положительная ло-

кально аналитическая в окрестности точки 𝜌 = 𝜌* > 0 функция, разлагающаяся
в ряд Тейлора (1.2). И пусть аналитическое в точке (𝑢 = 𝑢*, 𝜌 = 𝜌*) решение
𝐵(𝑢, 𝜌) скалярного эллиптического уравнения (3.6) и его производная 𝐵𝜌(𝑢, 𝜌)

при 𝜌 = 𝜌* задаются сходящимися в некоторой окрестности точки 𝑢 = 𝑢* ря-
дами Тейлора (3.8) и, соответственно, (3.9), коэффициенты 𝑏20 и 𝑏11 которых
равны нулю, а коэффициент 𝑏30 отличен от нуля.

Тогда определяемое согласно (1.10) решение системы (3.1), которое прини-
мает значение 𝑢 = 𝑢*, 𝜌 = 𝜌* в точке (𝑡 = 𝑡*, 𝑥 = 𝑥*), задаваемой формула-
ми (3.12), претерпевает в этой точке градиентную катастрофу. Данное решение
системы (3.1) посредством сходящихся в достаточно малых окрестностях этих
точек рядов (3.25), (3.26), (3.27), (3.28), (3.29) и формул (3.19), (3.21) выража-
ется через решения системы алгебраических уравнений (3.31). Коэффициент 𝑘3
этой системы при 𝑡→ 𝑡* и 𝑥→ 𝑥* является аналитической функцией 𝑘3(𝑘1, 𝑘2),
представляемой сходящимся рядом (3.30).

Доказанную теорему уточняет следующая, уточняющая вывод работы [100]
по части возмущения генотипа особенности 𝐷−

4 .
Теорема 3.2. В условиях предыдущей теоремы функция 𝑘3(𝑘1, 𝑘2), вообще

говоря, не равна тождественно нулю.
Доказательство. Для доказательства продемонстрируем справедливость

этого утверждения на примере описываемого ниже точного решения системы
(3.1) из §7 статьи [100] (авторы которой получили, что для рассматриваемой
ими ГК данного точного решения в уравнениях (3.31) функция 𝑘3 равна нулю).

При наших обозначениях в работе [100, 7.1.1, формула (7.8)] в качестве эта-
лонного рассматривалось решение задачи Коши для системы уравнений (3.1)
при 𝛼(𝜌) ≡ 4 (система уравнений «перевернутой» (или «опрокинутой») мелкой
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воды) с начальными данными

𝑢(0, 𝑥) = −2 tanh(𝑥),

𝜌(0, 𝑥) = (2 cosh)−2(𝑥).

Как следует из результатов [140] и [141], это решение задачи Коши задается
формулами (1.10) через следующее точное решение уравнения (3.6)

𝐵 =
𝑢

4𝜌
− 𝑢

8𝜌

√︂
𝑢2

4
+ 4𝜌+ ln(

√︁
𝑢2

4 + 4𝜌− 𝑢
2

2
√
𝜌

). (3.32)

Для такого 𝐵 условие обращения якобиана (3.4) в нуль в точке 𝑢 = 𝑢*, 𝜌 = 𝜌*
принимает вид

𝜌* = −𝑢
2
*
8

+
1

2
±

√︀
4− 𝑢2*
4

.

Пусть выбран знак плюс и 𝑢* = 0. Тогда, в силу полученного условия и
соотношений (1.10) в точке ГК

𝑢* = 0, 𝜌* = 1, 𝑡* = −1

4
, 𝑥* = 0.

В окрестности точки (𝑢 = 0, 𝜌 = 16) разложение точного решения (3.32) в
ряд Тейлора принимает вид

𝐵 = −𝑢
4
+
𝑢(Δ𝜌)2

16
− 𝑢3

192
+

∑︁
𝑖+𝑗≥4

𝑏𝑖𝑗𝑢
𝑖(Δ𝜌)𝑗,

где
Δ𝜌 = 𝜌− 1, 𝑏21 = 0, 𝑏30 = − 1

192
.

В свою очередь, в окрестности точки ГК соответствующая потенциальная
функция (1.20) раскладывается в ряд (Δ𝑡 = 𝑡+ 1

4)

𝐹 = −𝑥− 𝑥Δ𝜌+Δ𝑡𝑢+Δ𝑡𝑢Δ𝜌−

−𝑢(Δ𝜌)
2

16
+

𝑢3

192
+
𝑢(Δ𝜌)3

32
− 𝑢3Δ𝜌

384
+

∑︁
𝑖+𝑗≥5

𝑓𝑖𝑗𝑢
𝑖(Δ𝜌)𝑗,

который заменами
𝐹 = −64(𝐹 + 𝑥),

Δ𝜌 =
𝑝

2
, 𝑢 = 𝑞
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приводится к виду (3.22):

𝐹 = 32𝑥𝑝− 64Δ𝑡𝑞 − 32Δ𝑡𝑝𝑞+

+𝑝2𝑞 − 𝑞3

3
− 𝑝3𝑞

4
+
𝑝𝑞3

12
+

∑︁
𝑖+𝑗≥5

𝐹𝑖𝑗𝑝
𝑖𝑞𝑗.

Из вида коэффициентов полученного разложения

𝐹10,01 = 32, 𝐹01,10 = −64,

𝐹20 = 𝐹02 = 𝐹10,10 = 𝐹01,01 = 𝐹40 = 𝐹22 = 𝐹04 = 0,

𝐹11 = −32, 𝐹31 = −1

4
, 𝐹13 =

1

12

в силу (3.30) следует вывод о том, что в разложении (3.30)

𝜅10 = 0, 𝜅01 =
1

12
.

Следовательно, в рассматриваемом примере 𝑘3 ̸≡ 0. Теорема 3.2 доказана.
Замечание 3.2. Причина расхождения этого заключения с выводами ра-

боты [100] состоит в том, что авторы [100] в своих формальных рассуждениях
сразу фактически отбросили в ряде (3.22) сумму

∑︀
𝑖+𝑗≥4 𝑓𝑖𝑗Δ𝑢

𝑖Δ𝜌𝑗, через ко-
эффициенты 𝑓𝑖𝑗 которой и выражаются коэффициенты ряда Тейлора функции
𝑘3(𝑡, 𝑥) в точке (𝑡 = 𝑡*, 𝑥 = 𝑥*).

Замечание 3.3. У гиперболического варианта системы НГО (3.1), т.е. си-
стемы изоэнтропической газовой динамики (1.1) есть частный случай давления
Бехерта-Станюковича 𝑝 = 𝑎2

3 𝜌
3. Как было доказано в пункте 1.3.2, решени-

ям системы (1.1) в таком случае присуща особенность омбилического типа 𝐷+
4 ,

в канонических уравнениях которой управляющий параметр 𝑘3(𝑡, 𝑥) ≡ 0. В эл-
липтическом же случае 𝑘3 ̸≡ 0 для произвольной положительной аналитической
функции 𝛼(𝜌) и в этом тоже проявляется принципиальное отличие между омби-
лическими особенностями решений систем газовой динамики (1.1) и нелинейной
геометрической оптики (3.1).
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Заключение
Диссертационная работа посвящена исследованию поведения решений ква-

зилинейной системы одномерных уравнений изоэнтропической газовой динами-
ки (0.1) и решений квазилинейной системы одномерных уравнений нелинейной
геометрической оптики (0.2) в окрестности соответствующих конечных точек
градиентных катастроф: таких, в которых первые производные решений обра-
щаются в бесконечность, а сами решения при этом остаются конечными. Реше-
ния этих систем выражаются через решения канонических уравнений теории
катастроф, получаемых из анализа локально бесконечно дифференцируемых
(для системы НГО – аналитических) функций вида (0.7), зависящих дополни-
тельно от параметров.

Основные результаты работы заключаются в следующем:
1. Решения системы уравнений идеальной одномерной изоэнтропической га-

зовой динамики (0.1) в окрестности типичной омбилической точки градиент-
ной катастрофы (соответствующей ситуации с наложением двух ограничений
на коэффициенты разложения решения решения уравнения (0.10)) заданы в
терминах решений канонических уравнений сечения гиперболической омбили-
ки (1.25).

2. Показано, что с точностью до растяжений генотипы всех трех особенно-
стей 𝐴2 (1.58), 𝐴3 (1.60), 𝐷+

4 (1.62) решений линейного одномерного однородно-
го волнового уравнения (к которому сводится линеаризация системы уравнений
идеальной одномерной газовой динамики) совпадают с генотипами всех трех
особенностей решений системы уравнений идеальной одномерной газовой дина-
мики (0.1). Происходит наследование особенностей.

3. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения (0.10)
при 𝑝 = 𝑝0− 𝑚2

𝜌 ) решение системы уравнений идеальной одномерной газовой ди-
намики в случае Чаплыгина (1.67) (нарушающего условие сильной нелинейно-
сти (1.7)) описано в терминах решений канонического уравнения сечения сбор-
ки (1.84). Этот вывод дополняет результат статьи [74], где газ Чаплыгина был
оставлен за рамками анализа. Отмечено, что в данном случае, в отличие от
более общего, происходит наследование не только генотипа, но и всей канониче-
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ской нормальной формы катастроф 𝐴2, 𝐴3, типичных для решений волнового
уравнения.

4. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения
(0.10) при 𝑝 = 𝑎2

3 𝜌
3) описаны решения системы уравнений идеальной одномерной

газовой динамики в случае Бехерта-Станюковича (1.91) (нарушающего условие
более сильное, чем условие сильной нелинейности (1.6)) в терминах решений
канонических уравнений сечения гиперболической омбилики (1.107). Отмечено,
что в данном специфическом случае один из управляющих параметров канони-
ческой нормальной формы тождественно равен нулю.

5. В окрестности типичной точки градиентной катастрофы типа сборки (при
одном ограничении на коэффициенты разложения решения уравнения (0.10))
решение системы уравнений идеальной одномерной газовой динамики (0.1) (и
решение системы НГО (0.2) при замене 𝜌 → −𝜌) описано в терминах решений
канонического уравнения сборки (2.12) при стремлении плотности газа (в случае
НГО – интенсивности) к нулю.

6. В окрестности типичной омбилической точки градиентной катастрофы
(при двух ограничениях на коэффициенты разложения решения уравнения
(0.12)) описаны решения системы уравнений нелинейной геометрической оптики
(0.2) в терминах решений канонических уравнений сечения эллиптической ом-
билики (3.31). Показано, что с точностью до растяжений генотип омбилической
особенности решения системы уравнений нелинейной геометрической оптики
совпадает с генотипом омбилической особенности решения уравнения Лапла-
са – тем самым происходит наследование особенности. Дополнительно уточнен
(по части неравенства нулю одного из управляющих параметров) и выполнен не
на формальном уровне, а на уровне сходящихся рядов Тейлора аналитических
функций, результат работы Б. А. Дубровина, Т. Гравы, К. Клейна 2009 г. [100].

Все результаты получены математически строго: с применением конечной
последовательности бесконечно дифференцируемых (при исследовании эллип-
тической системы уравнений НГО – аналитических) преобразований, а не по-
средством использования формальных степенных рядов и их усечений, как в
значительной части более ранних работ предшественников.
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Schwingungsweite / B. Riemann // Abhandlungen der Akademie der
Wissenschaften, Gottingen. Mathematisch-Physikalische Klasse. – 1860. – V.
8 – P. 43-66.

[58] Горьков, Л. П. Возникновение ударной волны при отражении слабого раз-
рыва от звуковой линии / Л. П. Горьков, Л. П. Питаевский // Докл. АН
СССР. – 1962. – Т. 174, № 2 – С. 293–296.

[59] Гуревич, А. В. Возникновение бездиссипативной ударной волны / А. В. Гу-
ревич, А. Л. Крылов // Докл. АН СССР. – 1988. – Т. 301, № 4 – С. 851–854.

[60] Stenflo, L. On shock wave formation in a magnetized plasma / L. Stenflo, A.B.
Shvartsburg, J. Weiland // Physics Letters A. – 1997. – V. 225, № 1 – P. 113–
116.

[61] Buckmaster, T. Formation and development of singularities for the compressible
Euler equations / T. Buckmaster, T. D. Drivas, S. Shkoller, V. Vicol // Proc.
Int. Cong. Math. – 2022. – V. 5 – P. 3636–3659.

[62] Neal, I. A new type of stable shock formation in gas dynamics / I. Neal, C.
Rickard, S. Shkoller, V. Vicol // arXiv:math/2303.16842. – 2023.

[63] Buckmaster, T. Shock formation and vorticity creation for 3d Euler / T.
Buckmaster, S. Shkoller, V. Vicol // Communications on Pure and Applied
Mathematics. – 2023. – V. 76, № 9 – P. 1965–2072.

109



[64] Buckmaster, T. Formation of point shocks for 3D compressible Euler / T.
Buckmaster, S. Shkoller, V. Vicol // Communications on Pure and Applied
Mathematics. – 2023. – V. 76, № 9 – P. 2073–2191.

[65] Haberman, R. Nonlinear Cusped Caustics for Dispersive Waves / R. Haberman,
R. Sun // SIAM Journal on Applied Mathematics. – 1985. – V. 72, № 1 – P.
1–37.

[66] Haberman, R. Note on the Initial Formation of Shocks / R. Haberman // SIAM
Journal on Applied Mathematics. – 1986. – V. 46, № 1 – P. 16–19.

[67] Haberman, R. The initial formation and structure of two-dimensional diffusive
shock waves / R. Haberman // Wave Motion. – 1986. – V. 8, № 3 – P. 267–276.

[68] Воронин, С. М. Структура фронта ударной волны в гетерогенной смеси
двух изотермических газов с вязкостью / С. М. Воронин, В. А. Адарченко,
А. В. Панов // Челяб. физ.-матем. журн. – 2023. – Т. 3, № 4 – С. 461–475.

[69] Canic, S. Mathematical Analysis of the Quasilinear Effects in a Hyperbolic
Model of Blood Flow through Compliant Axisymmetric Vessels / S. Canic, E.
H. Kim // Mathematical Methods in Applied Sciences. – 2003. – V. 26, № 14 –
P. 1161–1186.

[70] Хабиров, С. В. Автомодельное схождение ударной волны по теплопровод-
ному газу / С. В. Хабиров // Прикладная математика и механика. – 2009.
– Т. 73, № 5 – С. 731–740.

[71] Маслов, В. П. О распространении ударных волн в изоэнтропическом невяз-
ком газе / В. П. Маслов // Итоги науки и техн. Сер. Соврем. пробл. мат..
– 1977. – Т. 8 – С. 199–271.

[72] Маслов, В. П. Распространение ударной волны в изоэнтропическом газе
с малой вязкостью / В. П. Маслов, В. А. Цупин // Итоги науки и техн.
Сер. Соврем. пробл. мат.. – 1977. – Т. 8 – С. 273–308.

[73] Кудашев, В. Р. Особенности некоторых типичных процессов самопроиз-
вольного падения интенсивности в неустойчивых средах / В. Р. Кудашев,
Б. И. Сулейманов // Письма в ЖЭТФ. – 1995. – Т. 62, № 4 – С. 358–363.

110



[74] Кудашев, В. Р.. Влияние малой диссипации на процессы зарождения одно-
мерных ударных волн / В. Р. Кудашев, Б. И. Сулейманов // Прикладная
математика и механика. – 2001. – Т. 65, № 3 – С. 456–466.

[75] Гарифуллин, Р. Н. От слабых разрывов к бездиссипативным ударным вол-
нам / Р. Н. Гарифуллин, Б. И. Сулейманов // ЖЭТФ. – 2010. – Т. 137, №
1 – С. 149–164.

[76] Сулейманов, Б. И. Типичная провальная особенность сборки решений урав-
нений движения одномерного изоэнтропического газа / Б. И. Сулейманов,
А. М. Шавлуков // Известия РАН. Серия физическая. – 2020. – Т. 84, № 5
– С. 664–666.

[77] Алексеев, Ю. К., Сухоруков, А. П. Введение в теорию катастроф / Ю. К.
Алексеев, А. П. Сухоруков. – М.: Изд-во Московского университета, 2000 –
182 с.

[78] Арнольд, В. И. Теория катастроф / В. И. Арнольд. – М.: Наука, 1990 – 128
с.

[79] Брёкер, Т., Ландер, Л. Дифференцируемые ростки и катастрофы / Т. Брё-
кер, Д. Ландер. – М.: Мир, 1977 – 208 с.

[80] Гилмор, Р. Прикладная теория катастроф. Кн. 1 / Р. Гилмор. – М.: Мир,
1984 – 352 с.

[81] Гилмор, Р. Прикладная теория катастроф. Кн. 2 / Р. Гилмор. – М.: Мир,
1984 – 285 с.

[82] Том, Р. Cтруктурная устойчивость и морфогенез / Р. Том. – М.: Логос, 2002
– 278 с.

[83] Арнольд, В. И. Особенности каустик и волновых фронтов / В. И. Арнольд.
– М.: Фазис, 1996 – x+334 с.

[84] Павлова, Н. Г. Введение в теорию особенностей / Н. Г. Павлова, А. О.
Ремизов. – М.: МФТИ, 2021 – 182 с.

[85] Голубицкий, М. Устойчивые отображения и их особенности / М. Голубиц-
кий, В. Гийемин. – М.: Мир, 1977 – 296 с.

111



[86] Castrigiano, D. P. L. Catastrophe theory: Second edition / D. P. L. Castrigiano,
S. A. Hayes. – Boca Raton: CRC Press, 2019 – 284 p.

[87] Закалюкин, В. М. Огибающие семейств волновых фронтов и теория управ-
ления / В. М. Закалюкин // Тр. МИАН. – 1995. – Т. 209 – С. 133–142.

[88] Кравцов, Ю. А. Каустики, катастрофы и волновые поля / Ю. А. Кравцов,
Ю. И. Орлов // УФН. – 1983. – Т. 141, № 4 – С. 591–627.

[89] Арнольд, В. И. Критические точки гладких функций и их нормальные фор-
мы / В. И. Арнольд // УМН. – 1975. – V. 30, № 5(185) – С. 3–65.

[90] Арнольд, В. И. Особенности систем лучей / В. И. Арнольд // УМН. – 1983.
– Т. 38, № 2(230) – С. 77–147.

[91] Арнольд, В. И., Варченко, А. Н., Гусейн-Заде С. М. Особенности диффе-
ренцируемых отображений. Классификация критических точек, каустик и
волновых фронтов / В. И. Арнольд, А. Н. Варченко, С. М. Гусейн-Заде. –
М. Наука, 1982 – 304 с.

[92] Постон, Т., Стюарт, И. Теория катастроф и ее приложения / Т. Постон, И.
Стюарт. – М.: Мир, 1980 – 607 с.

[93] Седых, В. Д. Математические методы теории катастроф / В. Д. Седых. –
М.: Издательство МЦНМО, 2021 – 224 с.

[94] Арнольд, В. И. Нормальные формы функций в окрестности вырожденных
критических точек / В. И. Арнольд // УМН. – 1974. – Т. 29, № 2(176) – С.
11–49.

[95] Арнольд, В. И. Критические точки функций на многообразии с краем, про-
стые группы Ли 𝐵𝑘, 𝐶𝑘, 𝐹4 и особенности эволют / В. И. Арнольд // УМН.
– 1978. – Т. 33, № 5(203) – С. 91–105.

[96] Арнольд, В. И. Нормальные формы функций вблизи вырожденных крити-
ческих точек, группы Вейля 𝐴𝑘, 𝐷𝑘, 𝐸𝑘 и лагранжевы особенности / В. И.
Арнольд // Функц. анализ и его прил. – 1972. – Т. 6, № 4 – С. 3–25.

[97] Рахимов, А. Х. Особенности решений квазилинейных уравнений / А. Х. Ра-
химов // Алгебра и анализ. – 1992. – Т. 4, № 4 – С. 217–224.

112



[98] Рахимов, А. Х. Особенности римановых инвариантов / А. Х. Рахимов //
Функциональный анализ и его приложения. – 1993. – Т. 27, № 1 – С. 46–59.

[99] Dubrovin, B. A. On Hamiltonian Perturbations of Hyperbolic Systems of
Conservation Laws, II: Universality of Critical Behaviour / B. A. Dubrovin //
Communications in Mathematical Physics. – 2006. – V. 267, № 1 – С. 117–139.

[100] Dubrovin, B. A. On Universality of Critical Behavior in the Focusing Nonlinear
Schrödinger Equation. Elliptic Umbilic Catstrophe and the Tritonque to the
Painleve-I Equation / B. A. Dubrovin, T. Grava, C. Klein // Journal of
Nonlinear Science. – 2009. – V. 19, № 1 – P. 57–94.

[101] Сулейманов, Б.И. Некоторые типичные особенности решений уравнений
с малым параметром. Диссертация на соискание степени д. ф. -м. н. / Б.
И. Сулейманов. – Уфа: Учреждение Российской Академии наук Институт
математики с вычислительным центром Уфимского научного центра РАН,
2009 – 223 с.

[102] Сулейманов, Б. И. Типичные сингулярности решений уравнений мелкой
воды / Б. И. Сулейманов // Доклады Академии наук. – 2012. – Т. 442, № 1
– С. 24–27.

[103] Сулейманов, Б. И. О наследовании решениями уравнений движения изо-
энтропического газа типичных особенностей решений линейного волнового
уравнения / Б. И. Сулейманов, А. М. Шавлуков // Математические замет-
ки. – 2022. – Т. 112, № 4 – С. 625–640.

[104] Мелихов, С.H. Типичные провальные асимптотики квазиклассических
приближений к решениям нелинейного уравнения Шрёдингера / С. Н. Ме-
лихов, Б. И. Сулейманов, А. М. Шавлуков // Дифференциальные уравне-
ния. – 2024. – Т. 60, № 5 – С. 618–631.

[105] Shavlukov, A. M. On Generic Singularities of Solutions to the 1D Gas Flow
Equations: Chaplygin and Bechert–Stanyukovich Cases / A. M. Shavlukov //
Lobachevskii Journal of Mathematics. – 2024. – V. 45, № 6 – P. 2779–2791.

[106] Сулейманов, Б. И. Омбилическая особенность квазиклассических прибли-
жений к решениям фокусирующего нелинейного уравнения Шрёдингера /

113



Б. И. Сулейманов, А. М. Шавлуков // Матем. заметки. – 2024. – Т. 116, №
6 – С. 982–997.

[107] Горюнов, В.В. Особенности проектирования полных пересечений / В. В.
Горюнов // Итоги науки и техники. Серия «Современные проблемы мате-
матики. Новейшие достижения». – 1983. – Т. 22 – С. 167–206.

[108] Рождественский, Б.Л., Яненко, Н.Н. Системы квазилинейных уравнений
и их приложения к газовой динамике / Б. Л. Рождественский, Н. Н. Яненко.
– М.: Наука, 1978 – 688 с.

[109] Березовский, А.А. Лекции по нелинейным краевым задачам математиче-
ской физики. Ч. II. / А. А. Березовский. – Киев: Наукова думка, 1976 – 282
с.

[110] Шварцбург, А.Б. Геометрическая оптика в нелинейной теории волн / А.
Б. Шварцбург. – М.: Наука, 1977 – 120 с.
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